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Model-Based Synthesis of Plucked String Instruments
by Using a Class of Scattering Recurrent Networks

Sheng-Fu Liang, Alvin W. Y. Su, Member, IEEE, and Chin-Teng Lin, Senior Member, IEEE

Abstract—A physical modeling method for electronic music
synthesis of plucked-string tones by using recurrent networks is
proposed. A scattering recurrent network (SRN) which is used to
analyze string dynamics is built based on the physics of acoustic
strings. The measured vibration of a plucked string is employed
as the training data for the supervised learning of the SRN. After
the network is well trained, it can be regarded as the virtual
model for the measured string and used to generate tones which
can be very close to those generated by its acoustic counterpart.
The “virtual string” corresponding to the SRN can respond to
different “plucks” just like a real string, which is impossible using
traditional synthesis techniques such as frequency modulation
and wavetable. The simulation of modeling a cello “A”-string
demonstrates some encouraging results of the new music synthesis
technique. Some aspects of modeling and synthesis procedures are
also discussed.

Index Terms—Physical modeling, plucked string instruments,
scattering recurrent networks.

I. INTRODUCTION

A TTEMPTS to analyze and model the dynamics of mu-
sical instruments have always been efforts of instrument

makers. The most renowned example is research with respect
to bowed-string instruments such as violins and cellos done by
the master maker of the 18th century, Antonio Stradivari. The
research covers topics such as the analysis of the varnish, the
physical dimensions, the material used by Stradivari and the
responses of his instruments under various excitations [1]–[3].
The purpose of the research is to provide guidance for modern
makers such that they can make their instruments sound as good
as the master’s.

With the introduction of electronic music, many techniques
for generating musical tones have been proposed such asfre-
quency modulation(FM) synthesis [8] andwavetablesynthesis
[6], [7] which are the two most popular methods used nowadays.
The ultimate goal of electronic synthesis is to provide musical
tones that sound exactly the same as those generated by their
acoustic counterparts. However, the sound quality cannot meet
the requirements of the most demanding users, especially the re-
production of the musical dynamics of most instruments. In [9],
Karplus and Strong proposed a plucked-string algorithm that
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used delay lines and simple digital filters. This is a low-cost ap-
proach and it successfully generated realistically dynamic per-
formance not seen in other synthesis techniques. However, it is
very difficult for theK–Salgorithm to control the timbre of the
sounds simply by modifying the filters such that it can sound like
any particular plucked-string instrument. This technique is nev-
ertheless the first step toward the physical modeling approaches
of instrumental dynamics for music synthesis.

In order to have the synthesis result closer to the sound gener-
ated by acoustic instruments, Smith proposed the so-calleddig-
ital waveguide filter(DWF) technique [12]. This synthesis algo-
rithm starts from the wave equation for musical strings and im-
plements the solution to the equation on a discrete-time system.
In his later efforts in the physical modeling synthesis, algo-
rithms for simulating the sounding mechanisms such as reeds
for clarinets and bows for violins were studied [10], [11], [13].
These techniques make some very realistic sounds and have
become more and more popular in music synthesis related re-
search. These computer-synthesized instruments are sometimes
called “virtual instruments.” However, it is difficult to find the
appropriate model parameters of the DWF’s such that the syn-
thetic sounds can be associated with any particular instrument.
In our experience with physical modeling techniques, it is found
that the problem of obtaining synthesis parameters based on the
analysis of the musical instruments themselves have never been
addressed.

In order to overcome the difficulty of parameter determina-
tion for the physical modeling methods, it is necessary to study
how acoustic instruments respond to given excitations. We pro-
pose a class ofscattering recurrent networks(SRN) based on
the physical dynamics of musical instruments to model as well
as synthesize the vibrations of musical strings. Being a universal
approximator [23], the artificial neural network has been widely
used in many applications such as pattern recognition, time se-
ries analysis, system identification, and so on. If the responses at
various positions of an acoustic musical instrument can be mea-
sured, it may be possible that a neural network can be trained
such that it can reproduce the responses of the same instrument
under the identical excitations. The structure of the SRN is first
related to the physics as well as the physical shape of the instru-
ment to be modeled. A technique for training the SRN specially
designed for the given instrument is developed.

