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Edge Congestion and Topological 
Properties of Crossed Cubes 

Chien-Ping Chang, Ting-Yi Sung, Member, /€€E, and L ih-k ing Hsu 

Abstract-An dimensional crossed cube, CQ,,, is a variation of hypercubes. in this paper, we give a new shortest path routing 
algorithm based on a new distance measure defined hsreln. In comparison with Efe's algorithm, which generates one shortest path in 
O(ri2) time, our algorithm can generate more shortest paths in O ( n )  time. Based on a given shortest path routing algorithm, we 
consider a new performance measure of interconnection networks called edge congestion. Using our shortest path routing algorithm 
and assuming that message exchange between all pairs of vertices is equally probable, we show that the edge congestion of crossed 
cubes is the same as that of hypercubes. Using the result of edge congestion, we can show that the bisection width of crossed cubes is 
FA We also prove that wide diameter and fault diameter are E1 - t -  2. Furthermore, we study embedding of cycles in cross cubes and 
construct more types than previous work of cycles of length at least four. 

Index Terms-Crossed cubes, hypercubes, shortest path routing, wide diameter, fault diameter, edge congestion, bisection width, 
embedding. 

1 INTRODUCTION 
ITWCIRK topology is a cruicial factor for intcrconncctioii N networks since it determines tho performancc of a 

network. Many interconnection network topologies have 
bcm propused in the literature tor connecting hundreds or 
thousands of processing elements. Network topology is 
always represented by a graph in which vertices represent 
processors and edges rcprcscnt links bctwccn proccssoru. 
Among these topolngies, the binary n-cube (abbrcviatcd as 
hypcrcuibe), dciiotcd by Q,, is one of the popular topol- 
ogies, Howwer, a hypercube does not make the best use of 
its hardware, since it is possible to fashion networks with 
lower diameters than that of Q,&. One such topology i s  thc 
crossed cube, which was first proposed by He  [I]. An 
n-dimensional crossed cube, denoted by CQnI is derived 
from Q,L by changing the connection of some hypercube 
links. It has R diameter of [+I, an improvement of 
approximately a factor of 2, in a trade-off of reducing high 
degree of symmetry in Qn, 

Though embedding and some topological properties of 
crosscd cubcs have bccn studied in the Iiterahare [l], [2], [3], 
[6], [7], 191, we study some different topological properlies 
and provide different schcrncs from previous work. To be 
specific, we consider a new performance measure called 
d g o  con.ptiori. In addition, wc consider the following 
performance measures of crossed cubes: shortest path 
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routing complexity, diameter, wide diameter, fault dia- 
meter, bisection width, and embedding of cycles. 

Bfe prcscnted a shortest path routing algorithm of 
crossed cubes in [I], which generated one shortest path 
for any pair of vertices in O(n2) time. In this paper, we 
define a new distance measiire which enables us to find 
more shortest paths for any pair of vertices in O( . I I )  time. 

When transmitting Or broadcasting inessagcs, heavily 
congcstcd edges will dclay communication timc. A nctwork 
having a relatively balanced comniiiiiicatioii load of edges 
under the specified routing algorithm is preferred. Moti- 
vatcd by this obscrvntirm, we intrciducc the notion nf cd,sp 
coqystiorr, indcpcndcnt of Piduccia and Hcdricks work [41. 
Assuming that message exchange between all pairs of 
vertices is equally probable, we thus consider all-pair 
shortest path routing for calculating edge congestion. For 
each edge, w e  measure the number of pairs of vertices that 
will route through this edge given ;-i specific routing 
algoritlim. Edge congestion of a network under a specified 
routing algorikhm is the maximiim of thc congestion of all 
edges. We define edge congestion of a network by taking 
the minimum nvcr all routing algorihns. Smallcr edge 
congestion is preferred. In this papcr, WCL first specify our 
routing strategy based on our shortest path routing 
algorithm and show that the edge congestion of the crosscd 
cube is equal to that of tlic hypercube Q.,k. Using the 
result of edge congestion, we can calculate tlic biscction 
width of crossed cubes. 

Disjoint paths between a pair of vertices contribute to 
rnultipath communicaticin behvccn these two vertices and 
provide alternative routes in the case of vertex or link 
failures. The notion of connectivity, wide diameter, and 
fault diameter is defined based on iiiultiplc disjoint paths. 
In [6], the author showed the existence of 11 disjoint paths 
for any pair of vertices in a crossed cube CQ,, to prove its 
connectivity, without obtaining the length of these paths. In 
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other words, m e  caimot get wide diameter from this 
construction. Wide diameter and faault diameter of a crossed 
cubc CQrt arc studied in this paper. 

Thc problem of simulating onc network by another can 
be modeled as a graph embedding problem. Embeddings 
of complete binary trees and cycles into crossed cubus 
wci’c presented in [3], [7],  [ 9 ] .  In comparison with [3] ,  wc 
give a concrcto construction of cycles of arbitrary length. In 
[(f], the authors constructed one type of cycles for an 
arbitrary length, whereas we construct various types of 
cycles in this paper. 

Thc rest of this paper is organized as follows: Section 2 
summarizes some known results on crossed cubes and 
introduces notation used in this paper. In Section 3, we 
define a distance measure. Based on this measure, we givc a 
new shortcst path routing algorithm which runs in O(n) 
time. Wide diamctcr and fault diameter are studied in 
Section 4. In Section 5, we define the notion of  edge 
congestion and comparc edge congestion of hypercubes 
and crossed cubes. In addition, we calculate bisection width 
cif crossed cubes. Embedding of cycles into crossed cubus by 
constructing various types of cycles i s  presented in Section 6. 
Finally, we make mncluding remarks in Scction 7. 

2 PRELIMINARIES AND NOTATION 
Let G be a graph. We use V(G) and E(G) to denote the 
vertex set and tlw cdge set of G, respectivcly. Let T and 11 be 
two vertices. Wc usc d~:(x, y) to denote the distance between 
x and 11 in G .  To define crossed cubes, wc first introduce the 
notation of “pnir relnted.’’ Let 

x = ((OO! OO),  (10, l.O), (01, U), (11,Ol)). 

Two binary strings :I:  = x1zo and y = ulilu are pair reluted if 
and only if (x! I/) E .R. 
Definition I, An n-dimansiowl crossed cubc CQTt i s  vcuirrsively 

colaslrucfed ns ,foOlloms: CQ1 is o complete p p h  with two 
vertices Inbeled by 0 arid 1, mpeclive(y. CQli cwsists of two 
idr?nticnl (rt - l)-dimensional crossed cubes Cq:!-, and 
L‘Q:%-l. The vertex U = Oi ip r -2 .  . . “ r ~ g  E r/(CQg-,) a t d  [he 

ucrkx 71 = 1v7>-2 I + vo E V(CQ:t-,) is  an edge in CQ,, (fnnd 
only # 

1 I 21,,-2 = U,,-2 i f  m i s  menZ, arid 
2. ( ~ a i . ~ r ~ 2 i , 2 1 2 ~ + ~ 1 1 ~ i )  t R for  d l  0 5 i < lq]. 

Examples of CQ3 and CQ4 are illustrated in Pig. 1. 
Throughout the paper, each vertex in CQ,, is represented 

by an n-dimensional binary vector, e.g., U = u,- .~PL, , -~ 4 ‘ - ‘uf l  
and v = q1. .IV,,. .2 . . .vug. For k. < n, thu k-prefix of U, pk(ii), is 
defined as u T L - l ~ ~ , 7 t - z ~  . .u,,-h. We can thus write 

21 = pk(U)71n .  .k..l . . I 11.0. 

Let x be an I-bit string with I 5 ‘ !I .  We iisc CQ,,,(n:) to denotc 
the subgraph of CQ, induced by the set of vertices with the 
prefix x. It is shown in [7] that Cc),,(x) is isomorphic to 

bo two distinct l-bit strings with I < R. I f  
CQ,,(r) and CCJ,,(y) can be joined by an edge in CQT,,, then 
CQ,,(x) and CQII(yj are called u@cent n r b p ~ p h s  of CQn. It 
can be easily verified h a t  if CGJ,,(xj and CQ,,(y) are 
adjacent subgraphs of CQ,,, (z,y) is an edge in CQ!. 
However, (x,y) E S(CQ,) does not necessarily imply that 
CIJll(x) and CQqb($j) are adjacent subgraphs of CQ,,. For 
examplc, when r~ = 5, :L‘ = 01, and y = 1.1. (i.e., ‘18 - I = 3), 01 
and 11 are adjacent in CQZ, but CQ,(Ill) and C&(I.l) arc 
not adjacent subgraphs of  CQ5. Note that if ( x )  y) is an edge 
in C4r and ?J - 1 is evcii, tliw CC),, ( x )  and CQ, (3 )  are 
adjacent subgraphs of CQ,,. 

