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Edge Congestion and Topological
Properties of Crossed Cubes

Chien-Ping Chang, Ting-Yi Sung, Member, IEEE, and Lih-Hsing Hsu

Abstract—An u-dimensional crossed cube, €'}, is a variation of hypercubes. In this paper, we give a new shortest path roufing
algorithm based on a new distance measure defined hserein. In comparison with Efe’s algorithm, which generates one shortest path in
©{n?) time, cur algorithm can generate more shortest paths in O(z) time. Based on a given shortest path routing algorithm, we
cansider a new performance measure of interconnaction networks called edge congestion. Using our shortest path routing algorithm
and assuming that message exchange batween all pairs of vertices is equally probable, we show that the edge congestion of crossed
cubes is the same as that of hypercubes. Using ths result of edge congestion, we can show that the bisection width of crossed cubes is
2v'1 We also prove that wide diameter and fault diamater ars [4] - 2. Furthermore, we study embadding of cyeles in cross cubes and
construct more types than previous work of cycles of length at least four,

Index Terms—Crossed cubes, hypsrcubes, shortest path routing, wide diameter, fault diameter, edge congestion, bisection width,

smbedding.

1 INTRODUCTION

NRTWORK topology is a crucial factor for intexconnection
networks since it determines the performance of a
network. Many interconnection network topologies have
been proposed in the literature for connecting hundreds or
thousands of processing elements. Network topology is
always represented by a graph in which vertices represent
processors and edges represent links between processors.
Among these topologies, the binary n-cube (abbreviated as
hypercube), denoted by ¢}, is one of the popular topol-
ogics, However, a hypercube does not make the best use of
its hardware, since it is possible to fashion networks with
lower diameters than that of §,,. One such topology is the
crossed cube, which was first proposed by Efe [1]. An
n-dimensional crossed cube, denoted by O}, is derived
from ¢}, by changing the connection of some hypercube
links. It has a diameter of %], an improvement of
approximately a factor of 2, in a trade-off of reducing high
degree of symmetry in Q. '

Though embedding and some topological properties of
crossed cubes have been studied in the litevatare [1), [2], [3],
[6], [7], 9], we study some different topological properties
and provide different schemes from previous work. To be
specific, we consider a new performance measure called
edge congestion. In addition, we consider the following
performance measures of crossed cubes: shortest path
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routing complexity, diameter, wide diameter, fault dia-
meter, bisection width, and embedding of cycles.

Efe presented a shortest path routing algorithm of
crossed cubes in [1], which generated one shortest path
for any pair of vertices in O(n?) time. In this paper, we
define a new distance measure which enables us to find
mare shortest paths for any pair of vertices in O(n) time,

When fransmitting or broadcasting messages, heavily
congested edges will delay communication time. A network
having a relatively balanced communication load of edges
under the specified routing algorithm is preferred. Moti-
vated by this observalion, we intraeduce the notion of edge
congestion, independent of Fiduccia and Hedrick’s work [4].
Assuming that message exchange between all pairs of
vertices is equally probable, we thus consider all-pair
shortest path routing for caleulating edge congestion. For
each edge, we measure the number of pairs of vertices that
will route through this edge given a specific routing
algorithm,. Edge congestion of a network under a specified
routing algorithm is the maxirm of the congestion of all
edges. We define edge congestion of a netwark by taking
the minimum over all routing algorithms. Smalier edge
congestion is preferred. In this paper, we first specify our
routing strategy based on our shortest path routing
algorithm and show that the edge congestion of the crossed
cuba 7, is equal to that of the hypercube @, Using the
result of edge congestion, we can calculate the bisection
width of crossed cubes.

Disjoint paths between a pair of vertices contribute to
multipath communication between these two vertices and
provide alternative routes in the case of vertex or link
failures. The notion of connectivity, wide diameter, and
fault diameter is defined based on multiple disjoint paths.
In [6], the author showed the existence of n disjoint paths
for any pair of vertices in a crossed cube C'Q), to prove its
connectivity, without obtaining the length of these paths. In
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Fig. 1. ¢Qs and €.

other words, onc cannot get wide diameter from this
construction. Wide diameter and fault diameter of a crossed
cube O, are studied in this paper.

The problem of simulating one network by another can
be modeled as a graph embedding problem, Embeddings
of complete binary trees and cycles into crossed cubes
were presented in [3], [7], [9]. In comparison with [3], we
give a concrete construction of cycles of arbitrary length. [n
[9], the authors constructed ome type of cycles for an
arbitrary length, whereas we construct various types of
<ycles in this paper.

The rest of this paper is organized as follows: Section 2
summarizes some known results on crossed cubes and
introduces notation used in this paper. In Section 3, we
define a distance measure, Based on this measure, we give a
new shortest path routing algorithm which runs in O(n)
time, Wide diameter and fault diameter are studied in
Section 4. In Section 5, we define the notion of edge
congestion and compare edge congestion of hypercubes
and crossed cubes. In addition, we calculate bisection width
of crossed cubes. Fmbedding of cycles into crossed cubes by
constructing various types of cycles is presented in Section 6.
Finally, we make concluding remartks in Section 7.

2 PRELIMINARIES AND NOTATION

Let @ be a graph. We use V() and L{G) to denote the
vertex set and the cdge set of G, respectively. Let z and i be
two vertices. We use dp(z, y) to denote the distance between
x and g in 3. To define crossed cubes, we first introduce the
notation of “pair related.” Let

R = {(00,00), (10,10}, (01, 11), (11,01} }.

Two binary strings = @12q and y = yyy are pair related if
and only if (w,y) € A

Definition 1. An n-dimensional crossed cube ), 15 recursively
constructed as follows: CQ is a complete graph with jwo
vertices tnbeled by 0 and 1, respectively. CQ,, consists of two
identical (n— 1)-dimensional crossed cubes CQY_, and
CQL_y. The vertex w=0Ou,_y---ug € V(CQS_)) and the

—1"

¢,

vertex v = Lv,_g vy € V(CQL_) is an edge in CQ, if and
only if

[, by = g if 0 18 coen, and
2, (ugg.rlﬂgi,’l}gi_flTJgg) el forall0<i< LHT_IJ
Examples of €'Q); and €@y are illustrated in Fig. 1.
Throughout the paper, each vertex in '@, is represented
by an n-dimensional binary veclor, e.g., # = Un-1ty—9 - - Up
and v = v, ¥, -2 -+ - . For k < n, the k-prefix of u, py(n), is
defined as w,_ 1%, _3 - - - uy_p. We can thus write

u= pp(vftip £-q -+ U

Let = be an {-bit string with ! < n. We use £, (x) to denote
the subgraph of €@, induced by the set of vertices with the
prefix x. It is shown in [7] that CQ,(x) is isomorphic to
CQntal-

Leti L,. and y be two distinct &-bit strings with I < n. If
e, (x) and €, () can be joined by an edge in CQ,, then
CQu{z) and CQ,(y) are called adjacent subgraphs of CQ,,. Tt
can be easily verified that if CQu(z) and C@Q,(y) are
adjacent subgraphs of CQ.. (r,3) is an edge in Oy
However, () € B(CQ;) does not necessarily imply that
Ceh{x) and CQ.(y) are adjacent subgraphs of CQ,. Tor
example, when n =15, « =01, and y = 11 (i.e, n — 7 =3}, C1
and 11 are adjacent in Qs but G301} and C¢)5(11) are
not adjacent subgraphs of CQs. Note that if {x, 1) is an edge
in Gy and n—1{ is even, then O@Q,(x) and CQ.(y) are
adjacent subgraphs of CQ,,.