In order to simplify our first attempt, we start from the mod-
eling of a plucked string. A string can be approximately re-
garded as a one-dimensional instrument. This allows a sim-
pler implementation of the SRN and requires less computation
to train the network. The training data are obtained by mea-
suring the vibration of a cello “A”-string excited by a single
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pluck. In order to obtain these measurements, we constructed
a steel-string measurement system which consists of seven Di-
marzio® Virtual Vintage electromagnetic pickups placed in par-
allel and equally spaced under the string to measure the vibra-
tions of the chosen cello string. The measured signals from the
pickups are sampled and stored in a multitrack digital audio
recorder. Thebackpropagation-through-time(BPTT) technique
is used for the training of the SRN [19], [21]. In our experiments,
the waveforms of the resynthesized outputs of the well-trained
SRN are very close to the measurement taken from the plucked
string. Though the computation of the training phase is very
large, the synthesis processing requires much less computation.
Although the proposed synthesis technique needs much more
computation than conventional synthesis methods, the sound
quality is superior.

In Section II, the dynamics of plucked musical strings is dis-
cussed and the scattering junction model for vibrating strings
is derived. In Section III, the SRN is proposed. The training of
the SRN is also discussed. In Section IV, the construction of a
steel-string measurement system to obtain the training data for
the SRN is described. In Section V, experiments of the training
and the resynthesis of the SRN are presented. Conclusions and
future work are given in Section VI.

II. DYNAMICS OF MUSICAL STRINGS

Physical-modeling methods for musical instruments have
become ubiquitous for their ability to produce realistic and dy-
namic synthesis sounds without heavy computation compared
to the wavetable synthesis method. The basic idea of phys-
ical-modeling synthesis methods is to simulate the vibrations
of acoustic instruments as closely as possible. In this paper,
we propose a class of SRN’s that simulate the vibrations of a
plucked musical string. The measured vibrations of the string
are used as the training data for the SRN which is configured
according to the physical properties of an acoustic string. The
synthesis processing using the well-trained SRN is discussed in
later sections. In order to understand how to relate the physics
of a plucked string to the proposed SRN, the physics of an ideal
acoustic string is presented first.

A. The Ideal Vibrating String

The wave equation for an ideal vibrating string was derived
by Morse [15]. “Ideal” means lossless, linear, uniform, volume-
less, and flexible. Consider the uniform string with linear mass
density (kg/m) stretched to a tension (newtons). A small
segment of the string is shown in Fig. 1. Let the restoring force
for the segment, , to its equilibrium position be which is
the difference between the forces with respect to the two ends
of the segment in the vertical direction as follows:

(1)

By using Taylor’s series expansion shown below, we have

(2)

Fig. 1. A segment of an ideal string with tensionK .

Fig. 2. An infinitely long plucked string simulation.

By applying (2) to (1) and retaining the first two terms, we have

(3)

The in (3) can be replaced by if is small. Equation
(3) becomes

(4)

Let the mass of the segment be . By using Newton’s
second law of motion, we have

(5)

Since is a small quantity for small , is approximately
equal to . Equation (5) is further reduced to

(6)

This is the wave equation for an ideal vibrating string. The gen-
eral solution of (6) can be written as

(7)

where
right-going traveling wave with a traveling
velocity ;
left-going traveling wave with the identical
velocity.

The transverse wave velocityis equal to .
An ideal plucked string with infinite length is shown in Fig. 2.

