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Model-Based Synthesis of Plucked String Instruments
by Using a Class of Scattering Recurrent Networks

Sheng-Fu Liang, Alvin W. Y. SuMember, IEEEand Chin-Teng LinSenior Member, IEEE

Abstract—A physical modeling method for electronic music used delay lines and simple digital filters. This is a low-cost ap-
synthesis of plucked-string tones by using recurrent networks is proach and it successfully generated realistically dynamic per-
proposed. A scattering recurrent network (SRN) which is used 0 ¢45:mance not seen in other synthesis techniques. However, it is

analyze string dynamics is built based on the physics of acoustic o : .
strings. The measured vibration of a plucked string is employed V€Y difficult for the K—Salgorithm to control the timbre of the

as the training data for the supervised learing of the SRN. After Sounds simply by modifying the filters such thatit can sound like
the network is well trained, it can be regarded as the virtual ~any particular plucked-string instrument. This technique is nev-
model for the measured string and used to generate tones which ertheless the first step toward the physical modeling approaches
can be very close to those generated by its acoustic counterpart. of instrumental dynamics for music synthesis.

The “virtual string” corresponding to the SRN can respond to .
different “plucks” just like a real string, which is impossible using In order to have the synthesis result closer to the sound gener-

traditional synthesis techniques such as frequency modulation ated by acoustic instruments, Smith proposed the so-adiged
and wavetable. The simulation of modeling a cello “A”-string ital waveguide filte DWF) technique [12]. This synthesis algo-

demonstrates some encouraging results of the new music synthesigithm starts from the wave equation for musical strings and im-
technique. Some aspects of modeling and synthesis procedures argy|aments the solution to the equation on a discrete-time system.
also discussed. In his later efforts in the physical modeling synthesis, algo-
Index Terms—Physical modeling, plucked string instruments,  rithms for simulating the sounding mechanisms such as reeds
scattering recurrent networks. for clarinets and bows for violins were studied [10], [11], [13].
These techniques make some very realistic sounds and have
|. INTRODUCTION become more and more popular in music synthesis related re-

search. These computer-synthesized instruments are sometimes

T_TEMPTS to analyze and model the dynamlf:s of MEalled “virtual instruments.” However, it is difficult to find the
sical instruments have always been efforts of instrume

k Th t d lei h with Qﬁﬁropriate model parameters of the DWF’s such that the syn-
MAKETS. e. mqs renowne exampe_ 'S.‘ research with TesRgic sounds can be associated with any particular instrument.
to bowed-string instruments such as violins and cellos done

. o our experience with physical modeling techniques, it is found
the master maker of the 18th century, Antonio Stradivari. quat the problem of obtaining synthesis parameters based on the

resegrch c_overs_toplcs such as _the analysis of th_e VE_‘m'Sh’ glysis of the musical instruments themselves have never been
physical dimensions, the material used by Stradivari and t dressed

responses of his instruments under various excitations [1]- ‘In order to overcome the difficulty of parameter determina-

ThipurposE tc: tthti research Ilf t?hpro.\"dte gwdatnce for dmOd(f‘ir for the physical modeling methods, it is necessary to study
Makers such thatthey can make their instruments sound as 908 4 coustic instruments respond to given excitations. We pro-

as the master's. . pose a class dfcattering recurrent networké&SRN) based on

. . Cthe physical dynamics of musical instruments to model as well
for generating ”f'“s'ca' tones hfave been proposed sutﬂegs as synthesize the vibrations of musical strings. Being a universal
guency modulaﬂo(FM) synthesis [8] anwvavetablesynthesis approximator [23], the artificial neural network has been widely
[6], [7] which are the o most popular methods used nowada;%ed in many applications such as pattern recognition, time se-

The ultimate goal of electronic synthesis is to provide music s analysis, system identification, and so on. If the responses at
tones :'hat sog{nd extact|l_)|/ the sar?he as th(zjse g?.?erated lzy fous positions of an acoustic musical instrument can be mea-
{ahcous c coun etrpa:crts. ow%er, ed_soun quaity ca_nr|1|o trr]ngﬁfed, it may be possible that a neural network can be trained
e(;eqtj_lremfetr;]s 0 fan?c()js eman ]'cng ustgrs,tespemta 3|' S §ch that it can reproduce the responses of the same instrument
Ero lIJC |ong Ste musica yngmmslo ms t'ns rur’:]en_fh n{ nder the identical excitations. The structure of the SRN is first
arpius an rong proposed a plucked-string aigonthm hr%tiated to the physics as well as the physical shape of the instru-
ment to be modeled. A technique for training the SRN specially
designed for the given instrument is developed.
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pluck. In order to obtain these measurements, we constructt ds k 0

a steel-string measurement system which consists of seven [ ei/:::———:&—ny“dx
marzic® Virtual Vintage electromagnetic pickups placed inpar- yr—————— = ———————-

allel and equally spaced under the string to measure the vibr. k dx

tions of the chosen cello string. The measured signals from tt
pickups are sampled and stored in a multitrack digital audic
recorder. Thdackpropagation-through-tim@PTT) technique
is used for the training of the SRN [19], [21]. In our experiments,  © * x+dx
the waveforms of the resynthesized outputs of the well-train %
SRN are very close to the measurement taken from the plucked
string. Though the computation of the training phase is ve~-
large, the synthesis processing requires much less computat |
Although the proposed synthesis technique needs much m S“mfnf;‘jpe "“1 /
computation than conventional synthesis methods, the sot o | !

