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This paper proposes a novel and cost-effective forward recovery checkpointing scheme
for multiprocessor systems with duplex modular redundancy.  In our scheme, one process-
ing module is selected to retry the questionable checkpoint, and the other processing mod-
ule executes toward the next checkpoint if a mismatched comparison between the two pro-
cessing modules occurs at any checkpoint.  Those schemes using a spare module to retry
need much time to initiate the module, and the extra cost is high.  Although the traditional
rollback scheme retries the questionable checkpoint without any spare module, it has longer
average completion time than our scheme for a job under any fault distribution.  In our
scheme, besides transient faults, permanent faults can be located as well.  Experimental
results based on our mathematical models demonstrate that, under burst errors, the average
completion time of our scheme is reduced by 50% compared with that of the traditional
rollback and is comparable with that of the scheme using a spare module to retry.  In addition,
our scheme has the least total execution time (the most cost-effectiveness) among the three
schemes under any fault distribution.
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1. INTRODUCTION

A multiprocessor system with duplex modular redundancy (DMR) may employ two
processing modules (PMs) to execute the same job concurrently.  To reduce the number of
restarts and to roll back to the last checkpointing state instead, the execution of a job is
divided into n useful computation intervals, and each interval is followed by checkpointing
[1-6].  The overhead for a checkpointing scheme is the time needed to handle these
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checkpointing states [7].  Some fault tolerant schemes are based on fault masking, which
uses more redundant PMs to reduce the average completion time, such as in a triple module
redundancy (TMR) system [8, 9] or voting [10].  Fault masking used by TMR is not suit-
able for a DMR system because it requires three PMs.  Therefore, fault retry is used instead
of fault masking.  At each checkpoint, the states of two PMs are compared [7, 11, 12], and
a retry is performed to locate a faulty checkpoint if the comparison mismatches.  Two major
types of retry are retry on a spare PM and retry on an original PM.  The former can reduce
the average completion time of a job, but the system cost is high because a spare module is
required, and more time to initiate it before a retry can begin.  In transaction systems, this is
a serious problem because system availability is important [13].  To reduce the system cost,
the latter may be preferred.  However, it has problems related to retry validation and longer
average completion time.  To avoid an invalid retry on a faulty PM, the state of a PM needs
to be made consistent with the last checkpoint at the beginning of the retry.  In this paper,
we propose a novel forward recovery checkpointing scheme (FCS) to provide a trade-off
between the average completion time of a job and the number of PMs required.  Two exist-
ing checkpointing schemes will be reviewed and compared: (1) the roll-forward
checkpointing scheme (RFCS) and (2) the traditional rollback scheme (RB) [2, 7, 14].
RFCS needs a spare module to retry when a fault is detected, and RB uses both PMs simul-
taneously to retry the questionable checkpoint.  FCS is different from the schemes in  [7,
11] in terms of forward recovery without using a spare module and is unlike the traditional
rollback scheme in terms of retry on a single PM, not on two PMs.

In digital computer systems, the occurrence probability of transient faults is larger
than that of permanent faults [1, 15, 16].  Therefore, our analysis focuses on transient faults.
We assume that there is no identical checkpointing state on two PMs when they have tran-
sient faults at the same checkpoint interval [7].  Nevertheless, our scheme can handle per-
manent faults, such as fail-stop faults and crash faults, as well.

The remainder of this paper is organized as follows.  A DMR architecture is pre-
sented in section 2.1.  Some notations are introduced in section 2.2.  The basic concept of
FCS is given in section 2.3.  RB and RFCS schemes are reviewed in section 2.4.  Section 3
illustrates in detail the FCS scheme in each fault case.  Mathematical models and experi-
mental results obtained using FCS, RB, and RFCS are presented in section 4.  Section 5
depicts implementation issues.  Some concluding remarks are given in section 6.