Let CQ?,(x,jj) denote the subgraph of CCJ,l induced by 
CQn(x) uGQ,(y). It Is provcn in [l] that CQ,,(x,~jj is 
isomorphic to CQ,, 1 . ~ 1 ~ 1  if GQ,, (x) and CQq1(p) are adjacent 
subgraphs of = 2 and (x+y) 
be an edge in e&. Obviously, CQzk(x) and cQ2r.I~) are 
isomorphic to C&. 2. It follows from the above discussion 
that CQzk(r) and C&(y) are adjacent subgraphs and that 
C&k(i,p) is isomorphic to C Q Z ~ - ~ .  Thus, wc! can contracl. 
those vertices in C(221. having the same prefix of length two 
into a vertex and obtain a graph with four vertices. It is easy 
to see that this four-vertex graph i s  isomorphic to CQ2, 
as shown in Pig. 2a. For any two vortices 7.1, v in CQpL with 

CQI,-I,l’ 
Let 5 and 

In particular, let 1x1 = 
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IL even arid '11 2 4, the following statcments can be easily 
observed [l]: 

2-bit strings, a vertex 'U satsifying (U, TI) E E(CQFI) can be 
uniquely determined by (x, y) and 71. We can thus denote w 

1. If.pZ(u) = pa(v) ,  then 'LI and II are in a subgraph 
isomorphic to C:9,a-2. 

2. If &~,(pz(u),p~(71)) = 1, then ' ~ 1  and 1~ are in a sub- 
graph jsflrnorphic to CQ,-,. 

3. If &Q (112 ((U), ps (,U)) = 2, then a neighbor U' of 'U and '11 

are in a subgraph isomorphic to CQ,+l. 
Similarly, we can contract those vertices in CQ,,,, with 

the same prefix of length three into a vertex and obtain a 
graph with cight vertices. Again, this eight-vertex graph is 
isomorphic to CQ:i, as illustratcd in Pig. 2b. We can also 
obtain the following observations for any two vertices U,, 'U in 
CQ,, with n add and n 2 3 [I]: 

1. 

2. 

3. 

If pg(u) = p3(v), then U and ?I are in a subgraph 
isomorphic to CQ1,-3. 
If d c ~ ~ ( ' p 3 ( 7 i ) , p : ~ ( 7 4 )  = 1, then U and 'U are in a 
subgraph isomorphic to CQ,,-2. 
If d c ~ ~  (?13(71 , ) ,~3 (1~) )  = 2, then a neighbor 11: of IL and T I  

are in a subgraph isomorphic to CQpa-2. 

Definition 2, Le# (U,? ) )  be on cdgt of CQTz. When vertices U and 
v have a leftmost differing bit at position (1, we say that w is the 
&neighbor of ?L and that the edge ( T L ~ V )  is an edge of 
dimension d or dim(u, v) = d. We call (71, v) a dam-d edge. 

For examplc, let U = 10111. The 4-, 3-, 2-, 1 ,  and 0- 
neighbors of U are given by 01101,11101,10fl01,10101, and 
10110, respectively. We use N{u)  to denote the set of 
neighbors of U .  

Let k be a positive integer satisfying k < n - 1 and n - I; 
even. Lct z = p k ( u )  and y = pk(v) .  Assume that 

(& VI E W Q k )  

It follows from the definition of CQn that (71, v) E E(CQTL) if 
and only if (u2i+li12i, vzi+lz,21) E m for 0 5 i < a Since the 
set R induces a one-to-one correspondence for all of the 

by f(u;x,y).  For eximple, given (:c,IJ) = (101.,111) E 

E(G'Q3) and U = 1.01.11, the neighbor of U in CQ5 with 
prefix 111 can be uniquely identified and is given by 
v = 11101. 

Let Q = {x = Z O , Z ~ ,  4 - - ,  zm = q} be a path in CQb. The 
length of LJ is denoted by IQI. Two terminal vertices :t: and (I 
of Q can be denoted by t(x; &) = q and i(q; Q) = X. In this 
paper, paths can be considered in B directed sense, e.g., the 
aforementioned path Q is directed from IC to q.  Given path 
&, y is called the imnrediate predecessor of xi+l. We usc 
P(u; Q) to denote the path in CQn induced from 8, which is 
given by P(u; Q) = {~i = ~ q ~ ,  wl, . . . ~ w,,,}, where 

U,, = f (w-1;  Z i - l , Z i )  

for all 1 5 i 5 vi. The path P(u; Q) preserves thc length of 
Q, i.e., I P(u; &)I = IQI. For examplc, lct 

Q = {lOl.UU, 01 100,Ol.101.) 

.P(v; &) = { l O l O O l l ,  0110001,0110111} 

and = 1.01001.1. Then, 

Let 4 = ( U ,  u1,n2,.  4 ,U"' = ?I) be a (u,v)-path, and let Rl 
be a (.U, w)-path. We define 1'1 U P p  as the concatenation o f  
PI and PA which yields a (U, w)-path, and P, U 1<~ can also be 
written as {U,  U ' ,  u2, .  . . I urn, 4). The path obtained from P, 
by removing the subpath (ukl uki.'? . I . ~ dT1} with IC i m is 
denoted by PI - (uk,ukfl ,  - + - , uln}. 

3 SHORTEST PATH ROUTING 
Let U and 21 be two distinct vertices in GQn. The ith doubk bil 
of vertex U is defined as a 2 4 i t  string U P , ~ . I U Z ~  for 
0 5 i 5 1;J - 1, and as simply a sillglc bit z12i for i = l;] 
and n odd. Bit I is called tltc most si<qnificnnt differing bit 
between U and 'U if p,l..!-l(u) = p?3+L(~u) and U; # q. Lct 

Fig. 2. Subgraphs of 17qZk and CG&,., . 
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1' = 161, called the m s t ,  sz@jicant drfering doubfe bit. We 
define il functiun p 011 id, v ds follows: 

p J ( q  T I )  = 0 for all j 2 i* + I ,  

Subsequently, wc' rccursively define p j ( u ,  T I )  for j 5 i' - 1 
using the notion a f  dist~nce-pr~seivi?zg pnir relnted (abbre- 
viated as d.-,U. pnir relnted) which i s  motivated from the 
concept of pair related.' 

Definition 3. 712j4.1U2j atid 7-'2j - L V J ~ ,  fur j 5 7:' - 1, nrc distnnce- 
pruseuuing p i r  Tdalrd $ m e  of the follo7uuhig coriditiuiis holds: 

1 .  (n~~+l7rzj!v~~.I.1@2)) E {(Oll0l), (11,11)} and 

The puir reliated distnncc behvccn U and v is defined, denoted 
by d., 4, as 

\ For example, let 

1 

and v = o i o i o o i . ~ i o n i o ~  i~ vertices in ~ ~ 1 . 1 .  We recursively 
hid p.i as follows: pc(rr, U) = 0, p , 5 ( u , w )  = 2, p,j(u: U )  = 1, 
p , < ( u , ~ ]  = (I,  p2(u, wj = 0, p1(u,v) = I, p0(u,u) = 0, and  
p ( u u j  = 4. 

Now consider thc rcla tionship between &Q,, ( U ,  U )  and 

p(u,71). Lct P be a shortest path from U to 7 ~ .  If 
? ~ i . + 1 ~ 2 p  = 2 : 2 p + l f i p . i = ,  it requires two steps in P. Otherwise, 
by thc definition of i* it requires a single cdge in P. If 
. ~ t ~ j - ~ . w > j  N ?12j+1U2;jjl after identifying bits at positions ' p  2 
2 j  -1.2 with those at v using CL::! p k ( u : v )  steps, we can 
reach a vcrtcx such that bits at positions 2 j  - 1 -  1 and 2 j  are 

<I.- 1,- 

11,-p. 
identical to v2ji+ and 112~. If 212J+1112J + i c 1 ~ l ~ ~ ~ t 1 2 ~ ,  at least one 

step is required in P to change the (27 + 1)th and Ihc 2jth 

bits tu wJ+1 and w 2 j .  With the above observation, we h a w  
the following remark. 
Remark 1. p(u, v) is a lower bound for dcQ,,(7i,,u), i.e., 

&Q,,(% .I 2 P(21,V). 

We now present a shortest path i:outinp algorithm which 

can gciierate multiple shortest paths and is different from 

khc onc proposed in  [l]. 

Algorithm: Shortest-Path-Routing 

Inpuf: Vertices '16 and 71. 

Output: Shortest paths from TI. tu 11. 

Step 1: If T = 0 
then go to Step 2; 
else find a j c 'I' and call ONE-STEP-ROUTE(:j, 01). 

Step 2 If Q ,  = fl 
then output: the scqucricc ,S which yields shortest 
paths, set S to bc empty, and go to Step 4. 

d-p.  ,I -p Step 3: If either U z z + l i r , ~ ,  - 7 1 ~ , + l i i 2 ~  or u2i+1i ipa  N ull I 1 1 1 2 ~  
holds for some i E QI 
then choose such smallest a; 
else choose i = nicis{j I j E &I}. 
Call ONE-STEI'_lZOUl'E(i, Q1 ) and go tn Step 2.  

Step 4: If Q n  = II 
then output the sequence S which yields shurtcst 
paths and STOP. 