Let CQ,(x, 1) denote the subgraph of CQ, induced by
COr(z)U CQuly). Tt is proven in [1] that CQu{x,y) is
isomerphic to CQ,, 11 if CQu(e) and CQ,{y) are adjacent
subgraphs of C'¢),. In particular, let |x| = |y} = 2 and (z,¥)
be an edge in CQs. Obviously, CQqlx) and CQu(y) are
isomorphic to CQyy. 2. It follows from the above discussiom
that CQu{z) and CQu(y) are adjacent subgraphs and that
CQui(x, y) is isomorphic to C'(Jy—;. Thus, we can contract
those vertices in C'(Jy;, having the same prefix of length two
into a vertex and obtain a graph with four vertices. It is casy
to see that this four-vertex graph is isomorphic to CQs,
as shown in Fig. 2a. For any two vertices u, v in €@, with
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n even and n > 4, the following statements can be easily
observed [1]:

1. If pa(u) = pa(v), then u and v are in a subgraph
isomorphic to €0, _s.

2. If deg, (pe(u), pe(v)) = 1, then w and v are in a sub-

graph isomorphic to CQy_ ).

3. Ifdog,(pa(u), p2(v)) = 2, then a neiphbor ' of w and ¢

are in a subgraph isomorphic to C@Q,,_1.

Similarly, we can contract those vertices in C'QJuey1 with
the same prefix of length three into a vertex and obtain a
graph with cight vertices. Again, this eight-vertex graph is
isomorphic to C@s, as illustrated in Fig, 2b. We can also
obtain the following observations for any two vertices 4, vin
@, with n add and n > 3 [1}:

1. H ps{u) =ps(v), then u and v are in a subgraph
isomorphic to €0}, 3.

2. If dogdm(u),pa()) =1, then w and v are in a
subgraph isomorphic to €6, _s.

3. If dog, (ps(u), p3(v)) = 2, then a neighbor «' of 4 and » _

are in a subgraph isomorphic to CQ,,_a.

Definition 2. Lef (w,v) be an edge of CQy. When vertices v and
v have a leftmost differing bit at position d, we say that v is the
d-neighbor of « and that the edge (u,v) is an edge of
dimension d or dim{v,v) = d. We call {(u,0) a dimn-d edge.

For example, let » = 10111, The 4-, 3-, 2-, 1, and 0O-
neighbors of « are given by 01101,11101, 10001, 10101, and
10110, respectively. We use N{u) to denote the set of
neighbors of w.

Let k be a positive integer satisfying k<n—1land n - £
even. Lot = = pp{w) and y = pe(v). Assume that

(@, y) € B(CG).

It follows from the definition of C@, that {u,v) € {CQ,) if
and only if (uair1tees, Uai1tn) € R for 0 < i < 255, Since the
set 11 induces a one-to-one correspondence for all of the

2-bit strings, a vertex v satsifying (u,v) € B(C'@.) can be
unicjuely determined by (z,y) and «. We can thus denote »
by flwx,y). For example, given (x,y)=(101,111)¢
E{CQ;) and u=10111, the neighbor of v in C@s with
prefix 111 can be uniquely identified and is given by
v =11101.

Let @ = {w= 12,21, 5, = g} be a path in CQy. The
length of @ is denoted by |Q|. Two terminal vertices x and ¢
of ¢ can be denoted by ¢(x;Q)) = ¢ and #(q; Q) = z. In this
paper, paths can be considered in a directed sense, e.g., the
aforementioned path @ is directed from = to ¢. Given path
Q. # is called the fmmediate predecessor of z41. We use
P{u; Q) to denote the path in C@, induced from ¢, which is
given by Plu; Q) = (2t = wm, w1, -, wy,), where

= flun_1; 221, 2)
for all 1 < ¢ < m. The path P(t; Q) preserves the length of
Q, Le, |Plu Q)] = |Q|. For example, let
Q = {10100, 01100, 01101)
and « = 1010011, Then,
P(v;Q) = (1010011, 0110001, 0110111},

Let P = {u,u!,% -+, %™ = v} be a (u,v)-path, and let P
be a (v, w)-path. We define 1 U Fs as the concatenation of
P and P; which yields a (u, w)-path, and £, U % can also be
written as {u,u!,u?,---, 4™, Py). The path cbtained from P
by removing the subpath (uf ¥, ™) with k < m is
denoted by P — (uf, b1, o 0,

3 SHORTEST PATH ROUTING

Let » and v be two distinct vertices in €'Q),,. The 4th double hit
of vertex u is defined as a 2-bit string wuyjusm for
0<i< |3 —1, and as simply a single bit uy for i = 1z
and n odd. Bit | is called the most significant differing bit
between u and v if pyp1{t) = puopofv) and wuy 5% o, Lot

(0011103 =CQu

Q011 =CQy,

Gy 010)
=CQa

CQ,ON

CQu D

.z =CQuz

Ty {10,11)
Q1

G, (00}

2

Oy 000
=y

+

CQyp(010) QQy (117}
- =00

CQy {1103
g

CQpy (001
=CQp.z

CQpp (190)
=COha

Q167
=CQun

(a)

Flg 2. Subgraphs of CQQ,;; and CQ-gk_‘.y .

CQ, (000, 100) =00y, |
(b}
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i* = |{], called the most significant differing double bit. We
define a function p on u;v as follows:

pilae,0) =0 forall j > 4" + 1,
) = 2 il ugppee = TP,

Pirlth 1 othorwise.

Subsequently, we recursively define pj(u, @) for j <4 —1

using the notion of distance-preserving pair velated (abbre-

viated as d.-p. pair related) which is motivated from the

concept of pair related.

Definition 3. g uy; and vo; vy, for § < i — 1, are distance-
preserving pair related if one of the follewing conditions holds:

1, (u-gj_'.l?!-gj, vzj.|.1*£)2j) =] {(01 y Ol), (11, 11)} and
2

() is evon,
k=j11

2. (ugj.|.1u-2j, U2j.|_|’la‘2j) e {(01,11), (11,01} } and

o
Z pala, o) 15 odd,
k=f1-1
30 (g, v ave;) € {(00,00), (10,10)).
We write 1!.2j+|ij.gjd';r!)"ijgj_l_lvgj {f Uy 1Ug; and Upi1tyy Gre

, d-p. ,
d.-p. prir related, and wy; 1uy # vagp1va; otherwise,

Then pi(u,») for j=<i* —1 is recursively defined as
follows:

piluy) = { 0

1 otherwise.

. d—p.
it Ui 1te; ™~ Vg4t

The pair related distance between v and v is defined, denoted
by plu,v), as

7
plu,v) = Z pi{, v).

Ea)]

|

For example, let .
2="0] 101101100001
and » = 0101001100101 ’t}b vertices in C'Q4. We recursively
find p; as follows: pelew,v) =0, psli,v) =2, paflu,v) =1,
pafo,w) =0, pofu,0) =0, pluv) =1, pin,v) =0, and
pluo) =4,

Now consider the relatiomship between deg, (6, v) and
plu,v). Let P be a shortest path from u to w If
Ugp+ Uy = Top 41 Taie, it Tequires two steps in P, Otherwise,
by the definition of 4* it requires a single cdge in P. If
tgjo1tiny ~ g1y, after identifying bits at positions p >
27 4 2 with those at v using E,L\;Tjil il v} steps, we can

reach a vertex such that bits at positions 27 -- 1 and 27 are

identical to vg;1q and wy;, T tyjpg n-g;llr;_éplq:gjﬂ?@j, at least one

skep is required in P to change the {24+ 1}th and the 2jth

bits to w41 and we;. With the above cbservation, we have

the following remark.