2. PRELIMINARIES

2.1 DMR Architecture for FCS

A DMR architecture for FCS is shown in Fig. 1.  It consists of two PMs (P1 and P2),
two reliable storages (RSs), and one reliable checkpoint processor (RCP).  These compo-
nents are connected by an interconnection network (e.g., a bus) in a multiprocessor system.
To recover transient faults, no spare module is needed.  Both P1 and P2 concurrently ex-
ecute each replica of a job.  At each checkpoint, both checkpointing states of P1 and P2 are
sent to the RCP to be compared for fault detection.  The fault history of each PM is recorded
in the RCP.  To improve the reliability of RCP, it may be configured as a TMR structure
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[17].  Each PM has an RS used to save checkpointing states during fault recovery.  The
contents of an RS can be accessed by other processors (PMs and RCP).  For brevity, we use
checkpoint instead of checkpointing state in the following discussion.

Fig. 1. DMR architecture for FCS.
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2.2 Notations

We use six box notations for FCS, as shown in Fig. 2: (a) The time required for
checkpointing is denoted by tch, which also includes the time needed for comparing the
checkpoints of P1 and P2.  (b) The time required for synchronization is denoted by tw, where
the faster PM waits for the slower PM.  (c) The time required to compare the retried check-
point fj3 with two previously saved checkpoints fj1 and fj2 is denoted tcc.  (d) The time
required to make the state of a faulty PM consistent with the state of the other PM is de-
noted tcp.  (e) The time required to make the states of both PMs consistent with a previous
checkpoint is denoted tr.  (f) A fault is represented by a black dot.  A box shaded with the
same pattern represents the same operation that takes the same amount of time.
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Fig. 2. Box notations for FCS.

2.3 Basic Concept

This section introduces the basic concept of fault detection, location, and recovery in
FCS.  Fault detection is achieved through comparison of a pair of checkpoints [7, 11, 12].
In Fig. 3, one PM is selected to retry the questionable checkpoint, and the other PM ex-



KUOCHEN WANG AND CHIEN-CHUN WANG68

ecutes toward the next checkpoint continuously.  Assume that the last checkpoint fj-1 is
completed at time t0.  The current checkpoint is denoted fj, and its following interval is
denoted fj+1.  In the jth interval (Ij), both checkpoints of P1 and P2 are denoted fj1 and fj2,
respectively.  Suppose that there is a mismatch between fj1 and fj2, that one PM has a
transient fault, and that the other PM is fault-free during interval Ij.  Assume P1 has a fault
in interval I j.  At the beginning of the retry (t1), P1 is selected to retry the questionable
checkpoint fj, and P2 executes the next checkpoint fj+1 forward.  At the end of the retry
interval (t2), the checkpoint produced by P1 is denoted fj3, the other checkpoint completed
by P2 is denoted a f(j+1)3, fj3 is compared with the two previously saved checkpoints fj1 and
fj2, and f(j+1)3 is retained on the corresponding RS.  The result of this comparison indicates
that fj3 is identical to fj2 and different from fj1.  The correct checkpoint fj for interval Ij can
be derived from either fj2 or fj3.  fj is then retained on the RS, and the previous checkpoint
fj-1 is replaced to reduce the size of the RS.  Thus, the fault in P1 is recovered successfully.
Then P1 and P2 execute at the next interval Ij+1 continuously.  At time t3, the checkpoint f(j+1)

1 of P1 and the checkpoint f(j+1)2 of P2 have been completed.  If another fault happens in
interval Ij+1, either on P1 or  P2, the comparison between f(j+1)1 and f(j+1)2 will show them not
to be identical.  Then f(j+1)3 is compared with f(j+1)1 and f(j+1)2 immediately.  Note that f(j+1)3 has
completed at time t2.  The faulty f(j+1)2 can be correctly located without the need for an
additional retry interval.

2.4 RB and RFCS Schemes

For comparison with the other two schemes, the RFCS and RB schemes are illus-
trated in Fig. 4 and Fig. 5, respectively [7, 11].  Note that the retry for RFCS is performed on
a spare module.  As to RB, both PMs are rolled back to the previous checkpoint upon
failure at the same time.
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Fig. 3. FCS for a DMR system.
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3. FORWARD RECOVERY CHECKPOINTING SCHEME

3.1 Transient Faults

Now we will begin to describe our FCS under transient faults in detail.  If there is a
mismatched comparison at an interval, the second interval is needed to obtain a retried
checkpoint and a forward checkpoint on two PMs, respectively.  A forward checkpoint is
valid if its previous checkpointing state is fault-free.  Here the correctness of the forward
checkpoint has not yet been determined.  An additional interval is required to make sure
whether the forward checkpoint is correct.  In the following analysis, the states of at most
three consecutive intervals are considered.  That is, the scheme has three possible situations
æ (1) no retry interval, (2) one retry interval and the forward checkpoint is invalid, and (3)
one retry interval and the forward checkpoint is valid.  Depending on how faults occur,
there are six possible fault cases.  In the following, we will discuss these fault cases denoted
(A) through (F).