The initial displacement representing the pluck in this context is
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modeled as the sum of two triangular pulses which overlap with
each other at time . At time shortly after time , the two
triangular pulses separate and travel in the left direction and the
right direction, respectively. The segmentα which represents
the peak portion becomes flat and gradually reduces to zero.
Within the regions denoted byβ, where the two traveling waves
overlap, the string displacements remain the same magnitudes
as that in the initial condition in the same regions. The two short
pieces denoted byγ on the left-hand side and the right-hand
side are the leading edges of the left-going and the right-going
traveling waves. When the traveling waves fully separate, the
string will be at rest except for two half-sized triangular pulses
heading off to the left and to the right with speed.

B. The Lossy Vibrating String

If an ideal string with its ends fixed is plucked, it will vibrate
circularly and eternally. As a matter of fact, a string cannot vi-
brate without any energy loss. Therefore, it is necessary to con-
sider loss factors. In most situations, energy loss is caused by
friction of the surrounding air, yielding terminations, and in-
ternal friction [26], [30]. Considering the simplest case where
the resistive force is linearly proportional to the transverse ve-
locity, we can obtain the modified wave equation as follows:

(8)

The solution to the above equation can be easily obtained as

(9)

According to Shannon’s sampling theorem [16], the traveling
wave can be fully expressed by a discrete-time system as long
as the sampling interval is small enough. In order to simulate the
traveling waves of a plucked string, sampling is performed along
the longitudinal direction. The magnitude of a vibrating string at
a sampled position is sampled with the sampling period equal to

(s). Let the sampling interval along the string be and the
transverse wave velocity of the string be. Then, is equal to

. For example, if the sampling frequency is 44.1 KHz and
the velocity is 1000 m/s, the sampling interval is 100/44 100 =
0.0227 m. By replacing with and with in (9), we have

(10)

where
;

.
The discrete-time signal representation of (10) is given by

(11)

where
;

;
.

In practical musical applications, a string is usually fixed at its
two ends. If the length of a fixed string is, the boundary con-
dition can be described by using the following two equations:

for all (12)

for all (13)

C. The Scattering Junction for the Vibrating String

In our practical experiments, the traveling waves in an
acoustic string cannot be modeled completely by the method
shown in the previous section since most strings do not satisfy
the uniform-impedance constraint [26], [30]. Therefore, we
involve the concept ofscattering junctionsin the situation that
a traveling wave may reflect as well as pass through a position
if the respective acoustic impedances from the two sides of
the position are not identical. The behavior of traveling waves
incident with the scattering junction has been proposed [11],
[12], [30].

In (7), is used to represent the displacement of a vi-
brating string at position , and at time instant. Let thetrans-
verse velocity wavebe which is the first time derivative
of , and we have

(14)

By replacing and with and
, respectively, (14) can be rewritten as

(15)

where and are the transverse velocity waves.
Let theslope wavebe which is the first spatial deriva-

tive of , we have

(16)

Similarly, and can be replaced with
and . Therefore, the left-going traveling slope

wave can be computed by dividing the left-going traveling ve-
locity wave with the wave velocity, and the right-going slope
wave can be computed by dividing the negative right-going trav-
eling velocity wave with the wave velocityas follows:

(17)
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Fig. 3. The transverse force propagation in an ideal string.

In summary, traveling waves in any form can be computed
from each other, as long as the left-going and right-going com-
ponents are available. For example, the transverse velocity wave
can be computed by differentiating the displacement wave and
the displacement wave can also be computed by integrating the
transverse velocity wave if the initial velocity waves are nulls.