ONE-STBP-ROUTE( 7, Q)  
IfPj(U, w )  = 2 
then route to 7 h ,  i.e., the 2jth or ( 2 j  4- 1)th neighbor of U, 

/&A, v) = Pj(?G, 71) - I; 
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592i+luzi 

else routc. to U', the (24 + 1)th neighbor of 11 if 
<I . - [ I .  

i i2Li+lii2,7 - w ~ ~ + I v ~ ~  and the 2,jtli neighbor 

d.  - I,, 
I 

of U if ~ q + ~ U . l j  N I ja j+l? l j j j ,  

set Q = Q - { j ) ,  
p . j q ,  v) = Ipj(?L,p) - 1. 

 ut 72 in ttie .equencc S, and set t i  = zt'. 

cnd I 1, 
To illustratc 'this algorithm, we still USL' 

I 
1, 21=t)I1011I~lIUi1iII11 

and 
stage, we have pa(u,  U )  : 2, pi ( U ,  U) = I, pl(?',,> ?I) 7 1, Q1 

Q2 = { G ,  4, I} and 2 '  
any i E Q1 satisfying f i 2 . i + l ~ . ~ l i  - w ~ . + I . c z ~  or 

= Oidl 001 1 1.001 01 in CQ14 as a n  cxainple. At  jnitial 

d. Since T = @ and we cannol. find 
<I, ~ I ' ,  

.. 1l, .1>. 
z2.i t.l'U2i N ?IZI+l I l l ; ,  

in Step 3 we choose 1: :< 5 reaching 0100011.1100011. or 
~llll011110!~011, and reducep5(tr,?1) by onc. Now, the set 91 
i s  still (5,4; 1). Repeating Step 3, we find i 2 1 in this 
iteration and route to nlOOOll.l1OOl.Ol or 011101111i1111I~1. It 
reduces 91 to {5,4} .  Subsequently, 1: = 4 and i = 5 arc 
found in the Following iterations of Step 3, which render Ql 
to be empty. In summary, per-forming Step 1 to Step 3, we 
can obtain the following two shortest paths: 

PI = { 01101101 1.00001,01.00011 ll(loil l l l  i110~~0111100101, 
01000001.iu1111, [ I I O L ~ ~ H  i i o n i o i  ) !  

Ye3 no 10 yes - 
11 (even, no ) (even, yes ) (even, - ) (even, yes ) 

01 (even, yes ) (even, no ) (even, yes ) (even, - ) 
(odd, YCS ) (odd, RO ) (odd, yes ) (odd, - ) 

(odd. no 1 (odd, yes I (odd , - I (odd. ve8 1 

1-11 = 1 uI1uL10110~1001,01110111100011,0111000110(1~1u1, 
01iI100111000 1 I , 0 101 001 1 1001 01 ) 

The paths P,i and PI are obtained by changing thc fifth, 
fourth, fifth and h i  duublc bits seqtientially. 

We summarize in Table 1 the vcrification of the 
11.- ' p  staatcment whether i i z i . + 1 1 ~ 2 i  N l lZ i+1?12d  or 

Cl. '  .I). 
. i ~ ~ ~ , . l . i i . ~ ~  - ~ 2 . i . ~ .  1 vai 

for i # i* is satisfied in Steps 3 and 5. In 'I'able I, "uvcli~" 
and "odd" represent )-k/i.t.L p&, ,U) being even and odd, 
respectively. Wc usc "yes" and "no" to indicate that 

the sbtcmmt holds and docs not hold, respectively, and 
N l, ,I,-,,, 
- to indicate that ?i,2.it1702i - u2if1v2.i .  In other words, 

ON F.:-SCEP-llOUl'E c m  bc pcrformcd on those cases that 
are inarkcd with "ycs". Furthermore, observing from 
Table 1, WL! can obtain the followjng remark. 

.~ 

Remark 2. For those cases marked with "iio" in Table 1, 
reducing a pi>(,u,.u), i' > i by onc enables us to pcrform 
ONE-STEP-ROUTE on the ith double bit. Furtlicrmnrc, 
Ict k - i* or let it be the smallest index in Q1 satisfying 
fi21.+1u2.~ N ~ a i . ~ . l ~ : 2 i  or t ~ j , . ~  Uzi - i:zi.kIv2i, After perform- 
ing ONE-STEP-ROUTE(k, a ! )  and reaching d ,  it c m  be 
observed that ~ ~ ~ ~ i . l . l ~ , ~ ~ " ~ " ' ~ , ~ ~ + ~ ~ , ~ ~  or 

11 -1). <l.-p. 

d. 1'. 
11;j+171$3 N Il2j+I I'2j 

is sakisficd for 'all j < IC and j E Q1, 

Theorcm 1. 

1. 

2. 

Thu Shortest-lJ~th-Knirtirzg nl,yorithnr correcthp Jnds 
shortcsf paths f w n r  tlrs smirce to  the rlesthznlion. 
dCtJ9! ( U ,  v) = /)(,U, U). 

P r o d  Let I A  be the source atid II be the destination. Ect IL" 

denote a current vertex reachcd by the algorithm, and Qlf 
and Q5 bc thc subsets of !& and Q2, respectively, 
obtained by thc algorithm. Wc note that ONE- 
_STEP-ROUTE is pcrfornied at the ith double bit if 

N u .~ ; .+~vz~ .  Therefnrc, at 

thc cnd of p(u,u) steps of performing ONE-STEP- 
I ROUTE, klic ith double bit becomes identical to that of 
?I. Obscrving froin Steps 1, 3, and 5, we note that 

- - d-1,. -pLc,'I.. 1'. 
ut N w2i~, 1'2;2( or , I & + ~  

TABLE 1 
Applicability of ON E-STE P-ROUTE 
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ONESTEP-ROUTE is performed at thosc double bits 
with  pi(?^, U) $ 0. Furthermorc, ONE-STEi'-I<OUTE is 
performed = 1421 times if p p ( ? ~ , v )  = 1 and IQ11 + 1 
times if pi- (U, U )  = 2, i.e., exactly p(u, U )  times. Thereforc, 

dCQ?,(W v )  I d l h  I>). 

On thc other hand, we h a w  &Q,, (U, v) 2 p ( n ,  v)  by 
Iiemark 1. Conscqucntly, we have &Q,,(u, U )  = p(u, v), 
and moreover, the algorithm gciierates shortest paths 
h m  ' I &  to 2). 

Tf initially T = 0 and no i f Q1 satisfies 

,I -p. 
?h2A+lii2.A - vaa.l.]w2i 

or G . . I ~ + L T L ~ ~  N 7~2i-~lv2i, let i' = m a n : { j  I j E CJl} as found in 
Stcp 3. It foilows that we can choose i' = i* first and 
then continue the procedurc ONE-STRP-ROUTE(i, Q1) 

for all i E 91 until Q 1  = B. Otlierwise, we c m  always 
perform ONE-STEP-ROUTE on any t E I' as specified in 
Step 1 an.d on the smallcst i E 91 (actually, arbitrary i E 

Ql i s  allowed), satisfying l l q i r l  w ~ ~ ( ' ~ ' ' ' ~ ~ i + ~ v ~ ~  or 

1 I , - p  
P1,2.if12L2.i - V2i.I.1V2dl 

as specified in Step 3. In subsequent iterations of re- 
peating Step 3, it follows from Remark 2 that an i E (& 
satisfying Gii bl  ?tii N vai I.1'u2i or ~ i & ~ ~  can 

always bc found, until &I = 0. Thus, repeating Steps 1 
to 3, we can obtain shortest paths. 

Similarly, in Steps 4 and 5, the algnrithm checks 
each double bit i with p j ( i ~ , i i )  # 0 from lcft to right 
order and generates other shortest paths. Hencc, tho 

-.  , l , - - p  ~ 

N 

thcorein follows. 

Step 3. takes O( 1) time. In Step 3, if either 

- <l.-p. 
'Il~i+l?l.>i - ?)2.i.,+lV2i 

or ? I Z ~ + ~ ? L Z ~ ( ~ ~ ~ ' ' V ~ ~ . , . ~ U ~ ~  is satisfied, wc pcrform ONE-STEP- 
I IZOUTE. Otherwise, we perform ONE-STEP-ROUTE on 
the jth double bit with . j  c 91 and j > i reaching ,tP, and 
then we obtain u~t.I.lfi N 7121,~1w2i or G ? $ i ' 1 z 1 J ' u 2 i  1v2i. 

Thus, we cxamiiie each double bit i with p;(u, U )  # 0 at most 
twice in increasing order of i. Stcps 2 and.3 a re  exccutcd at 
most 2p(?i,!v) times. Steps 4 and 5 arc executed exactly 
p(u,v) times, each taking O(1) time. Hence, the time cmn- 
plexity of thc algorithm is O(n). The algorithm proposed 
in [I]  can generate ono shortest path in O(11') timc, while 
ours can geierate more shortest paths in O(n)  time. Further- 
more, our algorithm can be modified to generate all shortest 
paths in U(ri2) time. 

Theorem 2. The dinmefeu ofCQ,, denoted by D(CQL) ,  i s  rq1. 
Proof. Let 7 1 ,  I I  be two distinct vertices. Sincc thwe are 

doublc bits, it follows that &Q?, (,U? w )  : p ( ~ ,  21) I [yl. In 

11.-1,. 

particular, we choose ~1~ = 00 + - 0 and PI* = 11 - .  . 1 such 
that p{u*,v*) = [+I. Hence, the theorem follows. 0 

4 WIDE DIAMETER AND FAULT DIAMETER 
The connectivity of a nutwork G = (V ,E) ,  denoted by h:(C:) 

or E, is the minimum number of vertices whosc removal 
Icaves tlw remaining graph disconnected o r  hivial. It 
follows hoin Menger's theorem tliat there always exist 
K intcnmlly vwlex-disjoin! (abbreviated as disjoinl) pnths 
betwccn any two vertices. 