(A) No failure: Both P1 and P2 are fault-free in interval Ij (see Fig. 6).  At the end of
the current interval I j, fj1 and fj2 are found to be identical.  The correct checkpoint fj is
derived from either fj1 or fj2.  Then fj is saved in each RS, and the previous checkpoint fj-

1 is replaced.  At time t1, the current interval Ij has completed, and P1 and P2 are ready to
execute at the next interval Ij+1.  The time required for this case is tA = T = tu +tch, where tu is
the time required for useful computation in a checkpoint interval.  The average completion
times in this case are all the same for the three schemes.

Fig. 5. Rollback scheme (RB).
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Fig. 6. Case (A) æ No failure.

-

-�

P2

P1
�j1

�j2

tA = T

t0 t0+tu t1 T ime

(B) Recovering a failure, followed by a state restoration: In this case, the current
interval Ij has a fault, the retry checkpoint fj3 is fault-free, and the forward checkpoint f(j+1)

3 will be invalid.  Suppose that fj1 is fault-free, and that fj2 has a fault (see Fig. 7).  A retry
interval is inserted between intervals Ij and Ij+1.  Suppose that P1 is selected to retry due to a
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faulty module selection miss.  The forward checkpoint f(j+1)3 is invalid because it is infected
by the fault in fj2.  We will discuss the situation of a selection hit in cases (D) through (F).
At time t1, fj1 and fj2 are found to be different.  A retry interval is initiated.  First, both fj1

and fj2 are saved in the respective RS.  Then, the state of P1 is made consistent with the state
of the previous checkpoint fj-1.  The time required for this retry is tr = t3 - t1.  At time t3, P1

is ready to retry.  Concurrently, P2 continues to execute toward the forward checkpoint.  At
time t6, this forward checkpoint is completed first.  Then P2 waits until P1 completes the
retry.  The idle time is tw = t2 - t6.  At time t4, P1 completes the retry, and fj3 is compared with
the two saved checkpoints fj1 and fj2.  At time t2, it is found that fj3 is identical to fj1 and
different from fj2.  The time required for this comparison is tcc = t2 - t4.  At the same time, the
forward checkpoint f(j+1)3 is determined to be invalid due to a fault in its previous interval.
The state of P2 is incorrect and must be made consistent with the correct state from P1.  The
time required for this state restoration is tcp = t5 - t2.  At time t5, P1 and P2 are ready to
execute at the next interval I j+1.  FCS can recover a transient failure that appears in P2

without the need for a spare module, but RFCS, which needs a spare module to retry, will
fail if no spare module is available.  The time required for this case is tB = T + T1 + tcp, where
T1 = tr + tu + tcc.

(C) Rollback due to retry interval failure: The retry interval may not succeed if at
least two faults occur.  There are three possible scenarios as listed in Table 1.  In this case,
at least two faults happen in interval I j and in the retry interval.  The number of faulty
checkpoints is at least two among fj1, fj2, and fj3.  RCP can not find the correct checkpoint
fj.  Both PMs are rolled back to the previous checkpoint fj-1.  For the sake of illustration,
consider scenario C1 illustrated in Fig. 8.  Here two faults happen in interval I j2 and retry
interval Ij3, respectively.  First, fj1 and fj2 are found to be different at time t1.  A retry interval
is initiated.  The retry is the same as that in case (B) except that the comparison mismatches
at time t2.  RCP can not find two identical checkpoints because fj2 and fj3 are incorrect.
Then the states of P1 and P2 are made consistent with the previous checkpoint fj-1.  The time
required for this rollback is tr = t5 - t2.  After the rollback is completed at time t5, P1 and P2

are in a state identical to their respective state at t0.  No checkpoint is completed in this case.
The time required for this case is tC = T + T1 + tr.

Fig. 7. Case (B) æ Recovering a failure, followed by a state restoration.
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Table 1. Three possible fault scenarios in case (C).