Remark 1. plu,v) is a lower bound for dpg (,v), e,
deq, (1, v) 2 plu,v).

We now present a shortest path routing algorithm which
can generate multiple shortest paths and is different from
the one proposed in [1].

Algorithm: Shortest_Path_Routing
Input: Vertices » and .
Qutput: Shortest paths from u to .

Initialization: Determine p;(x,v) for all 0 <4 <[] — 1.
Define @y = @y = {§| py(n,v) # 0},
T = {9 pjlae,v) # 0,5 <", and either

- - _d-p
TigjptUay ~ 2y LUy OF Ugjarligg ™~ Ugjp1¥fe

Step LIf T =19
then go to Step 2;
else find a j ¢ ¥ and call ONE_STEI_ROUTEC(], Q1)

Step 2: [f 1), = ¢}
then output the sequence .5 which yields shortest
paths, set S to be empty, and go to Step 4.

Step 3; If either ﬁgﬂ]1!2ir|:-’p‘?}g,‘+11}2§ or 'li.2.5+1T._i.gl‘dl":-‘pl'l."‘)t'.|.]1?2i
holds for some i € ¢4
then choose such smallest 4;
else choose i = maz{j| j€ @1}
Call ONE_STEP_ROUTE(#, ) and go to Step 2,

Step £ If Q; =) :
then output the sequence S which yields shortest
paths and 5TOP. '

Step 5: Choose I = maz{j | j € Qa} and m — maz{j|j€ Qs

and j < ¢}

If pi('u'\ 'U) =1and (”-2m+lﬁ'?nidlﬂj‘q"'zm+11’2m

then call ONE_STEP_ROUTL(m, §2);

else
if Pl(uu 'U) =1 and ﬁ?m-l—l“?-mdI'“_“plvﬂm-i 182
then call ONE_STEP_ROUTE(m:, (22) or call
ONE_STEP_ROUTE(, Qu); :
else call ONE_STEP_ROUTE(, ().

Go to Step 4.

ONE_STEP_ROUTE(j, )
Ifp;(u,v) =2
then route to o/, i.e., the 2jth or (25 4- 1)th neighbor of «,
pile,v) = pilu,v) — 1;
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else route to o', the (27 + L)th neighbor of « if
ug,+1ug?"~‘ Vaj10; and the 24th neighbor

. — dbh—p.
of u if 41 Uy~ Vagtiag,
set Q=0 — {5},
;o_r'(uli U) =195 (nl','”) - L
Put «' in the sequence S, and set « =/,
end |

To illustrate this algorithm, we still use
| .

! = 0110110100001
L
and ¢ = 01010011100101 in C'ha as an example. At initial
stage, we have ps(u,v) = 2, pi{u,v) =1, pi{w, ) = 1, G =
6o = {5,4,1} and 7' =¥, Since 7 =0 and we canmot find
any i € £ satisfying ﬁg.;.Tl?.sgx-d'nj"vgi.L]-vg; or

il
U p1UR ™ Vi,

in Step 3 we choose =5 reaching 01000111100011 or
01111100011, and reduce gy (u, ) by one. Now, the set €
is still {5,4,1}. Repeating Step 3, we find ¢ =1 in this
iteralion and route to 01000111100101 or 01110111100101. Tt
reduces Q1 to {5,4}. Subsequently, i =4 and i=5 arc
found in the following iterations of Step 3, which render ¢4
to be empty. In summary, per—forming Step 1 to Step 3, we
can obtain the following two shortest paths:

P = { 01101101100001,01000111100011, 01000111100101,
(1000001101111, 01010011100101 ),

P, ={ 01101101100001,01110111100011, 01110111100101,
01110001101111,01010011100101 §.

Performing Step 4 to Step 5, we can obtain two shortest
paths P and £ as follows:

Py = { 01101101100001, 01000111100011, 01000001103601,
(1010011100011, 01010011160101 ),

Py = { 01101101100001,01110111100017, 01110001100001,
(1010011100011,01010011100101 3.

The paths Py, and P are obtained by changing the fifth,
fourth, fifth and first double bits sequentially.

NC. 1, JANUARY 2000

We summarize in Table 1 the verification of the

. il
staternent whether g ta; ~ Daq19; OF

e
Upigdla ~ Vg1 Vs
for i #i* is satisfied in Steps 3 and 5. Tn Table 1, “even”
and “odd” represent Lk it pr(,v) being even and odd,

yeb
the staternent holds and docs not hold, respectively, and

respeclively. We use and “no” te indicate that

“—" to indicate that 'U.Q.,H;LTLQA'(L':‘I,ITJQT'+1’UQ.&. In other words,
ONE_STEP_ROUTE can be performed on thase cases that
are marked with “yes”.
Table 1, we can obtain the following remark.

Furthermore, observing from

in Table 1,
reducing a ppu,v), ¢ >4 by one enables us to perform
ONE_STEP-_ROUTE on the ith double bit. Furthermore,
et k—i* or let it be the smallest index in ¢ satisfying

Remark 2. For those cases marked with “no”

_ d.—p. 3 il

Mpppitny ~ Vappating OF Waip Uzg ~ Yoy tay,

ing ONE_STEP_ROUTE(%, @) and reaching «/, il can be
ot p e -

observed that @ t; ~ D1t 00

After perform-

e .
Ty lyy ™ Vi1 Ve

is satisficd for'all § < &k and j € Q.

Theprem 1.

1. The Shortest Path_Routing algorithm corvectly finds
shortest paths from the source to the destinntion.
2. deg, (v, 0) = pli, v).

Proof. Let u be the source and v be the destination. Let «*
denote a current vertex reached by the algorithm, and €
and (% be the subsets of 1 and €y, respectively,
obtained by the algorithm. We note that ONE-
_STEP_ROUTE is performed at the ith double bit if
u5 :r:i-.;%:d";p"i}gi,l,ﬂ:gg or m1a§id'&p'wgi.|.1vgi. Therefore, at

the end of plu,v) steps of performing ONE_STEP-

_ROUTE, the ith double bit becomes identical to that of

v. Observing from Steps 1, 3, and 5, we note that

TABLE 1
Applicability of ONE_STEP_ROUTE
Uziy1 U
00 10 11 o1
00| - yes no yes
10 || yes - yes no
vai410g | 11 || (even, no )  {even, yes ) {even, -) (even, yes )
{odd, yes ) {odd,mo) (odd, yes) (odd,-)
01 || (even, yes ) (even,no ) (even, yes) (even, )
(odd,no ) {odd,yes) (odd,-) (odd, yes)
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ONE_STEP_ROUTE is performed at thase double bits
with p;{n,2) 3 0. Furthermore, ONE_STEP_ROUTE is
performed Q4] = 22| times if pp(u,%) =1 and |] + 1
times if pp{u, v} = 2, Le., exactly p(u, v} times, Therefore,

dog, (i, v} < plu, ).