quality is superior.
In Section Il, the dynamics of plucked musical strings is dit

cussed and the scattering junction model for vibrating strin
is derived. In Section lll, the SRN is proposed. The training ¢ '
the SRN is also discussed. In Section 1V, the construction o :
steel-string measurement system to obtain the training data |
the SRN is described. In Section V, experiments of the trainir ., '
and the resynthesis of the SRN are presented. Conclusions lf_;de An infinitely long plucked string simulation.
future work are given in Section VI.
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By applying (2) to (1) and retaining the first two terms, we have
9(K sin 6) d

Il. DYNAMICS OF MUSICAL STRINGS

Physical-modeling methods for musical instruments have dFy, = | (K sin 0), + oz
become ubiquitous for their ability to produce realistic and dy- K sin 6
namic synthesis sounds without heavy computation compared — (K sin 6), = % dx (3)
xr

to the wavetable synthesis method. The basic idea of phys-
ical-modeling synthesis methods is to simulate the vibratiomhesin 6 in (3) can be replaced biyn 4 if 8 is small. Equation
of acoustic instruments as closely as possible. In this papg) becomes

we propose a class of SRN’s that simulate the vibrations of a ,

plucked musical string. The measured vibrations of the string dF. — O(K8y/0x) dr = Kﬂ dir. @)
are used as the training data for the SRN which is configured Y Ox dx?

according to the physical properties of an acoustic string. Tpgt the mass of the segmeidt be = ds. By using Newton's
synthesis processing using the well-trained SRN is discusse&itond law of motion, we have

later sections. In order to understand how to relate the physics

of a plucked string to the proposed SRN, the physics of an ideal K@ dr = (e ds) Y Oy )
acoustic string is presented first. ox? o2’
Sincedy is a small quantity for smaM, ds is approximately
A. The Ideal Vibrating String equal todz. Equation (5) is further reduced to
The wave equation for an ideal vibrating string was derived P P
by Morse [15]. “Ideal” means lossless, linear, uniform, volume- a—x‘g = sgg. (6)

less, and flexible. Consider the uniform string with linear mass
densitye (kg/m) stretched to a tensiali (newtons). A small This is the wave equation for an ideal vibrating string. The gen-
segment of the string is shown in Fig. 1. Let the restoring foreral solution of (6) can be written as

for the segmenys, to its equilibrium position béF, which is

the difference between the forces with respect to the two ends yt, z) =yt —a/c) +wt +x/c) (7)

of the segment in the vertical direction as follows:

where
y-(t —x/c) right-going traveling wave with a traveling
dFy = (K sin §)4az — (K sin §),. (1) velocity ¢;
w(t+x/c) left-going traveling wave with the identical
By using Taylor’s series expansion shown below, we have velocity.
The transverse wave velocityis equal to\/ K /e.
af( ) 192f(x) Anideal plucked string with infinite length is shown in Fig. 2.

9. B g Wt (2)  The initial displacement representing the pluck in this context is

[z +de) = f(z) +
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modeled as the sum of two triangular pulses which overlap witthere

each other at time,. At time ¢, shortly after timet,, the two g e—ul/2e:

triangular pulses separate and travel in the left direction and thef,.(n — m) ye((n —m)T);

right direction, respectively. The segmemtwhich represents  fi(n + m) = y((n +m)T).

the peak portion becomes flat and gradually reduces to zeroln practical musical applications, a string is usually fixed at its
Within the regions denoted I3; where the two traveling wavestwo ends. If the length of a fixed string 15, the boundary con-
overlap, the string displacements remain the same magnitudésn can be described by using the following two equations:
as that in the initial condition in the same regions. The two short

pieces denoted by on the left-hand side and the right-hand %(0, t.) =0 = @, (t,, 0) + @i(t,, 0), forallt, (12)
side are the leading edges of the left-going and the right-going
traveling waves. When the traveling waves fully separate, the
string will be at rest except for two half-sized triangular pulses
heading off to the left and to the right with speed Y

(L, tn) = 0= @u(tn, L) + @u(tn, L),  forallt,. (13)

B. The Lossy Vibrating String C. The Scattering Junction for the Vibrating String

B e iamate, In our prctcal expermerts, the taelng vaves i an
Y Y- ' 9 acoustic string cannot be modeled completely by the method

b_rate without any energy IOS.S' Th_erefore, Itis necessary toc Hown in the previous section since most strings do not satisfy
sider loss factors. In most situations, energy loss is causedt

friction of the surrounding air, yielding terminations, and in- ¢ uniform-impedance constraint [26], [30]. Therefore, we

-~ ]2 . involve the concept afcattering junctionsn the situation that
ternal friction [26], [30]. Considering the simplest case where, . ojino wave may reflect as well as pass through a position
the resistive force is linearly proportional to the transverse

locity, we can obtain the modified wave equation as foIIows'vl(?_the respective acoustic impedances from the two sides of
Y: q " the position are not identical. The behavior of traveling waves

92 9 92 incident with the scattering junction has been proposed [11],
Koyt @) = ugou(t, 2) + epau(t, 2). (8) [12], [30].
In (7), y(¢t, «) is used to represent the displacement of a vi-

