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Abstract

The dependence of the phase tunneling time on electronic spin polarization in symmetric and asymmetric double-barrier
semiconductor heterostructures is studied theoretically. The effective one-band Hamiltonian approximation and spin-dependent
boundary conditions are used for theoretical investigation of the electron spin influence on the delay time in tunneling
processes. It is shown that the spin–orbit splitting in the dispersion relation for the electrons can provide a dependence of
the delay time on the electron spin polarization without additional magnetic field. This dependence can be controlled by an
external electric field and can be very pronounced for realistic double-barrier semiconductor heterostructures.q 2000 Elsevier
Science Ltd. All rights reserved.
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An understanding of the time aspects of tunneling
processes is of much significance [1–3]. Apart from a
theoretical interest [1,3], this understanding is of importance
because of increasing attention on miniaturizing tunnel
semiconductor devices [4]. Although in recent years the
tunneling time of an electron through double-barrier reso-
nant heterostructures (DBRH) has been studied extensively,
the concept of the tunneling time is still not as clear as it is
desired [1]. In fact, tunneling time is a basic characteristic
that determines the dynamic range of tunneling devices.
There are several quantities used in description of the
tunneling process with the dimensions of time. These time
characteristics have been introduced by different authors to
describe different aspects of electron dynamics [5–9].
Additional complexity arises with some recent publications
that demonstrated position-dependent effective mass and
parallel (to interfaces) motion dependence of the tunneling
process [10–16]. Since the miniature tunnel semiconductor
devices typically have position-dependent effective electron
mass, the parallel (in-plane) motion of the electron can
provide additional specific effects [15,16].

In this article we call attention to another consequence for
the tunneling time theory that originates from the electron
parallel motion in DBRH. It is well known that there is a
spin–orbit coupling between in-plane electron motion and
the electron spin polarization [17–20]. The coupling causes
spin-splitting in the electronic energy band in asymmetric
heterostructures or heterostructures with an external electric
field [21–24]. Recently, it has been found that this effect is
also strong in tunnel barrier structures and can lead to spin-
dependent tunnel coefficients [25–27]. There are two contri-
butions to the spin-splitting effect that can be distinguished,
which play different roles: band-edge discontinuity at the
structure interfaces and additional electrostatic potential.
The former brings about the spin-dependent boundary
conditions to the tunnel problem and the latter gives a
spin-dependent term in the effective mass Hamiltonian
[21–24]. Both of them form different tunneling resonance
conditions for different spin polarizations of tunneling elec-
trons and lead to a spin-splitting of the resonance level in the
asymmetric DBRH well [26,27]. The spin-split levels corre-
spond to different electronic spin polarizations and
obviously have different characteristic times of the electron
tunnel process. We will show below that the spin–orbit
coupling can lead to significant differences in tunneling
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times for different electron spin polarizations at zero
magnetic field.

In this investigation we use the “stationary phase
approach” to the tunneling time definition introduced by
Bohm [5]. It is a well-understood and widely used definition
that actually deals with the phase delay time. The delay time
can be described as the energy derivative of the phaseQ of
the structure transmission amplitude

t � "
2Q

2Ez
; �1�

where Ez denotes the longitudinal (corresponding to a
motion along the perpendicular direction to the heterostruc-
ture interface) component of the electron’s total energy.

We describe here a DBRH with variations of the band
structure parameters with an external electric field, as shown
in Fig. 1. Layers of the structure are perpendicular to the
z-axis, the in-plane electron’s wave vector isk (if k is put
along an arbitraryx direction, the spin polarization is set
along they-axis in the layer plane). In the structure we
have two sources for thek-vector dependence of the trans-
mission coefficient: through position-dependent energy
band parameters (as in Refs. [10–15]), and through the
coupling between in-plane electron motion and the elec-
tron’s spin polarization produced by the external electric
field. The last one can lead to the spin polarization depen-
dence in symmetric DBRH (sDBRH). The former leads to
the spin-dependent boundary conditions and manifests the
spin-splitting effect when the DBRH is asymmetric
(aDBRH), even without an additional electric field
[23,26,27]. We use the effective quasi-one-dimensional
one-electronic-zone Hamiltonian [23] within the envelope

function approximation for the total wave function of the
electronFs (z, r ) and can present the function as

F js�z; r� � C js�z� exp�ik·r�;
whereC js�z� satisfies thez-component of the Schro¨dinger
equation in thejth region ands � ^1 refers to the spin
polarization. The mass and spin-dependent boundary condi-
tions forC js�z� at an interface planez� zj betweenj and
j 1 1 regions have been introduced in Ref. [23]

1
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is position- and energy-dependent electronic effective mass
in nonparabolic approximation and

b�E; z� � P2
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is position- and energy-dependent electronic spin-coupling
parameters. In Eqs. (2) and (3),E denotes the total electron
energy in the conduction band,V�z� � 2eFzis the external
electric potential (F—the electric field,e—the electron’s
charge). The matrix elementP is assumed to bez-indepen-
dent [28];Ec�z�; Eg�z�; andD�z� stand correspondingly for
z-dependencies of the conduction-band-edge, the main band
gap, and the spin–orbit splitting profiles.

The most attractive material system for the spin-splitting
effects in DBRH preferably should contain a component of
narrow-band semiconductors [17,18,21]. It worth noticing
that the parabolic approximation in the electron motion
description can lead to incorrect results for this case
[22,25]. Therefore, in our calculations we use values
below the nonparabolic approximation (2) for the electronic
dispersion relations in all materials of the structures.