Lct N and P be two positive integers such that cy 5 ti and 
/ j  I fi - 1. Givcn any two distinct vertices 11. and ' t l  of G, let 
G(u, 11) denote the sct cif all IT disjoint paths between 71. and v .  
Each element of C'(U,?I) consists of TY disjoint paths. Thc 
number of elements in C(ZI,,V) is denoted by IC(u,v)l. Let 
l i ( t ~ ,  .?I) donolc the longcst length among these Q p a t h  of the 
ith element of C(ir, U). Wt. dcfiiic &(?L, 1 1 )  and (!;(,U, 1 1 )  as 
follows: 

d i ( u ,  v) = rriiri {(lc:-i,m(?t, ,?I) I u,,u F}, IGV 
:/..I .p 

where L' - b' denotes the subgraph of G induced by V . F. 
In other words, di(71.: 11) dciiotcs the shortest distancc 
between U and U when any p-vcrtcx fault occurs. 
Definition 4. Thu m-~f i i ie  dimirelev uj' G, denoted by &(G'), i s  

d$nd ns 

In pnrticrrlar, w e  ccrll D,(G) simply wide dinmeter u J 0 .  

Note that 11, (C) is simply tho diameter of G. 

~ i v u n  by 
Definition 5. The Byi774alf dinmeter, deiiotcd by D,$(G), is 

Ili-l (G'j is ,  i i z  prticulnr,  c d c d  fau l t  dinmeiur of G. 

Fault diameter estimates tlw iinpact on diameter whcii 
faults occur, i.e., the removal of vertices from G. Small 
( E  - l)-fa,?ult diamcter is also desirable to obtain smaller 
cflmmmication delay when vcrtcx faults occur. Obviously, 
wc havc D(G) 5 LJ-] (G)  i u ~ ( G ) ,  

For hypercubes, it is known that K(Q,~)  = n and 

D"t(Q.,J = I?-l(Q?l) = rl + I 
In this section, we compare wide diameter and fault 
diameter of crossed cubes with thosr! o f  hypercubes and 
prove that .D,,(CQ,,) = U~..l(CQ.zf) - 

Lemma 1. DL-, (cQ,~) 2 + 2. 
Proof. Lob 

+ 2 for al l  n 2 2 .  

'U, U' be vertices of CQ,,, and let ]<'be an (ri - 1)- 
f a u l t  s e t  given b y  P :: N(ir) - (U'). Cons ide r  
n = 2k, k 2 1. We choose U = 0 0 . .  .O, v = 01 1 . . 1, and 
ZL' = 100 I .  I 0. The shortest path from U to v iu CQTi - J' 
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has thc form ( u , n ' ~ P * ( d , v ) ) ,  where P * ( d ,  I ) )  is a shortest 
path froin U' to w without traversing any vertex in F.  
Sincc p(u',v) = + 1, it follows that 

micrcforc, D{. . , (CQ~~)  2 + 2 .  
Ncxt, let us consider 11 odd. Let U = 00000. . . ( I  and 

U' = 001 00,  '0. We choose 11 = 1.00 1101 1101 I ' llOl11 
for 'n. = Lik + 1, and 

? I =  10011011101 ."1.101 

for m = 4le + 3. The sliortcst path from.u to U in CQn - 8' 
has the form {U) U', U'', P*(ri", U)}, where U" is il neighbor 
of U' and P* (if.'', 8) is il shoitest path from 12' to without 
traversing verticcs in F and U .  Note that .U" can be 
arbitrarily chosen from the set 

i * w = {oi i .uu.. . U ,  11100.. . o} U {ooioo. I . o i  oa I I I o  I 
0 5 j 5 ?I ~ 4). 

sincc aiiy vertex w i n  w satisfies p(w,w] = 
that d c ~ ~ , - , ~ ( u ,  v )  = 2 + p(7P,  v )  = 

it follows 
-t 2. Thcrcforu, 

Hence the lemma follows. 0 

Lemma 2, l e &  U an.d I I  be tzvo vertices of Cy,, for ri 2 2. Then, 
thcw are 'n disjoirit paths Ply 15, , I , , Pn joining U ED.  U with 
nondecmsing length, i.e., IF', I 5 IPl 5 . . . 5 1PTJ, such that 

I .  
2. 
3. [Pal = i f  lIJl 1 = nnd n is evm. 

Ir:l I E1 + 2 for dl i:, 
[PI I 5 ,I(CQ,) = pf1.1, 

We Imvc the proof to Appendix A. Note that Lemma 1 
and Lemma 2 immediately imply k(CQJ = 'TI since each 
vertex has a degree of n. Since Lemma 2 iinplics that 
I I ~ { ~ ( ? I ,  11) 5 

Corollary 3.. UJCQJ 5 

-t 2, we then have the following corollary. 

+ z f o r  011 n 2 2. 

Since Ui-l(CQ,,) 5 D,,(CQ,,), we can easily obtain the 
following theorem fi*om Corollary 1 and Lemma :I. 

Theorem 3. /li-l(CQ,A) == D3A(CQ,J = El 1- 2 .  

5 
In this scclioii, WL! treat a path as TL directed routing from a 
sotircc tn a dcstination. To distinguish different orientation 
of an edge ( U ,  v), we write /11,v] and [v)  4 as traversing from 
xi to 'U and froin 'U to U, respectively. A path P = {x = 
x", d, . . . ,I:"' = 11) i s  treated as a dircctcd path from x to 5, 
consisting of [x', xi+'] for 0 5 i 5 In - 1. For convenience, 
wc also trcat a path as a set of edges and write [si, xi+'] E 1' 
tn mcan that [xi, xi+'] is hi P. We say that an edge e = ( 2 4 1 1 )  

is incident on P if [U, U] E P or [U, U ]  E P, i.e., U = E )  I I  = xi+' 

EDGE CONGESTION AND BISECTION WIDTH 

or 'U = & , U  = si"' for some i .  When considering edge 
congestion, we treat any routing algoritlun A for a network 
C: = (V, E )  as a function assigning cadi (x, y) E V x V to 
only onc path from 3: to y, donoted by Pjl(x, yj. We consider 
only thc shrrt-ost path ruuring algorithms. 
Definition 6. The e@ c o t p t i o r r  of nn cdgt I: E E wider thu 

routi/zg nlgoritkw A, derzolcd by C A ( C ) ,  i s  dcfincd os the 
nzrmber r$ (E, U) pairs such thhnt I: is incident on PA(T, yj, i re* ,  

cn (e )  = I{(.u, 0) 1 s,y E V ,  e is i:.raderi.i on P,l(x,?/j]l. 
The edge congestion o j  the network C: nrrder the routhg 
algoritlinr A and the edge cmgestiorz ofthe network G, derioted 
by ~ ( c )  and c(C), vespcctively, nre dcfined ns follows: 

c,l(G) = m;i.x{c,i(e) I f o r  rill e E E} ,  
c(G) = iriiri{c,1(G) I for dl routing aIgo:orit.hrris A jor C} .  

Edge congcstion can also providc lowcr bound on the 
area and thc Longest wirc lengtli required by VLSI layout of 
networks. A routing algorithm achieving c(G) is called an 
opptin/al routing algorithm. 
Definition 7. The bisection width of C, den.oLed by w(G), is  the 

minimum tiumber of edges to be venroved to disconnect the 
graph into two (not necessarily c o n w k e d  s u b p p h s  with 

The problem of finding ttic bisection width of a graph is 
NI'-hard. The bisecticm width of an intcrconnection net- 
work is a critical factor in determining the speed with which 
the network can perform a computation and the area 
needed to layout this network [8].  

In this section, we will prove that c(CQ,,) =* ~(8.~) 2 2" 
and w(CQ,,) = 2"-1 I 

Theorem 4. c(QPI) = 2". 
Proof, For any vertex U in 4,,, it is known that exactly t;) 

vertices at distance i from 11. Thus for any routing 
algorithm A, we have 

and lqj vertices, rcsjeclivcly. 

.A(.) l~>l(~~!/jl 
c E W , , )  (q) C Y X  v 

Sincc there are cxactly T L  2?'-l edges in E(&), 

c , , ( ~ , ~ )  = mtl3{cA(e) 1 E E qo,,j} 2 P I A  

Thus, c(QIL)  2 2". 
On the other hand, let C be the routing strategy which 

routes x to y by changing thc riglitmost differing bit 
itcratively. To be precise, assume that x differs from y at 
k bits, say, the !I-, l?-, . . ., Ikth bits with 

O ~ I I  < 1 2  < . . .  < L k < n - l . .  