. . . ) brating string at position, and at time instant Let thetrans-
The solution to the above equation can be easily obtained as,¢rse velocity wavbe(t, «) which is the first time derivative

Wt 2) = =2y (4 1) 4 2wy g 4 gy, O Y(E @) and we have

9

O =
According to Shannon’s sampling theorem [16], the traveling
wave can be fully expressed by a discrete-time system as Id#g replacingy,.(t — x/c) and g (t + x/¢) with v,.(¢, =) and
as the sampling interval is small enough. In order to simulate the?, ), respectively, (14) can be rewritten as
traveling waves of a plucked string, sampling is performed along )
the longitudinal direction. The magnitude of a vibrating string at y(t, @) = vp(t, ©) + u(t, ©)
a sampled position is sampled with the sampling period equal\/;cl%erev andu, are the transverse velocity waves
T (s). Let the sampling interval along the string Ae and the L ttr;j I ! oo (1 hich is th yf_ ‘ .t' | deriva-
transverse wave velocity of the stringt&élhen,Az is equal to ettheslope wavsey/(t, x) which s the first spatial deriva

7 - c. For example, if the sampling frequency is 44.1 KHz anﬁve of y(t, ), we have

eVt ®) = ue(t—x/e) +m(t +a/c). (14)

(15)

the velocity is 1000 m/s, the sampling interval is 100/44 100 = ) 9 ) )
0.0227 m. By replacing with z,,, and¢ with £,, in (9), we have Yyt 2) = 5oyt @) =yt —a/e) +uy(t + x/c)
1 1
— o~ (u/2e)(@m/c) _ = — Zq.(t— =y
y(tn, $m) = oo /y),,(tn ajm/c) c (t a:/c) + c yl(t—i—a}/c)
U ENTm/C 1 1
+e vf yl(tn + -Trn/c) = — —U1,(t’ ;Ij) + - Ul(t, ;Ij) (16)
= 2Ty, [ — m)T] ‘ ‘
+ /2mTy [(n 4 m) T Similarly, y.(t — z/c) and (¢t + x/c) can be replaced with
= (tly, Tm) + C1(tn, Tm) (10) u-(t, x) andw(t, x). Therefore, the left-going traveling slope
wave can be computed by dividing the left-going traveling ve-
where locity wave with the wave velocity, and the right-going slope
t, =n-T; wave can be computed by dividing the negative right-going trav-
Tm =m-Az=m-c-T. eling velocity wave with the wave velocityas follows:

The discrete-time signal representation of (10) is given by 1

U'l(tv 37) = _Ul(tv 37)

y(tna -/L'rn,) :Qar(tna xrn,) + Qal(tna xrn,) ¢ 1 (17)
=" frn—m)+ g7 fi(n+m)  (11) un(f, @) = =t @),
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, According to (22)—(24), (21) is rewritten as

1
I x
[ K
[
|

/ L@, 2) = 0.(¢, 2) + Oi(t, 2). (25)
5]

=

y(t, %)

A

[ > The physical meaning of (25) is that the vertical force can
| be computed by summing the right-going and left-going force
-K I waves. It is assumed that there is a junction on a vibrating
: string where the characteristic impedances on the two sides of
x this junction are different. LeZ; represent the characteristic
impedance in the left-hand-side segment @ridepresent the
Fig. 3. The transverse force propagation in an ideal string. force wave flowing into the junction from the left-hand-side
direction. Let Z, represent the characteristic impedance in
In summary, traveling waves in any form can be computdtie right-hand-side segment agd represent the force wave
from each other, as long as the left-going and right-going corflewing into the junction from the right-hand-side direction.
ponents are available. For example, the transverse velocity w&ysically, the force wave cannot change instantaneously
can be computed by differentiating the displacement wave adeross the junction and the sum of velocity waves meeting
the displacement wave can also be computed by integrating &iethe junction is zero [12]. According to Kirchoff’s node
transverse velocity wave if the initial velocity waves are nullsequations [18], there can be only one resultant force wave at
To discuss the behavior of traveling waves flowing into a pghe junction which is denoted b¥” and the sum of velocity
sition where two segments of different acoustic characteristi¢gves meeting at the junction must be zero if the junction is
are connected, the force wave propagation property is derivéassless. Therefore, we have
This is shown in Fig. 3. At any arbitrary positianof a string,
the vertical force applied to the left-hand side of the position, Ft=pt=r (26)
denoted by:!, is given by

and
_ : ~ _ /

Ei(t, ) = K sin(f) =~ K tan(f) = ky/' (¢, z) (18) ot =0, 27)

where K is the tension at position. Let |/ (¢, z)] < 1. Sim-

ilarly, the force applied to the right of the position, denoted b@y (15) and (23)(25), we have

«", is given by i _ i i
{F b ‘I}‘: Pl fori—1,2 28)
F.(t, z) = —K sin(0) ~ —Ky/ (¢, z). (19) vEn T
and
These two forces must cancel in order not to produce infinite ‘ ‘
acceleration to a massless point. Eitthgior F,. can be used to O =7 -, .
. . : ' , fori=1,2 (29)
represent the string force wave at the position. Let the vertical @ =—Z; -y
force applied to the right of any positiary denoted byF;., be
the force wavel’, and we have where . .
F'  resultant force wave of the left-hand-side segment just
F(t,z)=F.(t, z) = —Ky/(t, z). (20) beside the junction;
F?  resultant force wave of the right-hand-side segment
By carrying (16) into the right-hand side of (20) and using (15), just beside the same junction.
we have By defining the characteristic admittance of segmetd be
K r;, = Z;l for ¢ = 1, 2, and solving (26)—(29), the resultant
F(t,z)= - [t —z/c) — ot +x/c)] junction force wave is obtained as
K
=—[ue(t, x) —ult, 2)]. (21) F=9. [1@, +Tp®7 (30)
C - .
i +TI