To obtain the structure tunneling transmission amplitude,
we use the transfer matrix method [29] with the boundary
conditions above Eq. (2) as was described in Ref. [26]. The
potential profile in the DBRH consists of five regions and the
total transfer matrix, which matches regions 5 and 1, can be
written as

Ms �4
j�1 M j

s �5�
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Fig. 1. Variation of the semiconductor-band parameters in DBRH
with external electric field.



In Eq. (4)M j
s is the transfer matrix that matches regionsj

and j 1 1: The structure transmission amplitude is equal to
�Ms11�21 and we can finally write

ts�Ez; k� � 2"
2 arg�Ms11�

2Ez
; �6�

which is the equation we use to calculate the spin-dependent
delay time of the double-barrier structures.

The delay time is a function of the two variablesEz andk.
The function normally demonstrates a sharp peak for one
defined polarization of the electron spin [8]. Consequently,

in the Ez–k plane we have two overlapping peaks for two
polarizations [26,27]. From the point of view of possible
applications, it is interesting to clarify a difference between
the tunneling times for electrons with identical energy and
wave vectors and different spin polarizations. Because the
peaks have very sharp dependencies in theEz–k plane
[8,26,27], to get a quantitative filling about possible
difference of the delay time for electrons with different
spin polarizations, it is useful to calculate and present a
logarithmic ratio of the times with spin-up�t"� and
spin-down�t#� polarization

T�Ez; k� � log10
t"
t#

�7�

First, we consider an sDBRH composed of two identical
InAs–GaAs–InAs barriers (parameters of materials are
from Refs. [28,30]). The thickness of the GaAs barriers is
chosen asz2 2 z1 � z5 2 z4 � 30 �A; and InAs well width is
z2 2 z3 � 60 �A: For this structure, the spin-splitting effect in
the tunneling processes comes only when we apply the
external electric field. The three-dimensional plot of
T�Ez; k� in Fig. 2(a) presents two sharp peaks, one positive
and one negative (corresponding to the spin-split resonance
levels [26,27]), where the tunneling delay time is strongly
dependent on the spin polarization. The difference increases
with increase of thek vector and the external electric field
magnitude. This is demonstrated in Fig. 2(b). Curvesa–c in
Fig. 2(b) correspond to different values of the external elec-
tric field, whenk � 4 × 106 cm21

: Absolute values of the
time for the described sDBRH lie between 10212 and
10215 s. It should be noticed that the ratio between the
delay times can gain a few orders in magnitude.

The delay time (near resonance energy in theEz–k plane)
presents the halfwidth of the resonance peak for the tunnel-
ing probabilityGs < 2"=ts�Es

z �k��; Es
z �k� is the resonance

peak position inEz–kplane [8]. Our results show that condi-
tions of the electrons “trapped” in resonant two-dimensional
states inside the well can depend strongly on the electron
spin polarization. The decay time of the states (or the time
spent by an electron in the well) becomes also different for
the electrons with different spin polarizations. We can
control the difference by the external electric field. These
facts could be a base for experimental investigations and
practical applications of the effect.

In Fig. 3(a), we have shown results of theT�Ez; k� calcu-
lation for an aDBRH with electronic-band parameters of
InAs–GaAs–InAs–AlAs–InAs [30]. The thicknesses of
GaAs and AlAs barriers are 35 and 15 A˚ , respectively,
and InAs well width is 60 A˚ . For this structure we have a
big polarization effect even without any external electric
field. The effect is originated from the built-in asymmetry
of the structure [22,23]. Additional external electric field
can increase, suppress, and even reverse the effect as
shown in Fig. 3(b). Curved in the insert to Fig. 3(b) demon-
strates the last situation. We can conclude that involving the
aDBRH extends the range of opportunities to control the
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Fig. 2. Ratio between the delay time for different polarization of the
electron spin in sDBRH with parameters of InAs–GaAs–InAs–
GaAs–InAs (parameters are obtained from Ref. [30]):E2c � E4c �
0:792 eV; E3c � E5c � 0:0 eV; E1g � E3g � E5g � 0:418 eV;
E2g � E4g � 1:52 eV; D1 � D3 � D5 � 0:38 eV; D2 � D4 �
0:341 eV; m1�0� � m3�0� � m5�0� � 0:023m0; m2�0� � m4�0� �
0:067m0 (m0—the free electron’s mass),z2 2 z1 � z5 2 z4 �
30 �A; z3 2 z2 � 60 �A: (a) T plot in Ez–k plane for external electric
field F � 5 × 104 V cm21; (b) T�Ez; k � 4 × 106 cm21� inter-
sections of the three-dimensional plots. Curvesa–c correspond,
respectively, to the casesF � 2 × 104

; 5 × 104, and 1× 105 V cm21.



effect and could be more attractive from the practical point
of view.

In conclusion, we have presented a study of the
spin-dependent tunneling phase time (delay time) in the
double-barrier heterostructures at zero magnetic field.
The spin-dependent tunneling resonance conditions lead to

the spin-splitting of the resonance level in the asymmetric
DBRH well and to different characteristic times for different
spin polarizations of the tunneling electrons. The effective
one-band Hamiltonian approximation with the spin-depen-
dent boundary conditions was employed to describe and
evaluate the effect of spin-dependent tunneling in symmetric
and asymmetric tunnel heterostructures. The calculated
results show considerable influence of the spin-splitting
effect on the resonant delay time. The dependence can be
controlled by an external electric field. This effect may
potentially become a physical base for a new generation
of fast spin-polarizing tunneling devices.
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