Scenario Status in interval Ij Status in the retry interval

fj1 fj2 fj3 f(j+1)3

C1 fault-free faulty faulty don’t-care

C2 faulty fault-free faulty don’t-care

C3 faulty faulty don’t-care don’t-care
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(D) Retry successful and no more failure in the next interval: In this case and the
following two cases, (E) and (F), the retry mechanism succeeds to recover a failure in the
current interval I j.  The forward checkpoint f(j+1)3 is also valid due to a selection hit.  No
more failures happen in the next interval Ij+1 in this case.  As shown in Fig. 9, there is a fault
in P1, and P1 is selected to retry.  At time t1, fj1 and fj2 are found to be different.  A retry
interval is inserted between the current interval Ij and the next interval Ij+1.  Up to time t2, the
case is similar to case (B).  The forward checkpoint f(j+1)3 is first saved in the corresponding
RS.  Both P1 and P2 continue to execute at the next interval Ij+1.  After one interval of time,
both checkpoints f(j+1)1 and f(j+1)2 are found to be identical at time t5.  The forward
checkpoint f(j+1)3 will not be used in this case.  At time t5, both P1 and P2 are ready to
execute the following interval I j+2.  Thus, a single failure in P1 is recovered successfully.
The time required for this case is tD = 2T + T1.
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Fig. 8. Case (C1) æ Rollback due to retry interval failure.

Fig. 9. Case (D)  æ Retry successful and no more failure in the next interval.
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(E) Retry successful and forward recovery of a  failure in the next interval: In this
case, there are two faults in intervals Ij and Ij+1, respectively.  The forward checkpoint f(j+1)

3 will be valid due to a selection hit.  The infection of the fault is only one interval, but it is
two intervals in RFCS.  There are two possible fault scenarios as listed in Table 2.  To
illustrate, scenario E1 is shown in Fig. 10.  Since this case has been described in section 2.
3, we will only make some observations.  Up to time t5, this case is similar to case (D)
except that a fault occurs in I (j+1)2.  Note that both failures in fj1 and f(j+1)1 are recovered
successfully.  In this case, FCS needs only one retry interval to recover two failures, but RB
needs at least two rollback intervals.  The time required for this case is tE = 2T + T1 + tcc + tcp.

Table 2. Two possible fault scenarios in case (E).

Scenario Status in interval Ij Status in the retry interval Status in interval Ij+ 1

fj1 fj2 fj3 f(j+1)3 f(j+1)1 f(j+1)2

E1 faulty fault-free fault-free fault-free fault-free faulty

E2 faulty fault-free fault-free fault-free faulty fault-free
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(F) Retry successful and rollback in the next interval: There are three possible fault
scenarios in this case (see Table 3).  To illustrate, consider scenario F1 as shown in Fig. 11,
where fj1, f(j+1)3, and f(j+1)2 are faulty.  At time t1, a fault is detected, and a retry interval is
inserted between interval Ij and interval I j+1.  Up to time t7, this case is similar to case (E)
except that two faults occur in f(j+1)3 and f(j+1)2, respectively.  RCP can not find the correct
checkpoint fj+1 in the next interval Ij+1.  So both PMs are rolled back to the previous check-
point fj.  This rollback is similar to that of case (C).  The time required for the rollback is tr
= t8 - t7.  At time t8, the states of P1 and P2 are the same as those at time t2.  In this case, a
failure in Ij is recovered successfully.  But the other two failures, in f(j+1)2 and f(j+1)3, can not
be recovered.  The time required for this case is tF = 2T + T1 + tcc + tr.

Fig. 10. Case (E1) æ  Retry successful and forward recovery of a single failure in the next interval.

-

-�

u
pp
p
pp
p
pp
p
pp
p
pp
p

uP2

P1
�j1

�j2

�j3

�(j+1)3

�(j+1)1

�(j+1)2

tE = 2T + T1 + tcc + tcp

t0 t1 t3 t6 t4 t2 t5 t7 t8 T ime

-

-�

u
pp
p
pp
p
pp
p
pp
p
pp
p

u u pp
pp
pp
pp
pp

pp
pp
pp
pp
pp

pp
pp
pp
pp
pp

pp
pp
pp
pp
pp

pp
pp
pp
pp
pp

P2

P1
�j1

�j2

�j3

�(j+1)3

�(j+1)1

�(j+1)2

��
�

��	
Rollback

tF = 2T + T1 + tcc + tr

t0 t1 t3 t6 t4 t2 t5 t7 t8 T ime

Fig. 11. Case (F1) æ Retry successful and rollback in the next interval.

