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Abstract. Analytical expressions of atomic shellwise electron densities have been construc- 
ted. Our approach was based on the superposition of Yukawa potentials for the atomic 
electrostatic potential. The electron density distribution was then established by the Poisson 
equation. Parameters characterizing the shellwise electrostatic potential and the correspond- 
ing electron density distribution were obtained by a fitting procedure utilizing the Hartree- 
Fock-Slater (HFS) data. These parameters were determined by the atomic number and 
electron occupation numbers in various states. The accuracy of constructed electron density 
distributions was tested by comparing their various moments with the corresponding results 
obtained from other methods. Applications of these atomic shellwise electron densities 
were made for calculations of the elastic scattering cross section and the mean excitation 
energy. 

1. Introduction 

In a number of applications, the electrostatic potential and the radial electron density 
distribution of atoms are required. These applications include calculations of the 
momentum density and the Compton prolile by a local average method (Lam and 
P l a t "  1974, Gadre and Pathak 1981) and the generalized oscillator strength (Kwei 
et al 1988) and the mean excitation energy (Lindhard and Scharff 1953, Chu and 
Powers 1972, Tung and Kwei 1985) by a local plasma approximation. Atomic electron 
density distributions can be obtained by the Thomas-Fed (TF), the Thomas-Fermi- 
Dirac (TFD) (Thomas 1954), the Hartree-Fock (HF) (Hartree 1957), the Hartree-Fock- 
Slater (HFS) (Herman and Skillman 1963) and the Dirac-Hartree-Fock-Slater (DHFS) 
(Kim 1967, Mayo1 er nI 1984) methods. 

Analytical expressions of the atomic potential and electron density distribution are 
available. An expression in terms of polynomials for the TF potential was used by 
Latter (1955) and by Gross and Dreizer (1979). Such an expression was rather inaccurate 
at large and small distances from the nucleus. Also, the superposition of three Yukawa 
potentials was proposed by Moliire (1947) to approximate the TF potentials of atoms. 
Moli6re's expression worked better at large radial distances. The analytical form 
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suggested by Moliere was also applied to the TFD potential (Bonham and Strand 1963), 
the HF potential (Strand and Bonham 1964, Boyd 1977), the DHFS potential (Salvat et 
al 1987) and the interaction of charged particles with atoms (Bethe 1953, Mott and 
Massey 1965, Salvat et al 1985, Salvat and Parallada 1984). In addition, Green et ai 
(1969) introduced another analytical expression for the HFS potential. AU these works 
have dealt with the total electron density and its corresponding electrostatic potential. 
Thus, their results exhibited only the overall distribution with no detailed shell struo 
tures. An earlier discussion of the shell structure of atoms is available (Boyd 1976). 

In this work, we applied Molikre's expressions for the analytical representation of 
the shellwise atomic potential and electron density distribution. With the superposition 
of several Yukawa potentials to approximate the HFS potential of any individual shell 
of an atom, we have derived analytical expressions for the shellwise electron density 
distributions. These expressions were in terms of parameters dependent on the atomic 
number and electron occupation numbers in different states. We used the HFS data of 
atoms to find the best fitting values of these parameters. The accuracy of electron 
density distributions developed in this work was tested by comparing their various 
moments with the corresponding results obtained from other methods. Applications 
of these atomic shellwise electron densities were made for calculations of the elastic 
scattering cross section and the mean excitation energy. 

Y F Chen et al 

2. Theory 

The electrostatic potential of an atom may be approximated by (Molihe 1947). 

( 1 )  
1 "1 

r I , = I  
V (  r) =- x Z;a, exp( -&r) 

where r is the radial distance from the nucleus, Z. (i = K, L, M,.  . .) is the electron 
occupation number of the ith shell, and a,, and 0, are free parameters. Note that 
atomic units are used throughout this paper unless otherwise specified. The electron 
charge density, Q(r), is related to the electrostatic potential through the Poisson 
equation as 

v'v(r)= -4@(r). (2) 
Thus the charge density corresponding to the potential of equation (1) is given by 

where the delta function term is contributed by the nucleus. Using equation (3), we 
obtain the radial electron density distribution of the ith shell as 

Therefore, the total electron density distribution of an atom may be calculated from 

d r )  =C d r ) .  ( 5 )  

Note that equation (4) shows correct asymptotic behaviour at large r and a divergence 
as r-' near the origin, as compared to the HFS density which decreases exponentially 
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at large r and diverges more slowly than r-' near the nucleus where it is assumed to 
be a point charge (Mayo1 et a1 1984). Although the divergence of the density may be 
improved by certain ways (Parr and Yang 1989), equation (4) is su5ciently accurate 
and general for most applications. 