On the other hand, we have dgg, (w.v) = plu,v) by
Remark 1. Consequently, we have deg, (n,v) = pl, v},
and moreover, the algorithm generates shortest paths
from u to v

If initially 7 = @ and no ¢ € ) satisfies

_ d—
Moyl o Ui Usg

or ﬁ-gﬁ-ﬂ?ng-d';p'mi“vgg, fet# = man{j|j € ¢1} as found in
Step 3. It follows that we can choose ¢ = ¢* first and
then continue the procedure ONE_STEP_ROUTE({, (1)
for all £ e ¢ untl @, = . Otherwise, we can always
perform ONE_STEP_ROUTE on any t € T" as specified in
Step 1 and on the smallest ¢ £ 6}y (actually, arbitrary < €
) is allowed), satisfying ﬁQa'-_—IHQ;'d;ILy?i-l—lvgi or

_ di—p.
U182 ™~ Vi1V,

as specified in Step 3. In subsequent iterations of re-
peating Step 3, it follows from Remark 2 that an i € ¢4
satisfying g, ':J_"l!.%idl-"_\;pl’d.lgi |1 OT U ﬁ‘é‘idﬂ“vg_,q,]vgi can
always be found, until ¢, = . Thus, repeating Steps 1
to 3, we can obtain shortest paths.

Similarly, in Steps 4 and 5, the algorithm checks
each double bit i with pi{u,v) Z0 from left to right
arder and generates other shortest paths. Hence, the
theorem follows. O

Step 1 takes O(1) time. In Step 3, if either

- d—p
U418y~ Va1V

or 11.25+1112;i:;p.vgi_‘_lTJg,: is satisfied, we perform ONE-STE-
_ROUTE. Otherwise, we perform ONE_STEP_ROUTE on
the jth double bit with j € @ and 7 > ¢ reaching «, and
then we obtain uf,  uy; dﬁ)'vgﬁ,lvg; or mu‘é‘gd:«p‘vzf |12
Thus, we examine each double bit ¢ with p;{u, v) # 0 at most
twice in increasing order of 4. Steps 2 and 3 are exccuted at
most 2p(w,») times. Steps 4 and 5 are executed exactly
p(u,v) times, each taking O(1) time. Hence, the time com-
plexity of the algorithm is O(n). The algorithm proposed
in [1] can generate one shortest path in O(n?) time, while
ours can generate more shortest paths in G(n) time. Further-
more, our algorithm can be modified to generate all shortest
paths in O(n%) time,

Theorem 2. The diameter of CQ,, denoted by D(C'Q,,), is [2H].

Proof. l.et «, v be two distinet vertices. Since there are [§]
double bits, it follows that deg, (4,2) = p(u,) < [21]. In

particular, we choose #* =000 and v* = 11.--1 such
that p(u*, v*) = [254]. Hence, the theorem fallows. |

4 WiDE DIAMETER AND FAULT DIAMETER

The connectivity of a network & = (V| E), denoted by #((7)
or k, i8 the minimum number of vertices whose removal
leaves the remaining graph disconnected or livial. It
follows from Menger's theorem that there always exist
& internally vertex-disjoint (abbreviated as disjoint) paths
between any bwo vertices,

Let v and /2 be two positive integers such that o < x and
A= & —1. Given any two distinct vertices w and v of 3, let
Clu, v) denote the set of all « disjoint paths between « and v.
Each element of C{u,v) consists of o disjoint paths, The
number of elements in Clu,v) is denoted by |C{w, v)|. Let
{;(w, ) denote the longest length among these e paths of the
ith element of C'(w,v). We define dy(u,v) and d)(u,2) as
follows: '

e[, v) =  min

Liu
11| Clua}| i, v),
d}:(u,v} = I;;Ei]}l {de—plu,v) |0 & 1Y,
O
where ¢ — ' denotes the subgraph of & induced by V' - - I
In other words, d{i(ﬂ., v) denotes the shortest distance
between « and » when any #-vertex fauit occurs.
Definition 4. The a-wide dimmeter of G, denoted by D.(Q), is
defined as
D (G = max{d,(x,v)}.
wrcy
In particular, we call D.(Q) simply wide diameter of G.

Note that £3,(C) is simply the diameter of G.

Definition 5. The A-fault diameter, dewoted by DG, is
&iven by

Dé(G} = 1nax {(lf;,.[u,'u)}.

Ll

Di_ (@) is, in particular, called fault dinmeter of G.

Fault diameter estimates the impact on diameter when
faults occur, i.c., the removal of vertices from . Small
{r — 1)-fanlt diamcter is also desirable to obtain smaller
communication delay when vertex faults occur. Obviously,
we have D(G) < DY (@) < D(Q).

For hypercubes, it is known that x{@,,) =n and

D Q) = D-{a—l[Qn) =n+1,

In this section, we compare wide diameter and fault
diamoter of crossed cubes with those of hypercubes and
prove that D, (CQ,) = Di__l(CQ.,,) = [§1+2foralln =2
Lemma 1. D (CQ,) = [4] +2.

Proof. Lol u, v, %' be vertices of £Q,, and let # be an (n — 1)-
fault set given by F==N(u)}- {«'}. Consider
n=2kE>1 We choosec w==00---0, y=0t1..-1, and
2’ = 100--- 0. The shortest path from « to » in CQ, — 2
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has the form (u, o', P*(a/, v)), where P*(2/, v} is a shortest
path from 2’ to v without traversing any vertex in .
Since p(v', v} = [5] + 1, it follows that

og.-i(w,v) = L+ pl' v) = EW +2.

Thercefore, Dy, 1(CQ?,) > [¥]+2
Next, let us consider n odd. Let « = 00000 --0 and
' = 0010¢ - -0. We choose v =100 11011101 - 113111

forn=4dk+1, and

»=10011011101 -.- 1101

for # = 4k + 3. The shortest path from  to v in CQ), —
has the form {u,+',v", P*{v",v)}, where u” is a neighbor
of 4 and P* (1", v) is a shortest path from «" to » without
traversing vertices in I and u. Note that & can be
arbitrarily chosen from the set

i
W ={01100---0,11100--- 01000

0<j<n—4h

0}|_J{oo100--

Since any vertex win W satisfies plaw,v) = [3], it follows
that deg, - #{u, v) = 2+ p(v”, v) = [§] + 2. Therefore,

pl_(CQ.) = [ ] 19,

Hence the lemma follows. ' ) ]

Lemma 2. Let u and v be two vertices of cQ, for n > 2. Then,
there are n disjoint pafhs PRV & TERRI o join'ing u fo v with
nona‘ecrmsmg length, ie., |P|| < |I \ <o KBy, such that

Lo B < [5] 42 forall 4,
2 iPI| < ‘U OQN = J—“tl]
3. R = [BH] i [P} = [EEY and 0 s even.

We leave the proof to Appendix A, Note that Lemma 1
and Lemma 2 immediately imply «(C@Q,.) = n since each
vertex has a degree of n. Since Lemma 2 implies that
da (11, v) < [5] + 2, we then have the following corcllary.

Corollary 1. D,(CQ,) < [3]+ 2 forall n > 2.

Since U;FL_I(CQ“} < D, (C@y), we can easily obtain the
following theorem from Corollary 1 and l.emma 1.

Theorem 3. D_ (CQ,) = D.(CQ,) = [4] -2

5 EDGE CONGESTION AND BISECTION WIDTH

In this section, we treat a path as a directed routing from a
source to a destination. To distinguish different orientation
of an edge (u,v), we write [u,v] and [v, 4] as traversing from
v to v and from v to u, respectively. A path P=(z=
2,2l .., 2" =y is treated as a directed path from z to y
consisting of [af, %] for 0 <i<m — 1. For convenience,
we also treat a path as a set of edges and write [,z e P
to mean that [z, £ is in PP. We say that an edge e = (u,7}
is incident on P if [u,v] € P or [v, u] € P e, u=rv=gt

NO. 1, JANUARY 2000
or v=g'u=2a"" for some i. When considering edge
congestion, we treat any routing algorithm A for a network
G =(V,E) as a function assigning cach (2,4) €V xV to
only one path from # to y, denoted by Py (x, 7). We consider
only the shortest path routing algorithms.