Table 3. Three possible fault scenarios in case (F).

Scenario Status in interval Ij Status in the retry interval Status in interval Ij+ 1

fj1 fj2 fj3 f(j+1)3 f(j+1)1 f(j+1)2

F1 faulty fault-free fault-free faulty fault-free faulty

F2 faulty fault-free fault-free faulty faulty fault-free

F3 faulty fault-free fault-free don’t-care faulty faulty

3.2 Permanent Faults

The scheme presented above can also detect and locate permanent faults in a PM.
Remember that if a PM encounters failures in several consecutive intervals during a period
of time, then the PM is assumed to have a permanent fault.  We assume that P1 and P2 will
not have permanent faults at the same time.  Suppose P1 has a permanent fault, and that P2

is fault-free.  As shown in Fig. 12, at time t1, a fault is detected.  P1 is first selected to retry.



A FORWARD RECOVERY CHECKPOINTING SCHEME 73

At time t2, the retry fails, and P1 and P2 are rolled back to the previous checkpoint fj-1 as in
case (C).  At time t3, the execution still fails.  Therefore, the retry is switched to P2.  At time
t4, this retry succeeds, and P1 is identified as being faulty.  The failure history is updated to
indicate that P1 is faulty.  Then both P1 and P2 continuously execute in the next interval Ij+1.
At time t5, the comparison between the two checkpoints f(j+1)1 and f(j+1)2 mismatches.  A
retry is performed again.  P2 is selected to retry again.  At time t6, the correct checkpoint fj+1

is found, and P1 is found to have a fault once again.  The results of the subsequent execution
during t4 to t6 are similar to those during t2 to t4, which are similar to case (B) except that two
consecutive faults occur in P1.  The results always indicate that P1 is faulty.  Since P1

encounters several consecutive failures in a period of time, it is determined to have a per-
manent fault.

4. PERFORMANCE EVALUATION

In this section, we will evaluate the performance of FCS, RFCS, and RB quantitatively.
Two performance measures will be examined: average completion time and total execution
time.  The total execution time can be used as a measure of cost-effectiveness for each
scheme.

4.1 Poisson Distributed Faults

In section 3, we have described the six possible fault cases in detail.  Now we will
evaluate the occurrence probability for each case.  The analysis presented here focuses on
transient faults.  Occurrence of transient faults in a module is first assumed to be a Poisson
process with a constant failure rate l [13, 18].  Therefore, the failure probability of a mod-
ule is 1 - e-lT during time period T.  Based on the probability and the time required for each
case (see Table 4, where m is the selection miss rate), we can derive the average completion
time and the total execution time for FCS.  Now we will calculate the average completion
time for a job with k checkpoints.  If k = 1, then FCS is identical to RB.  When a fault is
detected, a DMR system will roll back instead of performing a retry.  The occurrence prob-
ability for case (A), PA, is derived under the no failure condition.  Proll is the probability of a
rollback with k = 1.  Thus Proll = 1 - PA = 1 - e-2lT.  The average completion time( )τ k  for k
= 1 is derived as follows [7]:

τ τ1 1= + +P t P tA A roll roll( ), (1)

Fig. 12. Locating a module with a permanent fault: an example.
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where troll = T + tr.
If k = 2, then FCS remains the same as RB.  Therefore,

τ τ2 12= . (2)

For k ≥ 3, a retry procedure is initiated if a fault is detected.  Note that PA + PB + PC + PD +
PE + PF = 1.  The recursion for τ k

 is derived as follows:

τ τ τ τ τ
τ τ

k A k A B k B C k C D k D

E k E F k F

P t P t P t P t

P t P t
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+ + +

− − −

− −

( ) ( ) ( ) ( )

( ) ( ).
1 1 2

2 1

(3)

The DMR system is rolled back when a fault occurs in the last two intervals.  The initial
conditions are τ 1

 and τ 2
.  Starting with the above recursive equation (3), the closed form

of τ n
 is shown in equation (4):
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where q
P

PX
X

C
= −1 , for X = A, B, C, D, E, F,

qDE = qD + qE,

τ λ1 2=
+

−−

T t

e
tr

T r ,  and

τ τ2 12= .