Then,Pc(x,g) isgivenby (z=z",~:l,..,,~:k=~~),wh~rc 
X~~ differs from :di-+' at the la-kith bit. Let t: = (U, I ) )  bc a n  
edge of Qlr with U and v differing a t  the jth bit such that 
(u ,u)  is incident on F'~.(x,y). That is, either I?!,, 711 E 
P~:(x,y) or [?I,zL] t Pc:(x,y). Consider p , w ]  E Pc( .~ ,y ) .  It 
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follnws from Algorithm C that ,T ,~-~ . . ~j = I L , ~ - ~  4 + U '  3 

and yj . . = v j  . . I vl'uo. Therefore, 

l{(x,y) 1 x,y E V(&) ,  [U,*] E /'&,!/))I = 27E-.j-l2j = 2n-1 

l{(x,y) I z,y E V(L&), [U,,lL] E P&,?))}/ 
Tlencc, ~(0,~) = 2"' ' + an-' = ZVt. 

Similarly, 

27L-j-.IF - - 2'A-.L, 

0 

The proposed routing algorithm for the prnof of 
Theorem 4 i s  an optimal routing algorithm for hypercubes 
and picrates iiniform congestion for all edgcs. 

To calculate c(C4,,), we restrict our rtmting algorithm to 
executing only Steps 2 and 3. Furthermorc, in ONE-STEP- 
~ ROUTE when pj(zi., 11) = 2, we routc to the ( 2 j  + 1)th neigh- 
bor of U .  This algorithm is denoted by D. In this way, 
Algorithm ,ll geiierratcs only one shortest path from one 
vertex to another. For oxamplc, the shortest paths between 
all pairs of vertices in C&n generated by Algorithm I1 are 
givcn as foIlows: 

(00, i o ) ,  (00, io ,  U),  { o o , n i j ,  
( O l , U ~ ~ } ,  {[U, 11, LO), { O l ,  11), 
(10,00), {l.O, 00,01), ( IO,  ll}, 
(1.1, I O ) ,  pi, n i , o o ) ,  {IL oij. 

Using this algorithm, we obtain cn(c) for each edge e in CQz 
and CQ,, as illushated in Figs. 3a and 3b. 
Lcinma 3. c ~ j ( e )  = 2k-1 + 2fiir fin!/ dim-1 edge i n  CQk. 
Proof. Let c 1 ( 1 1 , ~ )  = ( I I ~ .  1 . . 2 1 1 2 1 u ?  Vk-L . ' .  U I U O )  be any 

dim-1 edge in CQ,. Obviously, p - y ( u )  - p k .  .2(v) and 
,1111tg = 'UIVO. We assume without loss of generality that 
l h l  = 0. Lct :c = L C ~ .  ,1:ck..;7 . . xo and ?/ = yh-lyk-2 . 

+ j/lyo 
be any two vertices such that c: is incident on F',~(x,g), 
whcrePn(z,y)canbewtittenas ( x = ~ ' , ~ ~ ~ , , . . ! : ~ ~ ~ ~ ~ / ) .  

Obviously, we h a w  either [ ~ L , , u ]  t P i r ( a , y )  o r  

[U, U] E P , I ( X ,  7,). 

In order to calculatc c#(e), we need to identify all 
possible (2, $!)-pairs that routc Lhrougli e. 

We first considcr '1111 = 0. That is, nlull = 00 and 
'U1710 = 10. First, assume that [ U ,  E Pl j (x ,  ?I) .  It foilows 
from Step 3 of Algorithm II that the change of the xcrnth 
double bit is first executed, i.e., z = P" = 11. When : j lyn is 
either 00 or 01, it  follows from Algorithm U that x1 # U .  

Thus, 

~{(x: I [U,.] E r B ( N , U ) ,  ulun = act, Illllo = 00 or o i } ~  = (1. 

Whcn yl?jt~ = 10, [L v]  E I'D(%, y) always holds. Thus, 

~{(X,Y]) I [U,.] E P,~(X,~)), I P ~ U ~ ~  = o n ,  ?lk!kl =  io}^ = 2k-2. 

When ~ 1 3 1  = 11, it follows from Algorithm 14 that y is 

exactly the vertex U - 1  U - 2  - - ~211 .  Therefore, there are 

Z h p 2  + 1 (2 ,  ?/)-pairs routing through !U, 7 3 .  

Next, considcr [v, ?L] E Pn(z, y). Similarly, we first 
change the Uth double bit and thus, I =-: = 'U. When 

= IO or 11., it follows from Algorithm I( that 2' 

cannot be ? L  lhus, 

I{(z,?~) I [ I I , U ]  E Pn(~,y), v1uo = 10, ~ 1 ~ 0  = 10 UT 1 I ) I  = (1. 

When j j1y[) = (10, Pn(z, y) always routes through [I), PA]. 

TllUS, 

I{(X,?I) I [V , IL]  E P ~ ( x , I / ) ,  u ~ ? : ~ ~  -- i n ,  ~ J ~ : J ~  .- on)l = 2k-2. 

When = 01, it follows from Algorithm I3 that g is 

exactly thc vcrtcx 'ub-1vi-.2 f v201. Therefore, there arc 

2k-2 + L (x, y)-pairs routing through [U, 4. From the 

above discussion, C,](.) = 2'-2 -1.1 + 2k-2 -1 .  1 = 2k- .1  + 2 .  
11. 

Again, wc have either [U, v] E T'D(z, U) or [U, U]  E PJI(X)  y). 

First, assume that [U) .U] E Pn(x, 11) .  Suppose 'TI = d. I t  
follows that 51x0 = 11, Q Z ~  = ~ 1 ~ 0 ,  and equivalently 
zls:n vl'q), which  c o n t r a d i c t s  [u;u] E P n ( ~ ) y ) .  
Thercforc, we have U = xD = I. When j/lpo = 01, [11,21] E 

.P,j(z, ~ j )  implics that p(pk-Z(u) ,  pk..z(y)) is odd. When 
y1y0 = 11, [ z L , ~ ]  E P,~(x,?i) implies that ~(f~-a(1~),zib.-2(?/)) 
is even. Therefore, 

Next, we consider = 1, i.e., U ~ U O  = 01 and v1T>n 

<1.-p 

(a1 

Fig. 3. Edge congestion of Gy& and CQ,,. 

a 
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y = pk- t Ilk-2 ' ?IlW 

be any two vcrticcs such that e is incident on Pn(z,y), 
where Pn(x,y) = ( x  = xo! d, . . . , dFt 

Assume that [U,, 711 E Pg(q y). It follows from Step 3 of 
Algorithm B that there are two typcs of (zc,y)-pairs 
routing through [U, V I .  The shortest path of the first type 
of (qy)-pairs is first to change the zeroth double bit, 
whilr! the second type is first to change some tth double 
bit, 1 5 t 5 LV.1, and then the zeroth double bit. In other 
words, we have [U, U ]  = [xo, x'] in the former and [ U ,  U] = 

(2, $7 in the latter. 
Consider that [U, w] = [z", 2'1, i.e., 5' = 71. and d = 'U. If 

~ / 1 ~ ~ [ ~  = 7 ~ 1 i i n  or ?LIUO, x1 cannot be v, given routing under 
Algorithm l3, sincc = 0. When ~ 1 ~ 0  = U ~ U O  = U L ~ . ,  it 
follows that [U,  TJI E PB(x, U) iff p ( p ~ - ~ ( ~ i ) , p , ~ - ~ ( ~ / ) )  is even. 
When ?/lylrl = fllrb, it therefore follows that [U,  U] E P(x,  ? I )  

iff p(pe-a(u) ,pc-2(y))  is odd. Thus, 

I)}, 

I{(x ,Y)  I [Zt,U] E pi{(E,p) atld ,T = ? L } I  = 2'-". 

Next, consider that [U, U] -I [x1,x2]. Clearly, x E N(u)  

and x is not the 0-neighbor of U.  When 5 i s  thc 1-neighbor 

of ti ,  i t  follows from Algorithm B that 1, is the vertex v. 

Now let z be the l-neighbor of U with I > 1. It follows that 

pII-l-~Ix) = p n - / - l ( i i j ,  ( E Z ~ + I ~ ~ ~ ~ , U Z ~ + I W ~ )  E R f o r  a l l  
0 5 j < @, and xi = i i t  for 1 even and zp-1 = ii1u-1 

for 1 odd. It follows from Algorithm B that po(x,p) = I 

and po(v, U) = 0, i.e., ul?iiZ0"~';"'ylyfi. Furthermore, using 

Remark 2, if p j ( ~  v) = 1 and 1 5 j < I;], it follows that 
d.-p, 

223+1223 # ?/23+1?12j and 

by Algorithm B. For p j ( 5 ,  y) = 0 and 1 5 j < Lij, we have 

s2j+lszj - Therefore, given g~ ,171k-2 I ' M + I ,  

there arc 2141-' choices of y satisfying [a, v] E Pn(n:, 71). 

Note that in ONE-STEP--ROUTE when jij(71,, ? I )  = 2, wr! 

routc to the [ Z j  + 1)th neighbor of 7 ~ .  When I is even, it 

implies pp,(x,y) = 1. It follows that when 1 is oven, we 

have 

1l.-p 

Therefore, for even IC, we have 

1L$1 k-3 

= 1 + c(2"-i-2 + zi-1) = 1 + 21 = 2'*-2 
i=l i-0 

Similarly, for odd k, we have 

i - I  
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Let (U, u j  bc a dim-l edge in CQ, whcre 1 2 2. Given an 
edge (21, U) c E(CQk), let 

x ( 7 L , ? I )  = { ( X , v )  1 If,,??] E P,qn($,?/) or [b' .7~1 E pfi(Z,?/)). 