To discuss the behavior of traveling waves flowing into a po-
sition where two segments of different acoustic characteristics
are connected, the force wave propagation property is derived.
This is shown in Fig. 3. At any arbitrary positionof a string,
the vertical force applied to the left-hand side of the position,
denoted by , is given by

(18)

where is the tension at position. Let . Sim-
ilarly, the force applied to the right of the position, denoted by

, is given by

(19)

These two forces must cancel in order not to produce infinite
acceleration to a massless point. Eitheror can be used to
represent the string force wave at the position. Let the vertical
force applied to the right of any position, denoted by , be
the force wave , and we have

(20)

By carrying (16) into the right-hand side of (20) and using (15),
we have

(21)

The characteristic impedance is defined as

(22)

Let the right-going force wave and the left-going force wave be
and which are replaced

with and , respectively, as follows:

(23)

and

(24)

According to (22)–(24), (21) is rewritten as

(25)

The physical meaning of (25) is that the vertical force can
be computed by summing the right-going and left-going force
waves. It is assumed that there is a junction on a vibrating
string where the characteristic impedances on the two sides of
this junction are different. Let represent the characteristic
impedance in the left-hand-side segment andrepresent the
force wave flowing into the junction from the left-hand-side
direction. Let represent the characteristic impedance in
the right-hand-side segment and represent the force wave
flowing into the junction from the right-hand-side direction.
Physically, the force wave cannot change instantaneously
across the junction and the sum of velocity waves meeting
at the junction is zero [12]. According to Kirchoff’s node
equations [18], there can be only one resultant force wave at
the junction which is denoted by and the sum of velocity
waves meeting at the junction must be zero if the junction is
lossless. Therefore, we have

(26)

and

(27)

By (15) and (23)–(25), we have

for (28)

and

for (29)

where
resultant force wave of the left-hand-side segment just
beside the junction;
resultant force wave of the right-hand-side segment
just beside the same junction.

By defining the characteristic admittance of segmentto be
for , and solving (26)–(29), the resultant

junction force wave is obtained as

(30)

Define the reflection coefficient as

(31)

The outgoing force waves can be obtained by the following
equations:

(32)

(33)
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Since the wave equations shown in (7) are derived for the dis-
placement waves instead of the force waves, it is necessary to
modify (30), (32), and (33) such that the displacement represen-
tation of a vibrating nonuniform string used can be applied. By
carrying (29) into (32), we have

(34)

By dividing (34) by , and using (31), we have

(35)

Similarly, (33) can be rewritten as

(36)

The displacement wave representation of the string can be ob-
tained by integrating (35) and (36) with respect to time, because
the velocity wave is the first-order time derivative of the string
displacement according to (14). By integrating (35), we have

(37)

By solving (37), we have

(38)

The initial magnitude of the right-going wave of a plucked
string is the same as that of the left-going wave and their sum is
equal to the magnitude of the initial displacement at any position
of the string [11]. To be specific, we have

for (39)

Moreover, the string displacement must be a continuous func-
tion of position. The displacement at the left-hand side of a po-
sition is equal to the displacement at the right-hand side of this
position, i.e.,

for all (40)

where is the initial displacement. Substituting (39) and
(40) into (38), we have

(41)

Similarly, (33) can be converted into

(42)

By combining (40)—(42), it is easy to show that

(43)

Fig. 4. An alternative model for the scattering junction within a string.

where is omitted for notational simplicity. According to
(41) and (42), the reflecting wave and the passing wave at a scat-
tering junction can be obtained. The discrete-time representa-
tions of (41) and (42) can be derived in the way similar to the
derivation of (10) and (11). Let and be the right-going
traveling wave flowing to the junction from the left-hand side
and the left-going traveling wave flowing to the junction from
the right-hand side, respectively. Let and be the traveling
waves departing from the junction and flowing to the two sides,
respectively. We have

(44)

and

(45)

For simplicity, can be omitted. The discrete-time rep-
resentation of (43) can be obtained as

(46)

By substituting (46) into (44) and (45), the right-going and the
left-going traveling waves departing from the junction can be
obtained as follows:

(47)

and

(48)

Note that only the displacements of a vibration string at var-
ious positions are measurable. It is impossible to measure ex-
ternally the departing traveling wavesand , and the arrival
traveling waves and . Therefore, (46)–(48) have to be com-
bined with (39), and the initial string displacement in order to
obtain the model parameters of an acoustic string, the reflection
coefficients and the loss factors. We have more details on this
subject in the later sections.