The average completion time τ n f|  of a job can then be derived.   Note that τ n f|  is equal to
τ n

 except that at least one Poisson distributed fault (f) occurs during the execution of a job.
If there are n checkpoints, the probability that there will be no fault in each execution
interval is PA

n.  The value of τ n f|   can be derived as follows [7]:

τ τ
n

n A
n

A
nf

P nT

P
| =

−
−1 . (5)

Table 4. The likelihood of the six cases.

Case Probability required time

(A) PA = e– 2lT tA = T
(B) PB = 2me– l(T + T1)(1 – e–lT) tB = T + T1 + tcp

(C) PC = 2e–lT(1 – e–lT)(1 – e–lT1) + (1 – e–lT)2 tC = T + T1 + tr
(D) PD = 2(1 – m)e–l(3T + T1)(1 – e–lT) tD = 2T + T1

(E) PE = 4(1 – m)e–2l(T + T1)(1 – e–lT)2 tE = 2T + T1 + tcc + tcp

(F) PF = 2(1 – m)e–l(T + T1)(1 – e–lT)2(1 + e–lT – 2e–l(T + T1)) tF = 2T + T1 + tcc + tr
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4.2 Burst Faults

The average completion time τ n bf|  when a DMR system encounters burst faults (fb)
can be derived as follows.  Note that there are no faults in case (A), single faults in cases (B)
and (D), multiple faults in cases (C), (E) and (F).  Under burst faults, assume that cases (B)
and (D) will not happen, and that their occerrence probabilities are distributed to cases (C),
(E) and (F) based on their occurrence weights. Thus, we have

PC' = PC + WC ¥ (PB + PD),
PE' = PE + WE ¥ (PB + PD),
PF' = PF + WF ¥ (PB + PD),

where W
P

P P Pi
i

C E F
= + + , i = C, E, or F.

Therefore,

τ τn b nf| =

with PA retained, PB = PD = 0, and PC, PE and PF replaced by PC', PE' and PF', respectively.

4.3 Analysis of RB and RFCS

We will derive the average completion time of RB and RFCS under Poisson distrib-
uted faults and burst faults.  Since τ n f|  can be derived from τ n

 by means of equation (5),
only τ n

 for RB and RFCS are given here.  Under burst faults, RB needs at least two inter-
vals to roll back.  Therefore, τ n bf| of RB can be derived from τ n

 by multiplying the time of
rollback interval by 2.  In the case of RFCS under burst faults, situation B will not happen.
Therefore, the occurrence probability of situation B is distributed to situations C and D
based on their occurrence weights.  Thus, we have

RB:

τ λn
r

T rn
T t

e
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+
−
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RFCS:
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4.4 Performance Comparison Among FCS, RB and RFCS

To conduct performance comparisons among these three schemes, we will use a hypo-
thetical job called job 1.  Parameters for job 1 are listed in Table 5, where Tu is defined as the
total useful execution time of a job, ts is the time needed to initialize a job, and tpr is the time
needed to initiate a spare module to retry [7].  The other notations have been defined in
section 2.  These parameters of checkpointing and fault recovery are very sensitive with the
system environment [13], including the network delay and synchronization problem.
However, they will not affect the performance comparisons.

Table 5. Parameters for job 1.

Tu tch tr ts tcc tcp tpr

50 0.50 0.50 0.30 0.07 0.05 0.80
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Comparison of the average completion time under Poisson distributed faults: In Fig.
13, τ n f|  of each scheme is shown.  The x-axis represents the failure rates from 10-2 to 10-8,
and the y-axis represents the average completion time with the optimal checkpoint number
[19].  We use three miss rates to illustrate our FCS scheme.  FCS_1, FCS_0.5, and FCS_0
represent the cases of m = 1, m = 0.5, and m = 0, respectively.  RFCS has the shortest
average completion time among the three schemes because it uses a spare module during a
fault retry.  Note that neither FCS nor RB employ any spare modules, and FCS performs
better than RB.  In addition, the miss rate has little impact on the average completion time
under low failure rates, unless the failure rate is high.  This means that the performance of
our scheme is very stable.