Definition 6. The edge congestion of an edge ¢ € E uider the
routing algorithm A, denoted by cale), is dcfined as the
mitiiber of {x,y) pairs such that ¢ is incident on Pa(z,y), ic.,

cale) = [{{a, ) | 2.0 €V, eisincident on Pz, 1)}

The edge congestion of the wnetwork G under the routing

algorithm A and the edge congestion of the network G, denoted
by eA{G) and (G, respectively, are defined as follows:

ca(?) = max{cale) | forall c € E},
e() = min{ea(G) | for all routing algorithms A for &}

Edge congestion can alse provide lower bound on the
area and the longest wire length requived by VLS layout of
networks, A routing algorithm achieving ¢(G) is called an
optimal routing algorithm.

Definition 7. The bisection width of G, denoted by w(G), is the
minimum number of edges to be removed to disconnect the
graph into two (not necessarily connected) subgraphs with
f%l] and LJ%H vertices, respectively.

The problem of finding the bisection width of a graph is
NP-hard. The bisection width of an interconnection net-
work is a critical factor in determining the speed with which
the network can perform a computation and the arca
needed to layout this network [8].

In this section, we will prove that e(CQ,) = c{(),) = 2*
and w(CQ,) = 2",

C[Qvl) =20

Proof. For any vertex u in @, it is known that exactly (7)
vertices at distance ¢ from w. Thus for any routing
algorithm A, we have

Z eq{c) =

Theorem 4.

> 1 Palzy)l

ecR(Qy) (z)C¥ =V
>;Z i) = 2"2 () = 2w,

Since there are exactly n 2"~ edges in F((,),

eal@n) = mar{cale) | e € E(Q,)} > 2.

Thus, ¢(Q,) = 2"

On the other hand, let C' be the routing strategy which
routes @ o y by changing the rightmost differing bit
iteratively. To be precise, assume that z differs from y at
k bits, say, the L-, Is-, .., {;th bits with

0<h <<, . <fp<n-1.

Then, Pe(z,y) is given by (v =z",2',....2* =), where
z differs from o' at the Iz th bit. Let e = (u,+) be an
edge of @, with u and v differing at the jth bit such that
{(w,v) is incident on Folz,y). That is, either [u,u] €
Po(z,y) or [v,u] € Pu(w,y). Consider [u,v] € Po(x,y). It
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follows from Algorithm C that w35 = wy_) Uy

and ;- -y = v; - - - vyvg. Therefore,

[{(x, ) {2, € V() [ ] € Pole,g)}] = 209127 =271,
Similarly,

[{(z, %) [ =, 3 € V(Qu), [v.1] € Pola, )} = 2v128 =an L,
Hence, o{),) =21 42771 =27, O
The proposed routing algorithm for the proof of

Theorem 4 is an optimal routing algorithm for hypercubes
and generates uniform congestion for alt edgoes.

To calculate o(C'(,}, we restrict our ronting algorithm to
executing only Steps 2 and 3. Furthermore, in ONE_STEP-
_ROUTE when p;{1, #) = 2, we route to the {24 + 1jth neigh-
bor of w. This algorithm is denoted by B. In this way,
Algorithm 73 generates only one shortest path from one
vertex to another. For example, the shortest paths between

all pairs of vertices in 'y gencrated by Algorithm 73 are
given as follows:

(00, 16}, {00, 10, 11}, {00, 01},
(01,003, {01, 11, 10), (01,11},
(10,00}, {10, 00,01}, {10, 11},
(11,10%,{11,01,00), {11,01},

Using this algorithm, we obtain ep(c) for each edge ¢ in CQy

and C'@3, as illushated in Figs. 3a and 3b.

Lemma 3. cpfe) = 2571 + 2 for any dim-1 edge in CQ,.

Proof. Lot e=(u,0) = (up 1ttty U1 - iz} be any
dim-1 edge in CQr. Obviously, m—a(w) — pr.a(v) and
Ty = v1vg. We assuime without loss of generality that
wy = O Lot e = @y 43312 and ¥ == ye1le—2- 0 1130
be any two vertices such that ¢ is incident on Pp(z, ),
where Pp{a, ) can be written as {z = a%al, ... 2™ =),
Obviously, we have either [u,v] € Pu(z,y) or

[v,u] € Pulz,4).

In order to calculate eplc), we need to identify all
possible {x, y)-pairs that route through e,

We first consider wy=0. That is, s1p =00 and
vy = 10, First, assume that [u, 1] € Py(z,y). It follows
from Step 3 of Algorithm 13 that the change of the zeroth
double bit is first executed, ie., z = 2 = w. When 311 is
either 00 or 01, it follows from Algorithm I that 2! # v,
Thus,

[{{z.y) | [1,v] € Prlx,y), wyug =00, gy = 00 or 01} = 0.
When i = 10, [u,v] € Is{w, ) always holds. Thus,
H{(, ) | fw,v] € Pule,y), wug = 00, gy = 10}] = 2572,
When g3 = L1, it follows from Algorithm /3 that y is
exactly the vertex w1y - ug1l. Therefore, there are

282 11 (=, y}-pairs routing through fu, 2],
Next, consider [v,4] € Pplz,y). Similarly, we first

" change the 0th double bit and thus, x =2 2° = ». When

e = 10 or 11, it follows from Algorithm B that 2!
cannot be 1., Thus,

[{(@9) | [o,u] € Pa(z,5), w130 = 10, gago = 1007 11}] = 0.
When gy = 00, Pp(z,y) always routes through [, ).

Thus,

[{lm ) | [v,u] € Prla,y), miw == 10, ghyo = 00} = 2k=2,
When 90 = 01, it follows from Algorithm B that y is
exactly the vertex v,_1vg-2 - w0l Therefore, there are
262 41 (x,y)-pairs routing through [v,%). From the
above discussion, ep(e) = 282 4 1 252 1 =28 2,

Next, we consider vy = 1, i.e., wyug = 01 and vy = 11,
Again, we have either [u,v] € Pa{z, y) or [v, 4] € Fp(z, y)
First, assume that [u,v] € Ppix, ). Suppose w=xl [t
follows that zixp = 11, zy@e = v, and equivalently
[u, 4] € Pple,y)
Therefore, we have v = z¥ = 2. When j 0 = 01, [n,v] €
Pplz,y) implics that p{pe_a(z), pe2(y)) is odd. When
ye = 11, fit,v] € Pula, ) implies that p(pr—2(te), pr2(y))
is even. Therefore,

_ do—p. . .
Fimg ~ iy, which contradicts

(a}

Fig. 8. Edge congestion of {'» and C'Qy.

(b)
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H{z,¥) | [;9) € Polz, ), wug = 01, w3 = 0L oy 11}
— 2?\:—2‘ .

Since [m,7] € Palz,y), it follows that iy, # 00. When

vt = 10, y can be only w19 - w10 and, thus,
{3} | [, 9] € Py, y), wug =01} = 262 4 1,

Furthermore, using similar arguments we can also obtain
{(z, ) | [v,4] € Polw,y), vivo =11} = 2872 4- 1.

Thus, ¢p(e) = 2672 + 2¥2 4 2 = 281 1 2, The lemma now

follows. a

Lemma 4. ep(e) = 2F for any dim-0 edge in CQ.