Based on (46)–(48), the model of a scattering junction of a
string is shown in Fig. 4. The output of represents the dis-
placement of a plucked string. This model means that the trav-
eling wave departing from the junction can be computed by
subtracting the traveling wave belonging to the same segment
flowing into the junction from the displacement magnitude of
the junction, and the displacement magnitude can be computed
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Fig. 5. SRN model of the plucked string with fixed ends.

by summing the arrival traveling waves multiplied by their in-
dividual factors ( ) and ( ).

III. SCATTERING RECURRENTNETWORKS FOR THEMODELING

OF MUSICAL STRINGS

A. Scattering Recurrent Network Model

In this section, an analysis/synthesis model for acoustic
strings called the SRN is proposed and is shown in Fig. 5.
The SRN is configured based on the theory explored in the
previous section. There are three kinds of nodes in the SRN: the
displacement nodesdenoted by , thearrival nodesdenoted by

, and thedeparture nodesdenoted by , which are borrowed
from (46)–(48). Let the recurrent network havedisplacement
nodes denoted by and the output of represents the dis-
placement of theth sampling position for
and represent the displacement nodes of the two fixed ends
and the outputs are zeros all the time. Based on the discussion
in Section II, each of displacement nodes is associated with the
physical position of a small string segment whose length is.
For most complex situations, the characteristic impedance of
each segment which is represented by a unit delay is different
from its adjacent segments such that all physical positions
represented by the displacement nodes except for the two ends
can be regarded as scattering junctions. The arrival node
represents the traveling wave flowing into the junctionfrom
the junction . Similarly, the departure node represents the
traveling wave departing from the junctionto the junction .
A traveling wave departs from the junction and passes through
a link which contains , representing the corresponding
loss factor, and a unit-sample delay and the result becomes a
traveling wave flowing into the adjacent junction.

The initial displacement of the string is normalized such that
the largest magnitude is bounded by unity. In practice, the mag-
nitude at any position throughout the entire period of vibrations
cannot exceed the largest magnitude in the initial condition since
the string is assumed to be lossy. Although other types of acti-
vation functions can be used, in order to reduce the amount of
computation required in the resynthesis stage, we choose the
linear function as our activation function

for all (49)

This is a reasonable assumption because a musical string is usu-
ally quite linear unless it is overly stretched. The linear function
works fine in our experiments and the results can be seen in Sec-
tion V.

According to Fig. 5 and (49), the outputs of the arrival nodes
in the upper track and the lower track of the model can be com-
puted as follows, respectively,

net (50)

and

net (51)

The magnitudes of the displacement nodes of a plucked string
at time ( ) can be obtained by

net
or .

(52)

where

net (53)

The outputs of the departure nodes can be computed by

net
(54)

where

net (55)

and

net (56)

where

net (57)

Equations (50)–(57) represent the approximated model of wave
propagation of a musical string by using the proposed SRN
model.

B. Training of SRN’s

The temporal operation of the proposed SRN can be unfolded
into the multilayer feedforward architecture with synchronous
update. Fig. 6 illustrates the unfolded version of the SRN shown
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Fig. 6. The feedforward architecture behaves as the SRN of a plucked string shown in Fig. 5.

in Fig. 5. The unfolding procedure is described as follows. In
Fig. 6, there is atime layerfor each time instant. Each time layer
contains adisplacement layer, anarrival layer, and adeparture
layer. At time layer corresponding to time instant ,
the displacement nodereceives the weighted signals from two
arrival nodes, and . The output signal of and the
output signal of are sent to the departure node . The
output signal of and the output signal of are sent to the
departure node . The signals of and have to
be sent to the next time layer through the corresponding loss fac-
tors and one unit delay to the arrival nodes and of
time layer . The weighted output signals of and
of time layer are sent to and of time layer , re-
spectively. This means that after subtracting the signals of the
associated arrival nodes, the output signal ofat time instant

arrives at and at time instant , respectively.