The zero-order moment of the electron density distribution gives the constraint 

3 a u = l .  
j = 1  

In addition, various moments defined by 

(r"); = lom rn[4ar'p,(r)] dr 

may be examined by comparing their results calculated using equation (4) with those 
using, for instance, the HFS electron density distribution. The nth moment of the total 
electron density distribution is given by 

(r") = C (r")i .  (8) 

In this work, we have fitted equation (4) to the HFS electron density distribution 
data to derive au and pij. We chose ni = 2, 3 and 5 for K, L and M shells, respectively. 
Parameters aii and pii of the K shell can be approximated by the relations 

a K j o r p K ~ = ( A + B Z 2 , ) Z "  (9) 

aK2 = 1 -aKt (10) 

for j = 1 and j '  = 1,2, and 

where Z is the atomic number, Z,, is the number of electrons in the 2s subshell, and 
A, B and a are constants listed in table 1. Note that the pw are linearly proportional 
to Z since a = 1. This can be understood from the Z dependence of the exponential 
wavefunction for the K shell of hydrogen-like atoms. The proportional constants in 
the p K j  were introduced to enhance the accuracy of equation (9) by fittings. 

Approximate relations for aii and p6  of the L shell applying to all atoms except 
Li and Be are 

aLj or PLY= [ C  + D(Zzp)b + EZ3.+ ET3,+ GZ3,](Z -2) (11) 

(12) 

for j = 1, 2 and j ' =  1, 2, 3, and 

aL3 = 1 - aLI - aLz 

with all constants listed in table 2. Here Z,,, Z,,, Z,,, Z3p and Z3, are the number of 
electrons in the Zs, 2p, 3s, 3p and 3d subshells, respectively. The parameters pLj  are 
proportional to Z - 2 except for Li and Be atoms where Zzp = 0. This agrees with the 

Table 1. Values of constants in equation (9).  

A B a 

UK1 -0.2259 -0.0108 0 
P K I  2.7635 0.224 1 
P K I  1.1995 0.116 1 
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Table 2. Values of constants in equation (11). 

C D E F 0 b 

%I 1.44 -0.0375 0.036 2 0.091 7 0.0186 1 
u u  -2.54 0.1 -0.217 5 -0.15 -0.057 2 1 
PL, 1.25 -0.0476 0.051 33 0.005 55 0.003 1 1 
B u  0.9942 -0.0275 0.017 23 0.00695 0.00148 1 
P u  0.6151 -0.1503 0.036 33 0.008 333 0.004 767 0.298 

rule suggested by Kregar and Weisskopf (1982) that an electron in the L shell feels a 
net nuclear charge 2 - 2  owing to the shielding of nucleus by the two electrons in the 
K shell. This rule is no good for atoms with Z,, = 0 since there is an appreciable 
probability of finding 2s subshell electrons near the nucleus. We therefore must add 
a term H, to py to account for this effect. We found that H, = 1.143 75-0.321 8752,,, 
Hz= 0.850 041-0.260 88&, and H3 =0.163 924-0.281 It is worthwhile to mention 
that the above rule is different from Slater's rule (Slater 1960, Karplus and Porter 1970) 
in the determination of effective nuclear charge. Our approach is based on equation 
(4), an empirical formula containing a summation of several terms, to describe the 
electron density and to fit the HFS data. Not every term in this formula necessarily 
corresponds to a subshell composing the shell. Therefore, the dependence of effective 
nuclear charge deiined in equation (1 1) on atomic number and electron occupational 
number is only qualitative and conceptually different from that defined in Slater's rule. 
This latter rule made use of a hydrogenic wavefunction by retaining only the maximum 
power of r in the polynomial which multiplies the exponential factor. It applied 
reasonably well to the determination of orbital energies but not of electron densities. 

Similarly, parameters ay and By for the M shell with ZsP#O are approximated by 

aM, orPNI,.= [s+ T(z, , ) ' I (z-~o)~/(zM)'  (13) 
for j =  1, 2, 3, 4 and j'= 3, 4, 5, 

aMs=l -aM, -aM2-aM3-aM4 (14) 
PMl=o.gPK2 (15) 

and 

PMZ=O.~PLZ (16) 
where (Z- 10) in equation (13) is the net nuclear charge shielded by electrons in the 
K and L shells and constants in this equation are listed in table 3. For atoms with 

Table 3. Values of constanis in equation (13). 