Proof, Let e= (u,v) = (ugp_1- - w1ty Vp_1 -+ Mg} be any

dim-0 edge in CQ Obviously, pp_a(ie) = pr_o{v) and
ity = vivg. Without loss of generality, we can assume

that g = 0. Let & = 125 0 21p and

Y =WYi-thr—2 Wl

be any two vertices such that e is incident on Pp(w, 1),

where Pp(r,y) = (& = 20,28 =),

Assume that [u, 4] € Pp(z, y). It follows from Step 3 of
Algorithm B that there are two types of {x,y}-pairs
routing through [u,v]. The shortest path of the first type
of {z,y)-pairs is first to change the zeroth double bit,
while the second type is first to change some tth double
bit, 1 < ¢ < |%}], and then the zeroth double bit. In other
words, we have [u,v] = [2°, z!] in the former and [u,1] =
fz!, 2] in the latter.

Consider that [u, 4] = 2", %], Le., z
1

b —pand 2t =0 If

i = i or #iuy, o8 cannot be v, given routing under
Algorithm B, since ug = 0. When iy = wiito = w3, it
follows that [, v] € Py, ) iff plpi—a(t), pp—2(y)) is even.
When 119 = ity it therefore follows that [u, v] € P(z, )

iff p(py—a(e), p—o(y)) is odd. Thus,
{2, ) | [its0] € Prle,y) and @ = u}| = 2672

Next consider that [u,v] = [z!,2?%]. Clearly, = € N{u)
and z is not the ¢-neighbor of . When z is the I-neighbor
of u, it follows from Algorithm B that y is the vertex v
Now let z: be the {-neighbor of w with [ > 1, It follows that
Ou-t-1{2) = o), (Eojp12o, gy} € B for all
0<j<|f), and o= for { even and wm i = Gy
for | odd. Tt follows from Algorithm B that pa{,y) = 1
and py(v,y) =0, Le., uy.-I(,dfup‘ylyﬂ. Furthermore, using
Remarde, if pj{z.y) =1 and 1 < j < |£, it follows that

.

Tajr172; ¥ Ya+1lie; and

d. —I‘.
Bajr1 Ty F Yair1¥es

by Algorithm . For p;(z,3) = 0 and 1 < j < |£], we have
Trs1@; ~yspiyey Therefore, given wy apm—a: W1,
there are 21! choices of y satisfying [u,v] € Pr{w, 3).
Note that in ONE_STEP-_ROUTE when p;(u, 1) = 2, we
route to the {27 + 1)th neighbor of w. When [ is even, it
implies pl%l(“"’y) = 1. It follows that when ! is even, we
have

[{(, ) | @ 18 the i—neighbor of u and [, 1] € Pplz, y}}|

| abintglilet o gheli)3 ifl<l<k-1,
2lel-! ifl=Fk-1

When ! > 1 is odd, then

[{¢x,9) | # is the I—neighhor of «, and [u,%] € Pp(w, 1)}
pL Py y) =2
W3 if () = 1.

Therefore, for even k, we have

{ (e w) | [u 1;] € Pylz, v}, and fu, 7,1] [, 2]}
=1+ Z(Z’“‘H T2 =14 Zz" =2+,
i=1 i=0
Similatly, for odd &, we have

{(x, 1) | [5,0] € Pole,y) and [u, o] = [z!, 2?]}|
ll 3
=1 E(Q"‘“""Q 491y 4 gldl-t

i=1

1511 £—3
=1+ Y (@24l ol =14 Y om0
=1 i=0

Assume that [v,u] € Pp(z,y). Again, [v,4| is either
[:Bu,ml] or [ml,mz]. If ¥ = wand Y1 18 vyug Or Piug or Uy,
it follows from Algorithm 8 that z!#u, e,
[v,u] € Pg(z,y). Furthermore, [v,1] = [z°,2'] € Pa(x,)
if and only if iy = v 0. Thus,

[{(, ) | [, ] € Po{e,u), = w}| = 2872
Suppose that [v,u] = [z', 2%, Using similar arguments
for the case [u,v] = [}, %], we have _
|{(x,%) | [, 4] € Pplz,y),= is a neighbor of v}| = 277,
Thus, ¢p(e) = 22 + 2872 4 26-2 4 982 = & O

Let Qz,2) = {z=a%x',...,#™ =4} be a path in OQ,
k > 2, that traverses from o to y. Based on Q(x, y), we define
a new path Q{py_2(x), pr_s(¥)) in CQ;_s by replacing all
in @ with pg_o(z*) and deleting py_p(x1) if

.i+L) —

Pr-a( Pr-z(a’).
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Definition 8. We say that (x,y) and (2.} are in an
equivalence class, denoted by {x,9) = (2" o/}, if and only if
Prj(.r 1,') PB(CL‘ y)

Let (u,v) be a dim- edge in €', where { > 2. Given an
edge {(u,v} € B{('();), let

w{w, ) = {{z,4) | [u,9] € Pnlz,y) or [v,u] € Pplz, 1)}

We can partition cach set x[u,v] into differont equivalence
clasees, It is obvious that cach equivalence class contains at
most 16 clements since ), ), 4,4 € {0,1}. However, in
the following lemma we show that cach equivalence class
containg exactly four elements.

Lemma 5. Let (u,2) be a dim-d, d > 2, edge of CQy. Each
equivalence class in x[u,v] contains exactly four elements,

We leave the proof of Lemma 5 to Appendix B.

Lemma 6. Let ¢ be an edge of dimension d in CQ,, for n > 2,
Then,

2‘.'l—| +2rl
enfe} = { o

Proof. The proof is by induction on n. The theorem is true
for n = 2,3, as illustrated in Fig. 3. Supposc that this
theorem holds for C'Q),,_1. It follows from Lemmas 3 and 4
that the statement is also true for d = 0, 1. Let e = {u,v)
be a dim-d, d > 2, edge in C'Q),, where n > 2, Obviously,
{(Pu_2(1),pp_a{v)) is an edge of dimension (d—2) in
£Qy,—s. By induction,

if d is odd,

if d is even.

I gn-3 +2r1 2
2?1—2

if d is odd,
if d is even.

cosl{proa(w), pa_z(v)} = {

Since ﬁﬂ(m!y) :Pfi[pr1—2($):pn—2(y))f it follows from
_ Lemma 5 that we have

_ [t iat ifdis odd,
e v) = { on if d is even.
' i
Hence, the lemma foilows 0

Lemma 6 lmmedlately y;eldb the following corollary.
Corollary 2, o{CQy) < o,

We use a similar proof technique of finding w(@,) to find
w(C'Qy), which is stated _in the following theorem.

Theorem 5. w(CQ,) = 2*~1,

Proof, Note that €'Q, is constructed from two identical
(7 — 1}-dimensional crossed cubes CQY | and CQL |,
which are connected by dim-{n — 1) edges of C'(},. Since
these dim-(n — 1) edges form a perfect matching and
removal of these edges disconnects £, it follows that
W(CQy) < 277N

We define an embedding of a directed complete graph
of 2% vertices, denoted by K, into €', where each edge
from u to » in K is embedded by Pr(u,») in CQ,,.

Suppose w(CQ,,) = w < 271, It follows that CQ, can
be partitioned into two subgraphs of equal size by
removing a cut of wedges. This cut of 0@, alsc induces a

bisection of K. Since each edge of C'Q,, is contained in at

most 2" shortest paths following from Lemma 6, it

follows that w{k) < w2" < 2271 which is contradictory

to the known fact that w(() > 2201, D

We will use the following lemma (originally stated in [4])
to find a lower bhound for ¢(G).