This is exactly the situation that the traveling waves travel in
the upper track and the lower track and meet with each other at
the scattering junctions. The output signals of the displacement
nodes are the response of the SRN that is used to imitate the
string vibration. Continue this procedure and an unfolded ver-
sion is obtained. Note that the first time layer, time layer, has
no arrival layer and the outputs of the displacement nodes are
magnitudes of the initialpluck at the corresponding positions.
The BPTT method [19], [21] can be used to train the unfolded
version of the SRN once the training vectors are available.

In Fig. 6, a neural-network layer called atime layeris assign
for each time instant. Each time layer consists of three sublayers,
displacement layer, departure layer, andarrival layer, which
contain the displacement nodes, the departure nodes, and the ar-
rival nodes, respectively. Because only the string displacements
are measurable, the training vector is actually the set of sampled
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displacement magnitudes of the string under excitations such as
plucks at several preset positions. It is unlikely to measure the
displacement for each physical position on the string in order
to supply the training data for the corresponding displacement
node. It is unavoidable that most of the positions corresponding
to the displacement nodes are absent in the measurement. As a
matter of fact, we measure only seven positions in our simula-
tions. Those nodes with measured data arevisible nodes. Those
positions without measured data areinvisible nodes. Note that
the visible nodes are also displacement nodes expressed by (52).
If denotes the desired displacement of theth sampling
position at time and denotes the set of visible nodes, the
sampled data is employed to train the SRN by using the BPTT
method such that the generated outputs of the visible nodes can
be as close to the sampled data as possible. The remaining nodes
of this network, the departure nodes, arrival nodes, and the in-
visible nodes, are calledhidden nodes. The error signals at any
time instant are defined as

if
otherwise.

(58)

where
error signal of theth displacement node at time;
desired response of theth displacement node at time
;

actual output of theth displacement node at time.
The error function at time is defined as

(59)

and we have the cost function

(60)

to be minimized over one epoch , where is the last
time step and is the initial time step. It is necessary to adjust
the weights of the SRN to approach the desired loss factors and
the desired reflection coefficients to minimize the cost function.
These weights corresponding to the loss factors should change
along the negative gradient of the cost function as follows:

for

(61)

for (62)

The weights corresponding to the reflection coefficients should
change along the negative gradient of the cost function as fol-
lows:

for (63)

where is the learning constant. After the SRN runs through
each epoch, the backpropagated error signals are used to
compute the weight changes at the corresponding backward
propagated time layer. The total weight change for each
connecting weight is computed by accumulating the individual
weight change for it at each time layer. According to (50),
–(57), at any time layer, the weight changes corresponding to
the reflection coefficients are computed by

net
net

for

(64)

where is the gradient values of the displacement nodes.
The weight changes corresponding to the loss factors are

net

net

(65)

and

net

net

(66)

where
gradient values of the right-going arrival
nodes;

gradient values of the left-going arrival nodes.

The gradient values of the displacement nodes can be ob-
tained as follows:

net

net

net

net

net

net

net

net
(67)

According to (52), (55), and (57), (67) can be rewritten as

net

net .
(68)
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Fig. 7. The steel-string measurement device constructed to obtain the training data for the SRN model.

Similarly, the gradient values of the left-going departure nodes
and the right-going departure nodes are computed as follows,
respectively,

net

net

net

net

net (69)

for .

net

net

net

net

net (70)

for .
The gradient values of the right-going arrival nodes and the

left-going arrival nodes can be computed as follows:

net

net

net

net

net

net

net

net (71)

for .

net

net

net

net

net

net

net

net (72)

for .
At the two fixed end points, the gradient values are set to be

zero as follows:

(73)

In (68)–(72), is the derivative of the activation function.
The training process begins at the last time stepand finishes at
the beginning time step . When the backpropagation compu-
tation is performed back to time , the total weight changes
for the weight factors in the SRN are obtained by summing the
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Fig. 8. The vibrations of a cello “A” string at various sampling positions.

weight changes in (64)–(66) at each backward propagatedtime
layer together individually, as follows:

for (74)

for (75)

for (76)

where . Repeating theepoch-wise
backpropagationprocedure until the cost function is less than
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Fig. 9. The vibrations of a cello “A” string at various sampling positions in the interval [0, 2000].

a preset threshold, the corresponding model parameters of the
SRN for a musical string is obtained.