The characteristic impedance is defined as Define the reflection coefficient as

Z =vVKe. (22) . ZQ—Zl
P = 1

(31)
Let the right-going force wave and the left-going force wave be
(K/c)-4.(t—x/c)and(— K /e) - (t+2/c) which are replaced The outgoing force waves can be obtained by the following
with @,.(¢, =) and®,(¢, x), respectively, as follows: equations:

d,.(t, x) = Zv,(t, x) (23) O = F7 — oL = pdl + (1 — p)d? (32)
and

y(t, ) = —Zu(t, ©). (24) &2 =7 — @7 = (14 p)@t — pd7. (33)
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Since the wave equations shown in (7) are derived for the dis-
placement waves instead of the force waves, it is necessary to
modify (30), (32), and (33) such that the displacement represen-

tation of a vibrating nonuniform string used can be applied. By
carrying (29) into (32), we have
Z, Z,
—Zywp = pZyoy + (1 — p) (—Zav]) . (34)
By dividing (34) by— 7, and using (31), we have < <
Z.
vf = (o + (L= p) 0t
1
_ 1 ] 2 Fig. 4. An alternative model for the scattering junction within a string.
ot (G20 7 )i
1 22y where(¢, =) is omitted for notational simplicity. According to
= (=p)v} + v ; .
T2+ 2, " (41) and (42), the reflecting wave and the passing wave at a scat-
= (—P)Ui +(1+ P)UIQ- (35) tering junction can be obtained. The discrete-time representa-
tions of (41) and (42) can be derived in the way similar to the
Similarly, (33) can be rewritten as derivation of (10) and (11). Lep! and 7 be the right-going
) . ) traveling wave flowing to the junction from the left-hand side
vy = (1= p)v, + pvy. (36) and the left-going traveling wave flowing to the junction from

. _ _ the right-hand side, respectively. LEt and f2 be the traveling
_The dls_placem(_ant wave represent_atlon ofthe str!ng canbe W%\'ves departing from the junction and flowing to the two sides,
tained by integrating (35) and (36) with respect to time, becaur%espectively We have
the velocity wave is the first-order time derivative of the string '

displacement according to (14). By integrating (35), we have fi(n, m) = —ppt(n, m) + (1 + p)pi(n, m) (44)

/0 Gt @) = / (1+ )i (t, =) — / pit(t, ). (37) 2N

By solving (37), we have

F2n, m) = (1= p)er(n, m) + pgi(n, m).  (45)

For simplicity,(n, m) can be omitted. The discrete-time rep-
v (t, ) — 57 (0, ) =(1+p) [y7 (t. ) — ¥ (0, z)] resentation of (43) can be obtained as

ot 9 —u 02 @9) v' = (1= p)er + (1 +p)et. (46)

The initial magnitude of the right-going wave of a pIucke% substituting (46) into (44) and (45), the right-going and the

string is the same as that of the left-going wave and their su e'¥t oing traveling waves departing from the iunction can be
equal to the magnitude of the initial displacement at any position going 9 P 9 J

of the string [11]. To be specific, we have obtained as follows:
1 1 2 J 1
; ; ; = —ppy + (1 =y — ¢ 47
V0.3 =30, 5) = (0. x),  Tori=12 (39) fe=mrerrropi =y me @D
and
Moreover, the string displacement must be a continuous func-
tion of position. The displacement at the left-hand side of a po- f2=(1-p)t+poi =y —f. (48)

sition is equal to the displacement at the right-hand side of this
position, i.e., Note that only the displacements of a vibration string at var-

ious positions are measurable. It is impossible to measure ex-
v’ (t, ©) =y (¢, ) = (¢, ), forallt  (40) ternally the departing traveling wavgsand f.., and the arrival
traveling waves; andyp,.. Therefore, (46)—(48) have to be com-
wherey” (¢, x) is the initial displacement. Substituting (39) andbined with (39), and the initial string displacement in order to

(40) into (38), we have obtain the model parameters of an acoustic string, the reflection
L L 5 coefficients and the loss factors. We have more details on this
i (t, ) = —py, (¢, 2) + (14 pyi (£, z). (41)  subject in the later sections.

Based on (46)—(48), the model of a scattering junction of a

Similarly, (33) can be converted into string is shown in Fig. 4. The output gf represents the dis-

2t 1) = (1 = p)i(t, ) + pu2(t, z). 42y Placement of a plucked string. This model means that the trav-
vt ) = (L= Pl (b @) + puir (8, @) (42) eling wave departing from the junction can be computed by
By combining (40)—(42), it is easy to show that subtracting the traveling wave belonging to the same segment

flowing into the junction from the displacement magnitude of
v =yl +ul =2+ =1 —-pwl+(+pw? (43) thejunction, and the displacement magnitude can be computed
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1 unit delay

fN,N-l Oy -1

g W,

Wy
Qpy MLV

N-LN

Fig. 5. SRN model of the plucked string with fixed ends.

by summing the arrival traveling waves multiplied by their inThis is a reasonable assumption because a musical string is usu-
dividual factors { — p) and (L + p). ally quite linear unless it is overly stretched. The linear function
works fine in our experiments and the results can be seen in Sec-
tion V.