Lemma 7. Let & be an n-vertex graph such that the removal of a
cuf of & edges partitions G into two, not necessarily connected,
subgraphs of ¢ vertices and n — 1t vertices, respectively. Then,

«e) > PAm T

2 (0

Maereaver, this bound fs tight,

In particular, we can choose a cut that biscets & in (1),
which can be restated as follows:

oG) 2 {

Theorem 6. «(CQ,) = 2",

Proof. It follows from (2) and Theorem 5 that ¢(C'Q,,) > 2%,
On the other hand, Corollary 2 states ¢(C'Q,,) < 2% Thus
the theorem follows. o
Since our proposed shoriest routing Algorithm D

achieves o((CQ,), Algorithm 1 is an oplimal routing

algorithm. Theorem 6 implies that ¢{C'Q,) = ¢{(},). Further-
more, since hypercubes have an optimal routing algorithm

which generates uniform congestion of all edges, Theorem 6

implies that each cdge of crossed cubes has smaller

congestion than or cqual congestion to that of hypercubes.

[n2/2{G)] for n oven,

[(n"! — I)/2w(6’)] for n odd. @

6 EMBEDDING OF CYCLES

A cyele is often used as a conneclion structure for local
area networks, and can also be used as a control/data
flow structure for distributed computation in arbitrary
networks. In this section, we present embedding of cycles
into €Q,, that vur embedding of cycles is different from
the one proposed in [9]. A cycle of length k is denoted by
Cy. Let w,v be binary strings of length n— 2 satistying
(1, v} G B{(CQ,_2). Tn order to construct large cycles in UG,
we define two types of primitive paths from 100 or w10 to 200
as follows:

Type 1: Four primitive paths from «00 to 200 given by

Py = (u00,wCl, 411, %01, 00},

P12 = (600,210,010, v11, w01, 000},
Py 3 = (200, 10,411,201, v11, 01, 00},
Py = {600,401, 411,210,210, w11, v01, 100},

as shown in Tig. 4a;
Type 2: Four primitive paths from «10 to +00 given by
110, 111, 101, w00, 200},
ng = {110, 210, v11, 201,200, v00),

= {

{

= {110, w11, w01, %11, w01, ud0, u00},

= {110,410, »11, 01, nl1, w01, 100, w00},
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(@)

Fig. 4. Primitive paths of {a) type 1 and (i) type 2.

as shown in Fig. 4b, Bach 7 ; has the length of j+ 3 for

i=1,2

Theorem 7. 00, is a pancyclic network for n > 2, ie, CQ,
contains C; for all 4 <1 < 2" gs subgraphs.

Proof. The theorem can be easily proven for n =21 by
using type-1 primitive paths. For n = 4, since /@)y is a
subgraph of @y, it suffices to construct eyeles ¢ for
9 < { < 16 as follows:

Oy =={0000, 6001, 0011, 0010, 0110, 1110, 1111, 0101,
0100, 0000}, ,

g =({0000, 0001, 0011, 0010, 0110, 1110, 1111, 1101,
1100, 0100, 00003,

(41 =(0000, 0001, 0011,0010,0110,0111,0101,1111,
1101, 1100, 0100, 00003,

€43 =(0000, 0001, 0011,0010,0110, 1110, 1111, 0101,
0111, 1101, 1160, 0100, 0000},

715 ={0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,
1100, P, 1, 1000, 0000},

Cha ={0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,
1100, P 5, 1000, 0000},

Chs =(0000,0001,0011, 0010, 0110, 0111, 0101, 0100,
1100, P, 3, 1000, 0000},

16 =(0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,
1100, P, 4, 1000, D000}

We next prove the theorem for # > 5 by induction.
Since C'6),—1 is a subgraph of €', it suffices te construct
cycles of length 27! +1 < { < 2" Let s be an arbitrary
integer satisfying 2% -1 < 5 < 2*7% By the induction
hypothesis, there is a cycle Cy in CQ,,_y given by

Cy={d, - ,1;.“,1;,1).

When & is even, construct C; based on C; as follows;

Cy = (nlou,ulol.,'ulu,ulw,u%o,u?] 1, %?01, %00,
100, 2701, w11, w210, w110, - -, w200, w5100,
P00, w00y,
where P’ is a type-1 primitive path from «*~100 to «°00. It
follows that ¢ =4(s —2)+ |{”|+1 and to be precise,
i=4ds— 3,45~ 2,45 — 1 4s. )
When s is odd, we use Cs to construct U; similar to Cj
as follows:
Cy = {(1M00,2'01, 4 11,4110, %710, %711, %01, .7 00, u*00,
1301, 441,440, w0, w710, PY 400, 1100),
where P is a type-2 primitive path from #*~'10 to w*00.
It follows that j can be 4s —3,4s — 2,48 — 1,4a. There-
fore, we have obtained cycles Cy such that

4(2u—3 + -]} —3<i< 4(2‘”—2),

ie, 277 + 1 < < 2% Fence, the theorem follows. O
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Based on the above proof idea, we can easily construct a
cycle of arbitrary length, We here illustrate an example of
construcling Cg in C'Qs. First, we find a cycle of length
s =[] = 5 in CQy, which is given by

= (000,001,011, 101, 100,000},

Since s is odd and 1¢ =4s — 1, we can use Cj and a Py
from 10710 to 10000 to construct a €y as follows:

Cig = (00DO0, 0D0OL, 00011,00010, 00110,00111, 00101,
00100, 01100, 01101, 61111, 01110, 10110, 10111,
10001, 10011, 10101, 10100, 10000, 60000}

Embedding cycles présented in [9] can constroct one
type of cycles for an arbitrary length, while ours can
construct various types of cycles since we can start with
any vertex and make modification of type-1 and type-2
primitive paths to construct cycles. For oxample, to
construct &, in CQ5, we define a different cycle of
length 5, which is given as follows:

Cf = {011,010, 000, 100,101,011},

We can use C} and a path I from 10011 te 1010F of length
six to construct Gy, as follows:

%y = {01111,01110,01100,01101, 01011, 01010, 01000,
01001, 00011, 00010, 00000,00001, 10011, 10001,
10000, 10010,10110,10100, 10101, 01111).

7 ConNCLUDING REMARKS

Though topological properties of crossed cubes have been
shudied in the literature, we introduce a new measure in
this paper called pair related distance. Using this measure,
we can casily find the shortest distance between any pair of
vertices. Furthermore, we use this measure tfo give a
shortest path routing algorithm in (%) time rather than
O{n?) time in comparison with previous work. In this
paper, we also define a now performance measure called
edge congestion. Given the shortest path routing algorithm
presented in this paper, we show that the edge congestion
of crossed cubes is 2*, equal to that of hypercubes, Bisection
width of crossed cubes is 2*71. We also prove that the wide
diameter and the fault diamcter of crossed cubes are
approximately half of those of hypercubes. Furthermore,
¢rossed cubes are shown to be pancyclic networks with
more types of cycles canstructed.,

APPENDIX A

Proof of Lemuma 3. We prove this lemma by induction on .
Obviously, the lemma is true for n = 2. Assume that such
disjoint paths exist for any twao distinct vertices in C'Q;
for l<n and n >3 Let w=ty_i2tyy -2y and o=

Up—1thy 7 - titg be two vertices in OQ,.

Wae first consider » odd and distinguish the following
casos.