IV. M EASUREMENTS OFMUSICAL STRINGS

In order to obtain the training data for the SRN model,
a steel-string measurement system was constructed. It is in
Fig. 7. Seven Dimarzio® Virtual Vintage Solo electromagnetic
pickups usually found in electric guitars are placed in parallel
and equally spaced to measure the vibrations of the chosen
steel string in different sampling positions. An electromagnetic

pickup consists of a coil with a permanent magnet. The plucked
steel string causes magnetic flux changes for the pickups
and electrical signals are induced through the coil. The more
pickup units used in the system, the more measured data can be
obtained for training the SRN model. Furthermore, the pickup
units are combined with their sliding seats so that they can be
moved along the track under the string to different positions
whenever required.

In our experiments, the vibrations of the steel cello strings
at various sampling positions are measured synchronously. All
measurements are carried out through preamplifiers, analog-to-
digital converters and stored on a multitrack real-time digital
audio storage device, Audio Engine® (Sprectral Co. USA), at
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Fig. 10. The analysis outputs of the SRN at various sampling positions after 10 000-epoch learning.

32-kHz sampling rate and 16-bit quantization level. These data
are used as the training and testing patterns for the SRN’s.

V. EXPERIMENTS

Following are the experiments using the proposed SRN’s to
simulate the vibrations of a cello “A” string. The steel-string
measurement system shown in Fig. 7 is used to measure the re-
sponse of the plucked string such that the training vectors for the
SRN’s can be obtained. Fig. 8 shows the measured responses of
the plucked “Jargar”® cello “A”-string at the seven sampling po-
sitions. The magnitudes of the training vectors are normalized

into the interval [1,−1]. The 10 000 samples from the measure-
ment for each sampling position are used as the desired data.
In each subplot, the first 2000 samples are used as training data
and the next 8000 samples are used for the comparison with the
resynthesis data generated by the trained SRN at the displace-
ment nodes corresponding to the physical sampling positions.
The modeling work consists of two steps: training and resyn-
thesis. The SRN is trained by using the method proposed in
Section III. The resynthesis part utilizes the trained SRN to ar-
tificially generate the vibrations of the seven visible nodes by a
single “pluck” shown in Fig. 11 on the “virtual string.” The ac-
curacy of the synthesis result depends on whether the synthetic
outputs generated by the SRN are close enough to the measured
data. Note that it is not necessary to have any limitation on the
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training data as long as the string is not overly stretched because
the proposed approach is designed to achieve accurate synthesis
for any plucked-string sounds measured by using our setup.

A. Analysis and Modeling

There are 100 displacement nodes in the SRN and the two
ends are fixed. The string is assumed to be ideal in the beginning,
i.e., the weights for the loss factors of the SRN are assigned to be
unity and the weights for the reflection coefficients are assigned
to be zero. All of the loss factors and the reflection coefficients
can be adjusted in the training phase. The learning constant is
1 10−7 which is chosen empirically. Because it is desired that
the output of the SRN be as close to the desired signals as pos-
sible, the training is performed until there is no more change
of the error signal. This is due to the fact that the analysis part
can be done off-line and the purpose is to obtain better SRN pa-
rameters to achieve accurate synthesis. Usually, 10 000 epochs
are enough because another 10 000 epochs of training can pro-
duce only less than 0.3 db SNR improvement. Fig. 10 shows the
output of the SRN after 10 000-epoch learning at each sampling
position. By comparing Figs. 9 and 10, the outputs of the vis-
ible nodes in the SRN are indeed close to the desired training
data of the corresponding sampling positions in the interval [0,
2000]. The best signal-to-noise-ratio (SNR) that can be achieved
by using the proposed approach is 22.16 db. The equation used
to compute the SNR is (77)