According to Fig. 5 and (49), the outputs of the arrival nodes
in the upper track and the lower track of the model can be com-

A. Scattering Recurrent Network Model puted as follows, respectively,

In this section, an analysis/synthesis model for acoustig,; ;_(t+ 1) =a [negfi_l(t)] =alw;, i—1 - fi,i—1(t)] (50)
strings called the SRN is proposed and is shown in Fig. 5.
The SRN is configured based on the theory explored in tRed
previous section. There are three kinds of nodes in the SRN: the _ o _ - -
displacement nodegenoted byy, thearrival nodesdenoted by Pi it 1) = a[nell, (0] = afwi,ia - fiinn (9] (51)
v, and thedeparture nodeslenoted byf, which are borrowed  The magnitudes of the displacement nodes of a plucked string
from (46)—(48). Let the recurrent network ha¥edisplacement at time ¢ + 1) can be obtained by
nodes denoted by; and the output ofy; represents the dis- , )
placement of théth sampling positionfoi =1, 2, ---, N -y, yi(t+1) = { alnef(t+ D) 0=2, - N —1
andyy represent the displacement nodes of the two fixed ends 0, i=lori=N.
and the outputs are zeros all the time. Based on the discussjiere
in Section I, each of displacement nodes is associated with the
physical position of a small string segment whose lengthis ~ net (t+1) = (1—p;)@i i—1(t+1)+(1+p:) @i, i+1(t+1). (53)
For most complex situations, the characteristic impedance otl_
each segment which is represented by a unit delay is different
from its adjacent segments such that all physical positions _ 1 . _
represented by the displacement nodes except for the two enfﬁgl’”(t th=a (net{‘+17i(t + 1)) ’ i=1, N—1

e : (54)

can be regarded as scattering junctions. The arrival gede
represents the traveling wave flowing into the junctigrirom
thejunctionyj. Similar_ly, the depar_ture r.loqe7j represe_nts the ”e€+1, D) =yt +1) — @i+ 1) (55)
traveling wave departing from the junctignto the junctiory;.
A traveling wave departs from the junction and passes throughd
a link which containsw;_ ;, representing the corresponding ,
loss factor, and a unit—sa;nple delay and the result becomes/i i+ =2 (net{*:i(t + 1)) o i=20, N (56)
traveling wave flowing into the adjacent junction. where

The initial displacement of the string is normalized such that
the largest magnitude is bounded by unity. In practice, the mag- net , (t+1)=yt+1)—wii1(t+1). (57)
nitude at any position throughout the entire period of vibrations ) 7 )
cannot exceed the largest magnitude in the initial condition sinEguations (50)—(57) represent the approximated model of wave
the string is assumed to be lossy. Although other types of agifoPagation of a musical string by using the proposed SRN

vation functions can be used, in order to reduce the amountBfde!-
computation required in the resynthesis stage, we choose §1e

X . o ) Training of SRN'’s
linear function as our activation function
The temporal operation of the proposed SRN can be unfolded

into the multilayer feedforward architecture with synchronous
a(x) =z, for all z. (49) update. Fig. 6 illustrates the unfolded version of the SRN shown

Ill. SCATTERING RECURRENTNETWORKS FOR THEMODELING
OF MUSICAL STRINGS

(52)

he outputs of the departure nodes can be computed by

where
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departure layer

terminal nodes displacement layer terminal nodes
arrival layer
N2 YN-1 YN

= t1-2

0 sreer time layer

CReR e ellefe
T3588 6 85868878
Q0

Q Q Q ©0Q 0
0@ =1+l

OOO O%

Fig. 6. The feedforward architecture behaves as the SRN of a plucked string shown in Fig. 5.

in Fig. 5. The unfolding procedure is described as follows. lhhis is exactly the situation that the traveling waves travel in
Fig. 6, there is éime layerfor each time instant. Each time layerthe upper track and the lower track and meet with each other at
contains alisplacement layeanarrival layer, and adeparture the scattering junctions. The output signals of the displacement
layer. At time layert; — 1 corresponding to time instatit — 1, nodes are the response of the SRN that is used to imitate the
the displacement nodg receives the weighted signals from twastring vibration. Continue this procedure and an unfolded ver-
arrival nodesy; ;1 andy; ;+1. The output signal of; and the  sion is obtained. Note that the first time layer, time laggtas
output signal ofp; ;_; are sentto the departure nofle; ;. The no arrival layer and the outputs of the displacement nodes are
output signal ofy; and the output signal of; ;41 are sent to the magnitudes of the initighluck at the corresponding positions.
departure nod¢; 1 ;. The signals off;_; ; and f;, ; haveto The BPTT method [19], [21] can be used to train the unfolded
be sentto the nexttime layer through the corresponding loss faersion of the SRN once the training vectors are available.