S T C d e 

UMt 0 0.0638 1 0 1 
OM2 0.52 -0.72 0.63 0 1 
OM, 1.81 0.2 1 0 0 
uM4 -4.8 -0.83 1 0 0 
PM, 0.916 -0.058 0.95 1 0 
PM4 0.9225 -0.362 0.26 1 0 
PM5 0.7245 -0.310 0.16 1 0 
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Z3,=0, we must add a term Xj to aMj and another term k; to pMj. We found that 
X, =(0.032+0.019Z,,)/ZM. X2=(0.48+0.145Z,,)/2,, X,=O, X,=O and X 5 =  
- X , - X , ;  Yl=O, Y2=0, Y3= 1.0469-0.1392Z3,, Y,=0.7918-0.4547Z3, and Y5= 
0.5703-0.4496Z3,. These expressions are valid for Z up to 18. For atoms with greater 
2 values, added electrons are placed in the 4s subshell before the M shell is completely 
filled. Taking these additional electrons into consideration, the above formulae for aMj 
and p M j  must be modified. 

3. Results 

Using the above formulae, we have calculated the shellwise electron density distribution 
of atoms. Figures 1, 2 and 3 show comparison of the present results with the HFS data 
(Herman and Skillman 1963, Mayo1 etall984).  Good agreement is found for all cases. 
Figure 4 shows a comparison of the total electron density distribution for sulphur 
atoms calculated presently, by Salvat et al (1987) and using the HFS method. The 
present results, containing detailed shell structures, show good agreement with the HFS 
data, whereas those of Salvat et al indicate only an overall structure without shell 
peaks. The electrostatic potential for boron atoms is plotted in figure 5 with ZV(r ) / r  
against the radial distance r. The present results are also compared with the HFS data 
and other analytical potentials (Salvat et al 1987, Green et aZ 1969). It is seen that our 
results are in better agreement than other potentials as compared to the HFS data. 

The accuracy of analytical expressions for the shellwise electron density distribution 
can be tested by examining the various moments of this distribution as defined in 
equations (7) and (8). Several values of these moments for argon atoms calculated in 
this work are compared with those of Cowan et QZ (1966) in table 4. Reasonably good 

I (a.u.1 

Figure 1. A plot ofthe K shell electron density distri. 
bution as a function of radial distance from the 
nucleus for several atoms. The full and brokencurves 
are, respectively, results of the HFS data and this 

r (ax.) 

Figure 2. Aplot of the L shell electron density distri- 
bution as a function of radial distance from the 
nucleus for several atoms. The full and broken curves 
are, respectively, results of the HFS data and this 

work All quantities are in atomic units. work. All quantities are in atomic units. 
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Figure 3. A plot of the M shell electron density 
distribution as a function of radial distance from the 
nucleus for several atom. The full and broken curves 
are, respectively, results of the HFS data and this 
work. All quantities are in atomic units. 

r (a.u.) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
r (ax.) 

Flgure4. A plot of the total electron density distribu- 
tion as a function of radial distance from the nucleus 
for sulphur atoms. The full, broken and chain curves 
are, respectively, results of the HFS data, this work 
and Salvat er a1 (1981). All quantities are in atomic 
U n i t s .  

mgure 5. A plot of the electrostalic potential multi. 
plying by r f 2  for boron atoms, where r is the radial 
distance from the nucleus and Z is the atomic num- 
ber. 'The full circles, full, broken and chain curves 
arc, respectively, results corresponding to the HFS 

data, this work, Salvat er U! (1987) and Green er nl 
(1969). All quantities ax in atomic units. 

1 

agreement in this comparison ensures that the shellwise electron density distribution 
of equation (4) is valid over a wide range of radial distances. 

4. Applications 

The form factor for elastic interaction of an incident electron of energy E with an 
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Table 4. Moments of the electron density distribution of argon atoms in atomic units. 

Present work K shell 3 5 7 x 1 0 '  1.77XlO-' 2 . 2 0 x 1 0 ~ 2  6.74X10'4 4.29XlO-* 
L shell 3.08X10' 3.11X10' 1.42x10° 6.11x10-' 4,59XlO-' 
M shell 7 . 7 6 ~ 1 0 ~  1 . 2 2 ~ 1 0 '  2 2 4 x 1 0 '  1 . 1 6 ~ 1 0 ~  9 . 9 3 ~ 1 0 2  
total 7.41XIO' 1.55XIO' 2 3 9 x 1 0 '  1.17X10' 9.94X1O2 

Cowan e! 01 K shell 3 . 5 2 ~  IO' 1 . 7 2 ~  lo-' 1.98x IO-' 5 . 0 2 ~  2.43 x IO-' 
(1966) L shell 2.82XlO' 3.O4X1O0 1.42X1Oo 5.05XIO-' 3.11X10-' 

M shell 7.28X1Oo 1.21X10' 2.19XIO' 1 .12XI@ 9.96X1O2 
total 7.07x10' 1.53X10' 2.33x10' I . l Z x l O *  9 .96Xl@ 

atom with electron density distribution, p ( r ) ,  is given by (Bethe and Jackiw 1968) 