(77)

B. Resynthesis

In the resynthesis part, the synthetic output generated by the
proposed SRN is compared with the measured data of the vi-
brating string. Unlike the technique introduced in [29] which re-
quires a short period of the time-domain response taken from the
acoustic plucked-string instrument to be synthesized as its initial
input, the proposed SRN requires only the initial magnitudes of
the visible nodes at the corresponding plucking positions. The
magnitudes of the rest of the displacement nodes are calculated
by simple interpolation. This significantly reduces the required
memory space if hardware implementation is desired. The “vir-
tual pluck” to the SRN obtained in the above analysis part is
shown in Fig. 11. The time-domain responses of the measured
data are shown in Fig. 8, and the synthetic data are shown in
Fig. 12. It can be seen that these two figures are very close in the
interval [0, 6000]. From [6000, 10 000], the waveforms of the
figures are still quite close except for and . This is within
our expectation since the acoustic characteristic of a vibrating
string keeps changing with time, especially at the two end po-
sitions. This is to say that it may be necessary to perform the
analysis again if the characteristic changes too much and the
model parameters of the SRN have to be changed during the
synthesis phase, too. Critical subjective listening tests are con-
ducted with six subjects through a pair of Spendor S20 near field
monitors driven by a Crown K-2 power amplifier. All subjects

Fig. 11. Thevirtual pluck to the SRN.

can still tell the difference though they judge that the difference
is very minor. However, if low-price multimedia speakers usu-
ally come with personal computers are used, they cannot tell
the difference. For most synthesizers available on the market,
listeners can easily tell that the initial transient signal does not
sound like a real pluck. Furthermore, these synthesizers need
more memory space to store the information for synthesizing
different parts of the sampled tone in order to imitate the begin-
ning part, the sustaining part and the decaying part of the sounds
to be synthesized.

VI. CONCLUSION AND FUTURE WORK

A new physical modeling electronic music synthesis tech-
nique based on physics of musical strings and recurrent
neural networks is presented. By using sampled magnitudes
of plucked-string vibrations measured by the electromagnetic
pick-up system as the training data, the proposed SRN is able
to imitate the sounds of its acoustic counterpart after sufficient
training. The “virtual string” constructed by the SRN can
accept arbitrary “plucks” just like a real string. The proposed
approach can synthesize very realistic starting transient re-
sponses of a plucked string. This is not possible for traditional
approaches such as the FM method and wavetable method.

There are still some unsolved problems, however. First of all,
most musical instruments have to be analyzed by using 2-D or
even 3-D structures, and thus it is necessary to extend our cur-
rent technique for multidimensional modeling. Second, if the
shape of a musical instrument is complicated, it may be very
difficult to design the structure of the corresponding SRN so
that the analysis/synthesis can be performed. For example, the
bridges of violins are very difficult to model for their complex
shapes. Third, the assumption of the proposed technique is that
we are able to measure the responses of excited musical instru-
ments so that the SRN based on the sampled magnitudes of the
vibrations can be trained. However, this may be very difficult for
many acoustic instruments. For example, it is almost impossible
to measure the vibrations of reeds for woodwind instruments
and bows for violins without affecting their dynamic behaviors
because of the attached sensors. Finally, the required computa-
tion for the synthesis part is still too large to be used in most
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Fig. 12. The resynthesis data generated by the trained SRN at various sampling positions.

real-time applications, and thus it is necessary to improve the
computational efficiency of the proposed SRN in the synthesis
stage. It is also desired to develop a more efficient training al-
gorithm to improve the SRN and the training speed.
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