We can partition each set x[urv] into differcnt equivalence 
classes. It is obvious that cach equivalence class contains at 
most 16 cloments since :ci,xb,?/1,?/0 t {fl,1}. However, in 
the following lemma we show that each equivalence class 
contains exaclly four elements. 
Lemma 5. Let (?),,w) be n diw-d ,  d 2 2, e&C of CQk. Each 

eqzrivnlerrce clnss in x [ ~ h ,  v] cnntairis exncHy foiir clemcnts. 

We leave the proof of Lemma 5 to Appendix B. 

Then, 
Lemma 6. Let c be an edge of dirrrerzsion d in CQ,, for n 2 2. 

271-I + 2" if d is odd, 

if d is cven. { 2?& 
.n(.) = 

Proof. The proof is by induction on n. The theorcm is true 
for n = 2,3, as illusbated in Fig. 3. Supposu that this 
theorem holds for CQ,L-l. It follows from Lcmmas 3 and4 
that thc statement is also true for d = 0, l .  Let e = (u.v) 
be a dim-d, d 2 2, edge in CQJl where ' I t  2 2. Obviously, 
(pp,-2(?~) ,pTL-2(u))  is a11 edge of dimension (d - 2) in 
CQrc-2. By induction, 

Siiicc &{x, y) = pl j (p tL-2(x) ,  pTL-&/j), it foIlows from 
Lemma 5 that we have 

U 
I 

Hcnce, the lemma follows. 

Lemma 6 immediately yields the following corollary. 
I '  

Corollary 2. c(L'Q,,j 5 2". 

We use a similar pron'f technique of finding U(&) to find 
w(CQn), which is stated in the following theorem. 
Theorem 5. w(CQ,,) = 2'-'. 

Proof. Note that CQ,, is constriictcd from two identical 
(n  - 1)-dimensional crossed cubes GQ:-, and CQ:,. 
which are coniiected by dz.m-(?a - 1) edges of CQ,,. Sincc 
thesc dim-(n- 1) edges form a pcrfcct matching and 
removal of these edges disconnects CWll, it follows that 
w(CQ,,) 5 2 ' I - l .  

Wc define an embedding of a dirccted complete graph 
of 2" vertices, denoted by IC, into CQTl where each edge 
from 7~ to I I  in K is embcddcd by P&L, 9 1 )  in CQ,,. 

Suppose w(CQ,) = 71; < Y - ~ .  It follows that CC),, can 
be partitioned into two subgraphs of equal size by 
removing a cut of iii edges. This cut of Cy,, also induces il 

bisection of IC. Since each edge of CQ,, is  containcd in at 
most 2" shortest paths following fimn Lemma 6, i t  
follows that w (  K )  5 702" < 22"-1, which is contradictory 

We will use the following lemma (originally stated in [4]) 
to find a lower bound for c(G). 
Lemma 7. Le! G be an n-vertex graph such thd the removnl of a 

cut of k edges partitions G into two, not necessarily crmnccted, 
subgrnphs off werticus mid 'ri - t vertices, rcspectivt'ly. Then, 

to the known fact that w ( K )  2 22t1-1. 

Mormver, this boitncl is tighf. 

In particular, we can choose a cut that bisccts L' i n  (I), 
which can bc restated as follows: 

Theorem 6. c(CQI1) = 2". 

Proof. It follows from (2)  and Theorem 5 that c(CQ,,) 2 2". 
011 khc other hand, Corollary 2 states c(CQ,J 5 2". Thus 
the theorem follows. 0 

Since our proposed shortcst routing Algorithm r! 
achieves c(CQT,), Algorithm I1 i s  an optimal routing 
algorithm. Theorem h implies that c(CQ9,) = c (QTL) .  Further- 
more, since hypcrcuibes have an optimal routing algorithim 
which generates uniform congestion of all cdgcs, Theorem h 
implies that each cdge of crossed cubes has sinaller 
congestion than 01' cqual congestion to that of hypercubes. 

6 EMBEDD~NG OF CYCLES 

A cyclc is often used as a connectinn structure for local 
area networks, and can also be used as a cnntrol/data 
flow structure for distributed computation in arbitrary 
networks. In this section, we prescnt cmbcdding of cyclcs 
into CQ,I that our cmbedding of cycles is diffcrcnt from 
thc clnc proposed in [9]. A cycle of length k is denoted by 
Ck. Let 1 1 ,  I I  be binary strings of length R - 2 satisfying 
(U, T I )  E E(G6),,-2). 111 order to construct large cycles in C&, 
wc define two types of pviirrilive paths from ?LOO or ril0 to uIKi 
as follows: 

Type 1: Four primitive pnths from U 0 0  to WOO givcn by 

I '! l  = (uOO, uO1.,lr1.1,2!01,2:(1[1), 
= (lLoo, lL1n, uio,  voi , m), 

~y, = (uno,lhio,uii,~Loi , ? ~ i . ~ . , ? ~ o i , ~ ; ~ ~ ~ ) ~ ~  

P ~ , , ~  = ( ~ ~ 0 0 ,  UUI , .~ i i ,  m, ,uio, u i i  , AI , COO),  

as shown in Fig. 4a; 

Type 2: Four primitive paths from id0 to ~ 0 0  givcn by 

8 2 . 1  = ( r h 1 ~ , 1 L 1 1 , Z L O l , U O O , 2 ~ 0 l ~ ) ,  
r ~ ~ , ~  = (u1.0, ~ ~ ~ O , ? ~ ~ ~ ~ ? ~ ( I ~ , ~ ~ ~ O O ,  

P2.4 = { 21 10) V10,1!11,?~01, ?I 1 1,210 1 , ?LOO, VOO) : 

l ' y , ~  { ? t 1 f l , 1 ! l l , V o l . , ~ l  I . , U 0 1 ,  7d)0,?1()0}! 



74 

P1,l 

q 2  

'1,3 

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. i I ,  NO, I ,  JANUARY moa 

Fig. 4. Primitive paths of (a) type 1 and (b) type 2. 

AS shown in Fig. 4b. Hac11 + 3 for 
i == 1,Z. 

Theorem 7. CQ.,L is f l  pancyclic network for n 2 2, i.e., CQ?* 
contains Ci f iw dl 4 5 1 5 2" us strbgmpks. 

Proof. The theorem can be easily proven for n -- 2 , 3  by 
using type-1 primitive paths. For ' I I  = 4, since Ci& is a 
subgraph of CQ4, it. suffices tri construct cycles G'! for 
9 5 1 5 16 as follo~vs: 

has the length of 

g ~(1)01)[),0111)1,1~1111: ooio,ai io ,  1110, 1111, 0101 , 

c , ~  =(uuoo,uuoi,uoii, 0010, o m ,  iiio,iiii, 1101, 

4 1  =(0000! 0001: 001.1,0010,011~,07 11,0101,1111, 

c12 =(oooo, oooi., 001 I . , O O I O , O I I O ,  1110, i.iii,nioi, 

cln -(nooo, nooi, noli, o m ,  o l i o ,  o i i i , o i o i ,  0100, 

c14 ={ooori, [1001,0o~i, noin, oi in ,  0111, mi, n m ,  

Clj ={OOOO, 0001,0011,0010, u110,0111,11101,11100, 

GlG =(0000,0001,0011,0010,011.0,01I1, OIOI. ,  0100, 

0100,0000), 

l i on ,  moo, oooo), 

1101, ll00,Olon,orroo), 

aiii,i101,iioo,oi,oo:0000j, 

11 00, r, .I, 1000,0000}, 

1100, PI,?, 1000,0000), 

1100, Pl,J, 1000,0000), 

IlOU, 9 . 4 ,  i u u o ,  rlooo). 

We next prow the thctircm for 'I) ,  2 5 by induction. 
Since C&l is a subgraph of CQ,,, i t  suffices to construct 
cycles of length 2"-' + I. 5 I 5 2". Let s be an arbitrary 
integer satisfying 2"-' -1.  1 5 s 5 P2. By thc indiiction 
hypothesis, there is n cycle Cs in CQ.,,-a given by 

c, = { ? 2 , . . ~ , 2 1 ? , ? 1 ? } .  

ci = (Z1'0O,U'O1! U~ll ,U'10,~~~10,rr" l l ,u2o1. ,u"o,  

When Y is even, construct Ci based on C,5 as hillows: 

1 L 3 ~ o o , 7 i 3 ~ i ,  1?i~,2?1n,21'1io, . .  . ,ua-2no,u*--Loo, 
P', U"K1, U'OO),  

where P' is a type-1 priinitivc path from ?r."-'OO to u6n0. It 
follows that i = 4 ( ~  - 2) + 11''I + I and to be precise, 
i = 4.5 - 3,4s -~ 2,4s - i ,  4s. 