tors and one unit delay to the arrival nodgs ; ; andg;1; ; of In Fig. 6, a neural-network layer callediene layeris assign

time layert,. The weighted output signals ¢f_, ; andy,; ., ; foreachtime instant. Each time layer consists of three sublayers,
of time layert; are sent ta;,_, andy; 1 of time layert;, re- displacement layerdeparture layer andarrival layer, which
spectively. This means that after subtracting the signals of tbentain the displacement nodes, the departure nodes, and the ar-
associated arrival nodes, the output signa},0at time instant rival nodes, respectively. Because only the string displacements
t; — 1 arrives aty; 1 andy;1 at time instant;, respectively. are measurable, the training vector is actually the set of sampled
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displacement magnitudes of the string under excitations suchsterey is the learning constant. After the SRN runs through
plucks at several preset positions. It is unlikely to measure thach epoch, the backpropagated error signals are used to
displacement for each physical position on the string in ordeompute the weight changes at the corresponding backward
to supply the training data for the corresponding displacemegrbpagated time layer. The total weight change for each
node. It is unavoidable that most of the positions correspondiognnecting weight is computed by accumulating the individual
to the displacement nodes are absent in the measurement. Agegght change for it at each time layer. According to (50),
matter of fact, we measure only seven positions in our simula(57), at any time layet, the weight changes corresponding to
tions. Those nodes with measured datavésible nodesThose the reflection coefficients are computed by

positions without measured data angisible nodesNote that

the visible nodes are also displacement nodes expressed by (52). aE™@l(q )

If d;(t) denotes the desired displacement of ttilesampling pi(t) = = dnet (t)
position at timef and A(¢) denotes the set of visible nodes, the o net/ (¢ .
sampled data is employed to train the SRN by using the BPTT T op fori=2,...,N-1

method such that the generated outputs of the visible nodes can
be as close to the sampled data as possible. The remaining nodes
of this network, the departure nodes, arrival nodes, and the i
visible nodes, are calldsidden nodesThe error signals at any
time instantt are defined as

=n-68/(t) - (@i, iv1(t) — @i i1(t)) (64)

nhereéJ (t) is the gradient values of the displacement nodes.
The we|ght changes corresponding to the loss factors are

o i) — (), ifie A®) Ao () — o OB (to, 1) Onefyy j(t—1)
eilt) = {0, otherwise. (58) wit,i(f) Lr net’, ;(t—1) Owiy1 i
here =161 () - firr,i(t=1) (65)
wi
¢;(t) error signal of theth displacement node at tintg and
d;(t) desired response of thih displacement node at time
t; aE*tal(ty ¢) O net;;—l,i(t -1
y;(t) actual output of théth displacement node at tinte Aw;—1 (1) = — 5 net , ,(t—1) Jw;i 1,
The error function at time is defined as s et
=161 (t) - fimr,i(t— 1) (66)
Elt)=1/2 2(¢ 59
() =1/ §> c}(t) 69
6710 gradient values of the right-going arrival
and we have the cost function nodes;
t1
Etal(gy ) = Z E(t) (60) 671 (1) gradient values of the left-going arrival nodes.

t=tg+1

The gradient values of the displacement nodes can be ob-
to be minimized over one epodhy, 1], wheret; is the last (5ined as follows:

time step and is the initial time step. It is necessary to adjust

the weights of the SRN to approach the desired loss factors and OB (g, 1))

i i o igh () = - —F—r =2, -, N—-1,to<t<t
the desired reflection coefficients to minimize the cost functidn. anet(t) ) ) » L0 S
These weights corresponding to the loss factors should change OE(t) ) Oyi(#)

along the negative gradient of the cost function as follows: — m . Wﬁ"(t)

aEtOtal(tO7 tl) 8 negf_l’Z(t) ayl (t)

’ f 'L = 17 ceey N _ 1 _ ' ' ’
or o1 K net{_lji(t)v dyi(t)  oneb(t)

OB, 1) onet, () ay(t)
anet,, .(t) dyi(t) I nef(t)

v

aEtOtal (t07 tl)
3w71+1,7‘,

Awiyy,i=—n

(67)
aEtOtal (t07 tl )

ow;_1

Awi—l,i:_n s fOFiIZ,---,N. (62) ~

The weights corresponding to the reflection coefficients shoulcf cording to (52), (55), and (57), (67) can be rewritten as

Ichange along the negative gradient of the cost function as fol- eilt) -a neﬁ’ ), P—
ows:
=4 (et +8L, 7<t> +8140)
aEtotal(tO’ t) ) .a net’ to <t < 1.
Api__nT, fori=2,...,N—1 (63) (68)
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Fig. 7. The steel-string measurement device constructed to obtain the training data for the SRN model.

Similarly, the gradient values of the left-going departure nodes _3Et°tal(to, t1)  Ofi,ita(t)
and the right-going departure nodes are computed as follows, Ofi iy1(t) 8 net{ 1 (®)
respectively, v ’
65—1 i(t) = - —aEtOtal(tm tl) . “ net{j i+1(t) . a¢i+1,i(t)
7 anet , ,(t) dpiv1,i(t)  Onet (t—1)
_ {g f
_ aEtOtal(t()’ tl) a¢i—1,i(t + 1) - (5§’+1(t) ) (1 - pi+1) - 67‘,,7‘,-1-1 (t))
a Fpi—1,i(t+1)  Onet’ (¢) ~a’ (nety, ;(t—1)) (71)
= v fori=1,---, N—1,t <t <t.