Fl 

where q =2(2E)'" sin(O/Z) is the momentum transfer and 8 is the scattering angle. 
Substituting equations (4) and (5) into equation (17), we get 

Thus a shellwise contribution to the form factor (Weyrich et a1 1979) may be obtained. 
For incident electron energy above the Born threshold, i.e. E 15Zz eV, the elastic 
scattering differential cross section is given by 

where dR = 2~r(sin 0) d8 is the differential solid angle in the direction of the scattered 
electron. Substituting equation (18) into equation (19) and taking the limit q+O, we 
obtain 

du/df2 = $( r2)' 

where (2)  is the second-order moment of electron density distribution. Thus, the elastic 
scattering differential cross section for small q may be in terms of the second order 
moment of electron density distribution of the interacting atoms (Ibers 1958). 

In figure 6, we compare the results of our calculations using equations (17) and 
(18) for the form factor of neon atoms with those derived using HFS electron densities 
and those of Salvat et a1 (1987). It is seen that the total electron density distribution 
of Salvat et al leads to a form factor in good agreement with the HFS data only at 
small q. Our results, however, are in good agreement with the HFS data at any momentum 
transfer. It is also seen that F ( q )  is contributed mainly from inner shells at large q 
but from outer shells at small q. The elastic scattering differential cross section of 
electrons with different energies in sodium is plotted in figure 7 as a function of 
scattering angle. It is seen that our differential cross sections, calculated using equations 
(18) and (19), agree fairly well with those computed using the HFS electron densities. 
Furthermore, elastic scatterings are predominantly in the forward direction with smaller 
angle scattering for higher energy electrons. 
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9 (au.) 
Figure 6. A plot of the elastic scattering form factor 
as a function of momentum transfer for neon atoms. 
The full, broken and chain curves are, respectively. 
results corresponding to the HFS data, this work and 
Salvat el nl (1987). Shellwise confributions calm- 
lated using equation (18) are plotted separately. All 
quantities are in atomic units. 
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Figure 7. A plot of the elastic scattering differential 
cross section, in atomic units, as a function ofscaner- 
ing angle for sodium atoms and different electron 
energies. The full, broken and chain curves are, 
respectively, results corresponding to the HFS data, 
bis work and Salvat et a1 (1987). 

Another application of the electron density distribution is the mean excitation 
energy in the local plasma approximation. According to the Bethe theory (Bethe 1930), 
the stopping power for charged particles may be given in terms of the mean excitation 
energy, I,  of the target material. Based on the local plasma approximation (Lindhard 
and Scharff 1953), we can express the mean excitation energy of the ith shell as (Meltzer 
et ai 1990, Tung er al 1988) 

In 

where U,,, = [47rpj( r)]'" is the free electron plasma frequency and y, is a parameter 
related to the plasma damping coefficient, both associated with the ith shell. 

Substituting equation (4) into equation (21), we can calculate the mean excitation 
energy of each shell of an atom. Figure 8 is the results of these calculations for the 
mean excitation energy of the K, L and outermost shells as a function of atomic 
number. Note that we have taken y, = 1 in these calculations in order to compare our 
results with those of Meltzer et a1 (1990) using the same approximation. It is seen that 
our results are in good agreement with those of Meltzer et al, however, discrepancies 
exist for results between the local plasma approximation and the oscillator strength 
method (Oddershede and Sabin 1984). These discrepancies are understood as due to 
the adoption of y; = 1 which neglects the contribution from revolution frequencies. By 
the assumption of plasma oscillation frequency equal to the revolution frequency, it 
was found that (Lindhard and Scharff 1953) yi = 1.414. The actual value of -yj is mostly 
between (Tung et ~l 1988) 1 and 2. 
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2 (K or L shell) 

Figure 8. A plot of the mean excitation energy, in atomic units, for K, Land outermost 
shells as a function of atomic number. Data are from calculations using the oscillator 
strength method (Oddershede and Sabin 1984), V; the local plasma approximation (Meltrer 
et a1 1990), 0; and equations (4) and (21), 0. 

5. Conclusions 

Analytical expressions of atomic shellwise electron densities and electrostatic potentials 
of the present work are quite accurate in comparison with the HFS data. The accuracy 
of these expressions was confirmed by comparing their various moments with the 
corresponding results obtained from other methods. Applications of these expressions 
were made for calculations of the elastic scattering cross section and the mean excitation 
energy. 

For solid atoms, our electron density distributions can still be applied to inner 
shells due to the negligible influence of neighbouring solid atoms. For outer shell 
electrons, one must take this influence into consideration. The extension of this work 
to electron density distributions of solid atoms is under way. 
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