Comparison of the average completion time under burst faults: In Fig. 14, τ n bf|  of
each scheme is shown.  The x-axis represents the failure rates from 10-1 to 10-7, and the y-
axis represents the average completion time with 10 checkpoints.  The results show that
FCS reduces by 50% the average completion time compared with RB and is comparable
with RFCS in this respect.  Therefore, our scheme is very suitable for situations with burst
errors.

Fig. 13. τ n f|  for job 1 with optimal checkpoint number.
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Comparison of the total execution time Te (or cost-effectiveness): Without loss of
generality, we only consider Poisson distributed faults.  In a DMR system without a spare
module for fault recovery, the total execution time is equal to twice the average completion
time τ n f| .  FCS and RB are such cases because they use only two PMs.  The execution
time of the spare module must be considered in RFCS.  That is, it uses two modules when
no failures occur and three modules when a failure occurs.  Four situations are considered
[7].  In situation (A), there is no failure, and the number of PMs is two.  In situations (B)
through (D), RFCS uses a spare module to retry, and the number of PMs is three.  The
execution time of RFCS for each situation is listed in Table 6.  For RFCS, derivation of the
total execution time is similar to the derivation of τ n f|  except that the required time for
each situation is replaced by the corresponding execution time in Table 6.  The total execu-
tion time for each of the three schemes (FCS, RB and RFCS)  is equal to twice τ n f| ,
summarized as follows:

Fig. 14. τ n bf| for job 1.
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Table 6. The execution time for each situation in RFCS.

Situation Required execution time

(A) ′tA = 2T
(B) ′tB = 4T + 2tw + 2tcc + 2tu + 2tcp + tpr

(C) ′tC = 4T + 2tw + tcc + tu + 2tr + tpr

(D) ′tD= 4T + 2tw + 4tcc + 4tu + 2tr + tpr
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In Fig.15, the x-axis represents the failure rates from 10-2 to 10-8, and the y-axis repre-
sents the total execution time under Poisson distributed faults with the optimal checkpoint
number [19].  In sum, the total execution time of our FCS is the smallest while that of RFCS
is the largest among the three schemes under any fault distribution.
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5. DISCUSSION

Some implementation issues are considered here.  All checkpointing schemes need
reliable storages to save some checkpoints during execution of a job.  Reliable storages are
very important components of the proposed scheme.  We assume that reliable storages are
very dependable.  The papers in [7, 14, 15, 17, 20] all assumed that reliable storages are
available for fault recovery.  The RFCS scheme requires that at most five checkpointing
states be stored in the reliable storages when a failure occurs while FCS requires that at
most three checkpointing states be stored for each case.  In this respect, our scheme is
better.  Each checkpointing scheme needs a reliable checkpoint processor for comparison
and synchronization.  To avoid a single point of failure, the reliable checkpoint processor
can be implemented by using a masking redundancy or by a distributed self-checking
approach.

6. CONCLUSIONS

A very cost-effective forward recovery checkpointing scheme for multiprocessor sys-
tems with duplex modular redundancy has been described in this paper.  We have compared
our scheme (FCS) with the other two representative schemes: RB and RFCS. FCS only
needs one retry interval to recover two transient faults at two consecutive checkpoints.  RB
needs at least two rollback intervals in the same fault situation.  RFCS performs state resto-
ration at the end of a retry, and execution on a faulty module is useless during the retry
interval.  Therefore, our scheme may be able to avoid wasting time on a faulty module
during a retry interval.  In addition, our scheme, without a spare module, has less system
cost than those schemes which have a spare module in terms of hardware expense and the
initialization time of the spare module.  Mathematical models have been derived to evaluate
the average completion time and the cost-effectiveness (total execution time) of the three
schemes.  Experimental results show that FCS can provide a better trade-off between aver-
age completion time and cost-effectiveness than the other two schemes under any fault
distribution.  In addition, under burst errors, the average completion time of FCS is de-

Fig. 15. Te for job 1 with optimal checkpoint number.
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creased by 50% compared with that of RB and is comparable with that of RFCS.  Furthermore,
a processing module with a permanent fault can be located in FCS, and the size of the
required reliable storage is smaller than that for RFCS.
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