. 0 nef;17i(t) afifl,i(t)

| o aEltotal(tO7 tl)
Ofi—1,i(t) @9 netiffl,i(t)

()= — ————
z—l,z( ) P neg:Li(t _ 1)
OB (1o, 1)  yia(t)

— 57 w1 s = . :
=6, (t+1) wiri-a (netif—l,i(t)) (69) Fyi1(t) anet_ ()
fori=2,---, N, tg <t <t; —1. ~ ’ ~
6 (1) =— IE*(to, t1) onet_(H) g 1i(t)
e anet, ,(t) Ipi-1,i(t) O nef ;(t—1)
| OE™™ (g, t1)  9fii—1(t)
tota. . . — -
_ | 0B b ) a%“f(t +1) fii1(t) 8 net{’i_l(t)
piy1,i(t+1) Onet,, (1) ~ ~
e ) a neti i1(t) ' Op;—1,:(t)
' anet’,, ;(t)  Ofi1,4(t) dpi—1,i(t) onet | ,(t—1)
Ofinilt) onef,, (1) = (8- A+ o) =8 Lu(9)
! el
=60t +1) - wiy1i-d (ne€+1,f,(t)> (70) e (neg'_l’i(t -1) (72)
fori=1,---, N—-1,tg <t <t —1. fori =2, ---, N, tg <t <.
The gradient values of the right-going arrival nodes and the At the two fixed end points, the gradient values are set to be
left-going arrival nodes can be computed as follows: zero as follows:
6(; - aEltotad(tO7 tl) ’ ’
i) = — W 87(t) = 6% (t) =0, to <t < t1. (73)
_ OBty 1) Oyiga(t) In (68)—(72),a’(-) is the derivative of the activation function.
N Ay 1(t) anet () The training process begins at the last time #tegnd finishes at
, ~ the beginning time stefy. When the backpropagation compu-
9 net, (t) Ipit1,i(t) tation is performed back to timg + 1, the total weight changes

Opign,i(t) Onet (t-1) for the weight factors in the SRN are obtained by summing the
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Fig. 8. The vibrations of a cello “A” string at various sampling positions.
weight changes in (64)—(66) at each backward propadated
layer together individually, as follows: =1 Z v+1 i) - fira,i(t = 1),
t=tg+1
aEtOtal tO tl fOr'L = 17 5 N —1 (75)
Ap; = — 778— Z Ap;(t)
t=tg+1
aEtOtal tO tl
0 3 (- e 10 A T > At
t—to+1 t=tg+1
fori=2,.--, N—-1 (74)
=" Z z—l z flfl l(t - 1)
t=to+1
fori=2,---, N (76)
total ti
O™ (to, t1) heres! — §/._,(t1) = 0. Repeating thepoch-wi
Awigri = —n—pg——"—" = > Awigr () wheres; ;. (t1) = é; ,_,(f1) = 0. Repeating thepoch-wise
Wiyl

t=to+1

backpropagatlorprocédure until the cost function is less than
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Fig. 9. The vibrations of a cello “A” string at various sampling positions in the interval [0, 2000].

a preset threshold, the corresponding model par
SRN for a musical string is obtained.

IV. MEASUREMENTS OFMUSICAL STRINGS

ameters of piekup consists of a coil with a permanent magnet. The plucked
steel string causes magnetic flux changes for the pickups
and electrical signals are induced through the coil. The more
pickup units used in the system, the more measured data can be
obtained for training the SRN model. Furthermore, the pickup
units are combined with their sliding seats so that they can be
moved along the track under the string to different positions

In order to obtain the training data for the SRN modelyhenever required.

a steel-string measurement system was constr

ucted. It is iln our experiments, the vibrations of the steel cello strings

Fig. 7. Seven Dimarz® Virtual Vintage Solo electromagnetic at various sampling positions are measured synchronously. All
pickups usually found in electric guitars are placed in paralleleasurements are carried out through preamplifiers, analog-to-
and equally spaced to measure the vibrations of the choshgital converters and stored on a multitrack real-time digital
steel string in different sampling positions. An electromagnetaudio storage device, Audio Eng¢Sprectral Co. USA), at
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Fig. 10. The analysis outputs of the SRN at various sampling positions after 10 000-epoch learning.

32-kHz sampling rate and 16-bit quantization level. These datao the interval [1-1]. The 10 000 samples from the measure-
are used as the training and testing patterns for the SRN’s. ment for each sampling position are used as the desired data.

V. EXPERIMENTS

In each subplot, the first 2000 samples are used as training data
and the next 8000 samples are used for the comparison with the
resynthesis data generated by the trained SRN at the displace-
ment nodes corresponding to the physical sampling positions.
The modeling work consists of two steps: training and resyn-

Following are the experiments using the proposed SRN’s tilesis. The SRN is trained by using the method proposed in
simulate the vibrations of a cello “A” string. The steel-stringection lll. The resynthesis part utilizes the trained SRN to ar-
measurement system shown in Fig. 7 is used to measure theifieially generate the vibrations of the seven visible nodes by a
sponse of the plucked string such that the training vectors for tsiegle “pluck” shown in Fig. 11 on thevirtual string.” The ac-
SRN’s can be obtained. Fig. 8 shows the measured responsesusécy of the synthesis result depends on whether the synthetic
the plucked “Jargaf cello “A”-string at the seven sampling po-outputs generated by the SRN are close enough to the measured
sitions. The magnitudes of the training vectors are normalizedta. Note that it is not necessary to have any limitation on the
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training data as long as the string is not overly stretched because 1
the proposed approach is designed to achieve accurate synthesi
for any plucked-string sounds measured by using our setup.