When s is odd, we use Cs to construct qj similar to Ci 
as follows: 

cj = (?C100,11'0 1 ,111 11 , 2 1 1  10, ?L* 1 0 , 2  11,2r201,?? 00, us00, 
v~fli,?LS11,1~:'in!. . . ~u"-~io,~~1"-~in,~-)" , .u"oo,u 'uo) ,  

where T"' is il type-2 primitive path from 71"-'1(1 to ~ ' 0 0 .  
It follows that j can be 4s - 3,4s - 2,4s - I ,  4s. There- 
fore, we have obtained cycles C! such that 

q27t-3 + 1 )  - 3 5 I 5 4(2'c-", 

i.e., 2"-' + 1 5 Is 2". Hence, the theorem folloiws. 0 
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Bnsed on the above proof idea, we can easily construct a 
cyclc of arbitrary length. We here illustrate an example of 
construcling Cl9 in CQ5. First, we fitid a cycle of length 
pi 5 in CQ!, which is given by 

4 = (ooo,ool,Ol I ,  101,1.00,000). 

Since ,q is odd and 1.9 = 4s - I, we can use Cl., and a Pl,;( 
from 101 10 to 10000 to construct a C,, as follows: 

clg = ((moo: onooi, o o o i i , o o o ~ o , o o i . i o ~ o o i i i ~  ooioi, 
onloo, m o o ,  oi io i ,o i i i i ,  uiiio, i o i i o ,  1.01 11 , 
I. 0001 , io01 I , i o  1 n I, i n  1 no, 100(30, ooono). 

Embedding cycles prcseiitcd in 191 c m  cnnstruct one 
hype c i f  cycles for an arbitrary length, while ours can 
construct various typcs of cycles since we can start with 
any vertex and maka modification of type-I and type-2 
primitive paths to construct cyclcs. For example, to 
construct C;9 in CQa, we define a different cyclc of 
lcngth 5, which is given as follows: 

c; 7; { O l l , O l O ,  000,1.00,1.01,0I.1.}, 

Wc can use C;) and n path ;P from 10011 to 1lllOl of lcngth 
six to ccnistruct Ci, as follows: 

c;!) = (01111, 01110, 011(10, 01101, 01011~ n io io ,  oinoo, 
010o1,0001 I ,  O O O I . ~ ,  ooooo, aoooi, i o o i i ,  10~101, 
10000, 1.00-tu, 1.0110, loloo,l.ol.ol,oI.111). 

3 CONCLUDING REMARKS 
Though topological properties of crossed cubes have been 
sludied in ttw litwature, we introduce a new mcaswc in 
this paper called pair related distance. Using this measure, 
wc can easily find the shortest distance between any pair of 
vertices. Rtrthcrmorc, wc u w  this memiire to give a 
shortest path routing algorithm in O(n) time rather than 
O(n') timc in comparison with previous work. In lhis 
paper, we also dofine a ~ I P W  performancc measure called 
edge congestion. Given the shortcst path routing algorithm 
presented in this p a p ,  wc sliow that lhi. cdgc congestion 
of crossed cubes is 2'L, cqual tu that of hypercubes. nisection 
width of crosscd cubes is 2''-'. Wc also prove that the wide 
diameter and the fault diamcter [if  crtlsscd cubcs are 
approxi mrltely half of those of hypercubes. Furtlicriiwre, 
crossed cubes arc shown to be pancyclic networks with 
more types of cycles c~nistructcd. 

APPENDIX A 

Proof of Lemma 3. We prove this lumina by  induction on 71,. 

Ohviously, the lemma is true for n = 2. Assume that such 
disjoint paths cxist f o r  any two distinct vertices i n  C'QI 
for I < n and n S. Lct U = ~ ~ , - ~ ? i , , - ~  . ' .  I L , I ~ ~ ,  and I I  = 

v?l-l tirl 2 . . vivu bc two vcrticcs in CQ,,. 

WC! first consider ' I L  odd and distinguish the following 
cases. 

Case 1.1. dcQ: , (p: j (u) ,p3(u) )  5 1 01' 7Lx-I = l!T4..l. 

It follows that . IL,V belong to a subgraph GI whiclz is 
isomorphic to Cd),,- 1 .  By the induction hypcithcsis, thcro 
arc TI - 1 disjoint paths I'I , 1'2,  4 . . , P,-, jniiiiiig I!. tr, II such 
that lP;l 5 r;] + .I for all i 5 P L  - 1 and lPl I 5 [;I, Thcrc! 
exist two binary strings X I  = 2:; . , X ~ ~ . . ~ X : , . . ~  and y' = 

1. Y~&-,?/;;. .*?/it 3 such that 

I I 
2 .  
3 .  
4. 
5 .  

( p a ( i s ) ,  x') c S(CQ:I) a n d  ( p g ( u ) ,  yL) E E(CC>s), 
:d # p3(11), !/I + P3(?G), 

:q'+] + 7 ~ 1 ,  yTt. . ,  f ?),,-I i f  U,;. 1 = ut,..', 
& + iin-,?, y:l~ 4. ?).,,-:I if  ilctz,,(m(u),~~g(,u)) 5 1, 
;c' = y1 if p 3 ( u )  = p { ( ? J ) ,  

Pig. 5a illustrates an example of choice for X I  and y l ,  
'Those figures in Fig. 5 illustrate a n  example of choice of 
spcciFicd vertices whose positions arc  not uniquc. 

Lct 16' arid ti' be neighbors of 71, and v, given by . I / . I  

. /" (7 t ;p3(? t ) ,x ' ) .  and d = j ( u ; p : ( ( v ) :  y'), where in particular 
tal = :E' and V I  = g1 for 11 :: :1. Furthermore, U '  and V I  ate 
chosen from 4 = CC),, . . GI, which i s  also isomorphic to 
CQ,,- I .  Let S1 be R shortest path in G.2 joining I I I  and .7r1 

and satisfying IS1 1 5 r i l  I Construct. I{, as 

1 

pn { ' U , 7 L 1 , , ~ ] ~ 7 ? , ? J ) ,  

whiclz is disjoint from PI,  9, . . . , /;2. Thus, 

PI,Ph.. .  ,Pu 
satisfy Uonditiicms 1, 2, and 3. 

Case 1.2, ~ ~ ~ ~ ~ 1 ( 1 7 3 ( u ) , ? ~ 3 ( . ~ ) )  2 and 7/,)!-1 # 
Since p r a - 2 ( 7 k )  and pl,..a(v) arc Lwr, different vcrticcs in 

C(;llr-~, by the induction hypothusis there a re  n - 2 

disjoint paths P; ,  Pi, . - ,qt. '3 joining . ~ [ Z L )  and ~),,.-2(ti) 

We use these n - 2 paths to construct 1'; as follows: 
such that II':l 5 [$I - I, lc!I 5 + 1 for all i 5 7). - 2. 

p; L p ,  . . . ,:{lw:l = 4. (3) 

Note that all of P,i are disjoint paths in CQ,, and that 
:: te'l foi: all 1 5 i 5 11 - 2. Furthwmoi<c, sincc 

A I  at4 = P , L - - 2 ( 4  

it  fol1ows that '1ui and U ai'e in a subgraph isomorphic to 
CQ. Hnwcver, [': are not necessarily (.it, u)-pths. 

for 2 5 i 5 
n - 2 in order t o  obtain '11. - 3 (U, U)-paths Pi. If uii = 77, 

wc simply let fl  = Pf. Now considcr w r f  # W. Let zi bc the 
immediate predecessor of w;, and let 4 be thr!. im- 
media tc pdcccssor of  zi on Pa*. I ,et 'U' be a neighbor of 'U 

in C&(p,+2(zi)) ,  and Ict 111' be a ireighbor of 'U' in 

are adjacent subgraphs, 

Wc mnkc tlw fnllnrving modification of 

CQ,,(Pra-2(4.)). Since GQ2,t(p,,-2(%)) and CW'L(Pt1~ a ( i s ) )  

CWtk (7)7?-.2 ( ~ i  J P,L ~2 (tug ) ) L'Qrl (JjTi-!i ( x i )  , ~ 7 t - y  (71)) 

is isomorphic to CQn. If PI' is also a neighbor of xi (as 
illustrated in Fig. 5b), wc ctnistruct 
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Fig. 5. Illustration in Appendix A for examples of dative positions of some specific vertices in C&+,. 

pi = (r; - { X i , I l l i } )  U { Z i , W ' $ V } ,  

where lfil = 1P;I + 1. Othcrwise, U'' is also a neighbor nf 

4 (as illustrated in Fig. 5c) and we construct 

9 = (17 - ( Z ' , , Z i , W i ) )  U {&U"U' ,V) ,  

where = 1P;I + 1. 
We then use P; to construct three (u,u)-paths 

PL, P,, as follows. For i = O? 1 ,  let U! be the neighbor 
of U that differs from T L  at the ith bit. Let Sli-l = P(u';  q), 

S,& = P(?P; Pi)< 

IsTb-11 = ISnI = IPJ. 

P,,-2(zul) = P n - z ( w - l )  = P1t-2(%). 

u+-l = t ( d ;  S,,+,), and wp, = t(d'; S7J Notc that 

Furthermore, w1 # wlL..l # U),, and 

Therefore, all of wl,wn-h, and w,, are in ii subgraph 

isomorphic to CQ2. Let z,, be the immediate predecessor 

of w, on S,. 



CHANG ET AL.: EDGE CONGESTION AND TOPOLOGICAL PROPERTIES OF CROSSED CUBES 77 

r:, = { ? I , ,  .IL[j. is,,, w,, , v', v) 
whew lel[ :. l,SfLl + 3. The other cases of relative posi- 
tions of I U ~ , W ~ ~ .  . I ,  .wTh, and P) can be similarly treated. 

Now we have constructed n (U, v)-pths satisfying 
Condilinns 1, 2, and 3. To prove disjointness of these 
palhs, let TC bc any internal vertex of with 2 5 i 5 TI - 2 
and le[ ?I bc any intcmal vertex of Pi, Pn..l and I<,. 
Clearly, 

p w z ( : c )  # ?1,,-2(?/). 

Morcovcr, any internal vertex of PL, l:L-L and e, differs 
from onch otlicr at the last two bits. Thus, wc have 
constructed ri disjoint paths PI, P2, . . . , P, which satisfy 
Conditions 1, 2, and 3. 

Ncxt, consider YL is even. We distinguish thc following 
cases. 

Case 2.1.  ti)) 5 1. 

Thc proof is similar to that of Case I .I. 

(p?(u),  pz(u))  = 2. Case 2.2. 

Let /: bc defiiicd as in Caw 1.2, and let P: be defined 
a s  in (3) for 'I 5 1: 5 n - 2.  The first n - d (U,  .v)-paths are 
constructed by Pf for all 3 5 i 5 11 - 2 as in Case 1.2, 
which satisfy Conditions 1, 2, and 3. 

In h e  following discussion, we use 1'; aiid I?; to 
construct [he remaining four ( . ,  v)-paths Pi, 1'2, Pn-l, I:&. 
Let iii bc defined as in C a w  1.2. If 1P;l $.Jl(C.1Q,a.-2)  - 1,  
then PL ~ ~ P,<, and PJ arc constructed in the same way 
as in Case 1.2. Now, consider IF'Il = D(CQ1, 2 ) .  It follows 
from Ctmditiriii 3 khat IP;I = IP;l = D(CQ,-.,). We define 

wll = t (d ' ;STt) .  Note that ~ S f A - ~ ~  = lS,,l = IPTl = IRJ. We 
note that 7/11 and z1r.r arc in CQ?. Finthermore, .P,* and Pi 
star1 from [hc sainc vcrtex and lP;l = l.Gl, It folloiz~s that 
.w1 = w-2. Mnrenvcr, w,,+1 + 'UI, and 

S7[-1 = P(.ir'; Pi), hSTt = P(qio; Pi), w , ~ .  . I  = ~ ( T A ' ;  &..I) atid 

prr-a(l l l l )  = Psa-2(W2) = pn 2 ( w , L  .'I) = f / p 1 - - 2 ( 2 1 1 1 1 ) .  

ThcreFnrc, all o f  ail, w ~ ,  wlr-l, and w.,~ are in a subgraph 
isomorphic to CQ,. Let q bc the immediate predecessor 
o f  714 and 4 be the immediate predecessor of 2% on Pa for 
1: = l., 2. Let zJ be the immcdinkc prcdecessor of wj and 4 
bc thc immcdiatu pcddcccsuor of zj on S; for j = 1). ~ I., n. 
Let d and 2 be neighbors oE 11 in C~~ . , l (p l t -~ (~ ,L) )  and 
CQ,, (pjl. ~ ( q ) ) ,  respectively. 

Suppose that a l l  nf w l ,  w2, w ~ , - ~ ,  and w , ~  ai'e distinct 
from 'ii, say, ( U ! ,  U) = ~ c Q , ~ ( w )  ? I )  7: do(),, (w,~..~,  v) = 1 
and 

r?, = (U, Pi ,  wp, ? I ) ,  

(w,~, w) = 2. Wc construct Pyt-l as in (4) and 

whcrc IP,l = I.P;l + 1 .  Since C ~ , ~ ( ~ , ~ - ~ ( Z , ~ ) , ~ , ~ - ~ ( ~ ~ ~ ) )  is 
isomorphic to C$,, using 1.11~ same arguments as 
in Case 1.2, we construct i:, a s  given by (5). Sincc 
CQyl (p l , -2(z1) )  and CQ,h(7~,1 . 2 ( ~ ) )  are adjacent sub- 
graphs, CQ.,r(p,a-2 (zj ) ,pia & l ) )  i s  isomorphic to C&. 
If 2 is alsn a neighbor o f  z1 (as shown in Fig. 6a), 
we construct 

r, = (.P; - {Z,!Iq}) U ( z l ; d > . / J ) ;  

where 141 = lP;l + 1. Othcrwiso, therc exists a common 
iieighbor of 2, and 2, denoted by z", in CQ.,r(pvl-2 (4 )) (as 
shown in Fig. 6b) and WO construct 

4 ==(P;-.(dl,.zl,.7/1,)) U (Z; ,Y, i ,? l ) ,  

where IPll = IP;l + 1. 
Ncxt, supposc somc of  7111 ~ ~ 2 ,  TU,- 1 ,  ? ~ i ~ ~  are cxactly v, 

say, w1 = 1112 = IJ, &Q,' ( 7 1 4 - ~ ,  U) -- 1, and d c ~ ~ , ( t ~ + ~ ,  U) = 2 .  
We simply Ict Pl --Pi and construct P,c-l and c,, 
as above. In particular, we have d = 27 on P,L. Sincc 
CQl,(p,L-~ ( ~ 2 ) )  is isoniorphic to CQzr there exists a ncigh- 
bor WJ' of 71 in CC&(llp1--2(u1~)) satisfying ,w' + TU, 1. Since 

isomorphic to CQal there exists a neighbor tu'' of U!' in 
C C ~ ~ A ( p , A - ~ ( z ~ ) )  with w'' f: # z , ~  and rl corninon neigh- 
bor w"' uf ?U'' and 4 in CQ7Jp,i-2(4)) with WJ'' + <, (as ill- 
ustrated in Fig. 64.  We construct 

CGZlr(~ra-2 ( 3 2 )  , P ~ ~ - : ! ( W ) )  and CQ,$ b7,-d4), P ~ , - ~ Q ) )  are 

PA = (R; - (.;:.a,W2 = v)) U ( ~ ~ ~ . I ~ " ' , . I ~ " , W ' , ~ } ,  

where = 1P;I + 2 .  The other cases of relative posi- 
tions of w1, U I ~ ,  w,,-l, TII.,~, atid v can bc similarly treated. 

( 7 ~ ,  ??)-paths satisfying 
Conditions 1, 2, and 3. [.et x be any internal verkx of 
P; with 3 5 i 5 n - 2 and y be any internal vertex of 
PI ,  R2, Pr,-l, and CL. Clearly, p.,-2(3:) f. ~ ) , ~ - ~ ( y ) .  More- 
over, any internal vertex of PI differs from thoscl of Ch-l 
at the last two bits and differs from those of P J ,  P,, at  the 
first ri - 2 bits. Similarly, any internal vertex of differs 
from those of P,, at the last two bits. T~LIS ,  E',, Pz, 4 - ,  /{& 
are disjoint paths and satisfy Conditions 1, 2, and 3. 

111 

Thus, we have obtained 

Thus, the proof is complckd. 

and 

F,&, j / )  = (pk-z(:.) 7 20, 2:. . . , P t  : p-2(y)  y e} .  
We can assume without loss of generality that P,j(x: y) is 

the shortest among all o f  Pn(x', g'), whcrc cadi (:G'! j / )  is 

in the same equivalence class with ( x ,  ? I ) ,  i.e., (x' ,  g') E 

x [ n ,  ?I]  and (x, y) G ( X I *  g'). 11 follows that po(n: ,  11) = 0, 

since nthcrwisc wc can obtain another pair of verticcs in 
this equivalence class having sliortcr path. Since ( U ,  27)  is 

in P ,~(z ,y)  and i s  also a dim-d, d 2 2, cdgc of CQk, it 
follows that 

( p ~ - ~ ( 1 L ) , p f i - * ( . u ) )  [5",:i.'"] 
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Fig. 6. Illustration in Appendix A for examples of relative positions of Same specific verfices in CQjh 
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is obtained by traversing fiom x to x1 and then changing 

the zeroth dnublc bit of 2 : ' .  Therefwc, Pn(qy ' )  will not 

route through [U,  111, i.c., (LE! yJ) $ ~ ( I A ,  v] for all ?/ + y. 

Siiicc pn(r',u) = I and p o ( i i , d )  = 1 for LI:I + 2 and 
?/ + U, it fdlows that PB(z', g') will not route tlirough 
vertex 'II and thereforc, ( d ,  g') ~ ( u ,  v) for all 2' + :L' and 
?/ # y. Hence, the equivalcncr! class in ~ [ u ,  I!] containing 
( x ,  ?I) has exactly four clcincnts (%':c~:cn, ?I), where 
q , IL'O = 0 , l .  

We note that (qyj-paits discussed in Case 'I arc 
different from those in Case 2 siiice & ( : E ,  g) in Case 1 is 
not qual  to ~ ~ , ( z , g )  in Casc 2. Therefore, these two cases 
define diffcrciit equivalence classcs, Wr! can show, using 
similar arguments, that x(u, v) containing (x, y) with 
(p-s(u),pk-s(uj) = [2A,?'-k1] for .i 2 O defincs different 
equivalence classes frum others. Thus, each equivalence 
class in ~ ( u ,  U )  contains cxactly four elements, and the 

I 

lemma is proven. 11 
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