o
@

A. Analysis and Modeling

magnitude
f=}
)}

There are 100 displacement nodes in the SRN and the two
ends are fixed. The string is assumed to be ideal in the beginning,
i.e., the weights for the loss factors of the SRN are assigned to be
unity and the weights for the reflection coefficients are assigned
to be zero. All of the loss factors and the reflection coefficients
can be adjusted in the training phase. The learning constant is
1 x10-7 which is chosen empirically. Because it is desired that ’ . . ‘
the output of the SRN be as close to the desired signals as pos: 0 20 40 60 80 100
sible, the training is performed until there is no more change displacement nodes
of the error signal. This is due to the fact that the analysis part _
can be done off-line and the purpose is to obtain better SRN pig 11+ Thevirtual pluckto the SRN.
rameters to achieve accurate synthesis. Usually, 10 000 epochs
are enough because another 10 000 epochs of training can per still tell the difference though they judge that the difference
duce only less than 0.3 db SNR improvement. Fig. 10 shows tigesery minor. However, if low-price multimedia speakers usu-
output of the SRN after 10 000-epoch learning at each sampliay come with personal computers are used, they cannot tell
position. By comparing Figs. 9 and 10, the outputs of the vigae difference. For most synthesizers available on the market,
ible nodes in the SRN are indeed close to the desired trainiligteners can easily tell that the initial transient signal does not
data of the corresponding sampling positions in the interval [found like a real pluck. Furthermore, these synthesizers need
2000]. The best signal-to-noise-ratio (SNR) that can be achiev@dre memory space to store the information for synthesizing
by using the proposed approach is 22.16 db. The equation uséfterent parts of the sampled tone in order to imitate the begin-
to compute the SNR is (77) ning part, the sustaining part and the decaying part of the sounds

L to be synthesized.
PRAC!

N
LN

o
N

= 1
SNR =10"log % . (77) VI. CONCLUSION AND FUTURE WORK
> e A new physical modeling electronic music synthesis tech-
t=to+1 nigue based on physics of musical strings and recurrent

neural networks is presented. By using sampled magnitudes
of plucked-string vibrations measured by the electromagnetic
In the resynthesis part, the synthetic output generated by fiek-up system as the training data, the proposed SRN is able
proposed SRN is compared with the measured data of the t@-imitate the sounds of its acoustic counterpart after sufficient
brating string. Unlike the technique introduced in [29] which retraining. The Yirtual string” constructed by the SRN can
quires a short period of the time-domain response taken from tiecept arbitrary plucks just like a real string. The proposed
acoustic plucked-string instrument to be synthesized as its initigdproach can synthesize very realistic starting transient re-
input, the proposed SRN requires only the initial magnitudes sponses of a plucked string. This is not possible for traditional
the visible nodes at the corresponding plucking positions. Thpproaches such as the FM method and wavetable method.
magnitudes of the rest of the displacement nodes are calculated@here are still some unsolved problems, however. First of alll,
by simple interpolation. This significantly reduces the requiretiost musical instruments have to be analyzed by using 2-D or
memory space if hardware implementation is desired. Tire “ even 3-D structures, and thus it is necessary to extend our cur-
tual pluck to the SRN obtained in the above analysis part ient technique for multidimensional modeling. Second, if the
shown in Fig. 11. The time-domain responses of the measustthpe of a musical instrument is complicated, it may be very
data are shown in Fig. 8, and the synthetic data are showndifficult to design the structure of the corresponding SRN so
Fig. 12. It can be seen that these two figures are very close in that the analysis/synthesis can be performed. For example, the
interval [0, 6000]. From [6000, 10 000], the waveforms of thbridges of violins are very difficult to model for their complex
figures are still quite close except fgr andy;. This is within  shapes. Third, the assumption of the proposed technique is that
our expectation since the acoustic characteristic of a vibrating are able to measure the responses of excited musical instru-
string keeps changing with time, especially at the two end pments so that the SRN based on the sampled magnitudes of the
sitions. This is to say that it may be necessary to perform thibrations can be trained. However, this may be very difficult for
analysis again if the characteristic changes too much and thany acoustic instruments. For example, it is almost impossible
model parameters of the SRN have to be changed during tbemeasure the vibrations of reeds for woodwind instruments
synthesis phase, too. Critical subjective listening tests are camd bows for violins without affecting their dynamic behaviors
ducted with six subjects through a pair of Spendor S20 near fidddcause of the attached sensors. Finally, the required computa-
monitors driven by a Crown K-2 power amplifier. All subjectdion for the synthesis part is still too large to be used in most

B. Resynthesis
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Fig. 12. The resynthesis data generated by the trained SRN at various sampling positions.

real-time applications, and thus it is necessary to improve thessions on physical modeling synthesis, L. W. Wang of ITRI,
computational efficiency of the proposed SRN in the synthesiaiwan, who performed the string measurements, and the editor
stage. It is also desired to develop a more efficient training and the reviewers for their helpful opinions.

gorithm to improve the SRN and the training speed.
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