Case 1.1 deg, (paln), pa{v)) < 1 or 1,y = v,

It follows that «, v belong to a subgraph G which is
isomorphic ko €¢},_,. By the induction hypothesis, there
aren — 1 disjoint paths 1, I, .- - P, joining « to # such
that [P < [4] 41 for all i < n—1 and |P| < 4], There
exist two binary strings &' =al |zl .2, . and o' =
¥i_wh o4k 4 such that

(ps(w), x') C B(C'Qn) and (pa{v), 3
wl £ mv), o' 7 pal(n),
:U;lk] 7 U1, .?f?],. 1 7 vy i g 1 = U,
¢ 4 :/'é Un_3, yﬂ 3 o,y if dCQ'; (p3£"'-'5)si'v)3('u)) <1,

&' =y if palu) = pa(v).
Fig. ‘h illustrates an example of choice for 2! and '
Those figures in Fig. 5 illustrate an example of choice of
specified vertices whose positions are not umque

Let 7' and ! be I'IEI(&.,hbDrb of v and #, given by ' =
Tlwpa(u), @) and of = floips(v), y), where in particular
' =z and o' = y' for n =« 3, Furthermore, »' and +' are
chosen from Gy = €4}, -- 1, which is also isomorphic to
CQu-. Let 51 be a shortest path in G joining ' and »'
and satistying |\51] < [3]. Conslruct B, as

) € B(CGs),

e

1 1
Py = {u,u', 81,0, o,

which is disjoint from Py, B, -+, P, 1. Thus,

P],Pg,"',lj“
satisfy Conditions 1, 2, and 3

Case 1.2, dog, (P31, p3(v)) = 2 and w,—y # v,

Since p,_afet) and p,._2{v) are lwo different vertices in
€ty », by the induction hypothesis there are n—2
disjoint paths P{, P}, ---, P, joining p, o(u) and p,. 2(w)
such that [F| <[] - L [P <[5+ 1 forall $<n—2

We use these n — 2 paths to comstruct P as follows:

Pr e Pl M) =
Note that all of P} are disjoint paths in ¢'Q, and that

T
[P == tE| for all L < i < n— 2. Furthermore, since

Ay = wy, {3)

P 2wy} = paa(v),

it follows that w; and v are in a subgraph isomorphic to
Q. However, P} are not necessarily (u, v}-paths.

We make the following modification of I for 2 <4 <
n— 2 in order to obtain n — 3 {(u,v}-paths P. If w; =»,
wo simply let I3 = IY. Naw consider ; # @, Let 2 be the
immediate predecessor of w;, and let % be the im-
mediate predecessor of z on P Tet v be a neighbor of v
in 6 (poal(z)}), and let o be a neighbor of ¥ in
O (pu-2(z}))- Since CQu{py—2(2)) and CQyu(py 2(wi))
are adjacent subgraphs,

OQN(P‘H—-? (zi ) P2 (11}3‘ )) — (J‘Qn (?11172 (z‘i ' .?]?:72 (1’))

is isomorphic to &5 If + i also a nelbhbor of z {as
illustrated in Fig. 5b), we construct
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{b)
v Vv ”
@@ (s
{d)

Fig. 5. lllustration in Appendix A for examples of relative positions of some specific vertices in C'6u1.-

By= (P — {z,w:)) U (=, 9,9},
where |F| = {P7| + 1. Otherwise, o is also a neighbor of
Z {as illustrated in Fig. 5c) and we construct
Po= (7 = (4, z,w0) U {4, 0", 0,

where |F| = |F}| + L :

We then use I to construct three (u,v}-paths
P, P,_1, P, as follows. For 1 = 0,1, let #' be the neighbor
of u that differs from « at the ith bit. Let S, = Plu' 7)),

Sy = P(?!.-D;P{ )}
w1 = tul; 8, 1), and w, = £{(10; ). Note that
[Sn-al = [8al = |F].
Furthermore, mn # wy..q # uy, and
}”n—?(wl} = pnfﬁ(mn—l) = TJn—Q("'”u)-
Therefore, all of wy,w,_), and w, are in a subgraph
isomorphic to €@y, Let 2, be the immediate predecessor

of w, on 5,.

Consider that all of w1, w,_,, and w, are distinct from
w, say, dog, (wn,v) = dog, (o, v) = 1 and

deg, (1w, vy = 2.

We construet

Byo={u, I a0y, and Py = (11,111,3,!._1,1%_1,1)), (1

where || = |P}| -1 and |P_| = |Se-1] 4 2. Since
CQulPralza} pu—sfin))

is isomorphic to 03, there exists a neighbor + of z, in
00, {(pu—a{zn)) such that ¢/ is the common neighbor of »
and z; (as illustrated in Fip. 5d). It follows that
deo, (7u, v) = 2. We construct

P, = (151'”40} U {Sn -

where || =|5.] + 2.

Now consider that one of 1wy, w,_1, u, is exactly v, say,
wy =, dog, (wy. 1, v) = 1 and dgg, (v, 0) = 2 We simply
let A = P} and construct F,_; as above. There exists a
common neighbor +' of w, and v in C€(py_s(w,)) with
v o w1 (as illustrated in Fig. 5e}. We construct

{20, w0)) U {20, 0}, (5)



1] /
B, = (”au o Sy iy, V !?-J)l

where |Fyf = |5, + 3. The other cases of relative posi-
Hons of wy,uy, 1, uy, and © can be similarly treated.

Now we have constructed n (i, v)-paths satisfying
Condilions 1, 2, and 3. Ta prove disjointness of these
paths, let z be any internal vertex of 7 with2 <i <n -2
and let % be any internal vertex of P, P, and B,
Clearly,

Pa- "2(:“) ?é ?]er(?;') .

Moreover, any internal vertex of 1%, [2,_ and P, ditfers
from cach other at the last two bits. Thus, we have
constructed n disjoint paths Py, P, - -, 5, which satisfy
Conditions 1, 2, and 3.

Next, consider r is even, We distinguish the following
cases.

Case 2.1 deg, (pof), po(v)) € 1.
The proof is similar to that of Case 1.1,
Case 2.2, deg, (pa{u}, pa(v)) = 2,

[Let 1/ ba defined as in Case 1.2, and let I} be defined
asin (3) for 1 < i < n — 2. The first n — 4 {u,v)-paths are
constructed by P for all 3<i<n-2 as in Case 1.2,
which satisfy Conditions 1, 2, and 3.

In the following discussion, we use #] and Fj to
construct the remaining four {u, vi-paths 8, 1%, F,_y, B.
Let o/ be defined as in Case 1.2, If || < IXCQ,.) — 1.
then P, F,_;, F,, and P, are constructed in the same way
as in Case 1.2, Now, consider |P}| = D(CQ,, 2). It follows
from Condition 3 that |F{| = |F| = D{CQn-7). We define
Suot = Pluly PLY, 8, = Pu® 1), w,q = tu';8,) and
wy = " 5,). Note that |S,_1| = |9.| = || = ||, We
note that @, and s arc in CQs. Furthermore, I and 75
starl from the same vertex and [ Pf| = | 7%, It follows that
wy = wy. Moreover, w,,_; 7w, and

]’n—Z(TU]] = pn—?(ﬂ-‘f&) =n '2[1”11 -'I) = Pn-2 (1”?»)-

Therefore, all of uy,ws,10,-1, and w, are in a subgraph
isomarphic to C)y. Let 2 be the immediate predecessor
of w; and z be the immediate predecessor of # on P for
i =1,2. Let #; be the immediale predecessor of w; and #;
be the immediate predecessor of 2 on 8; for j=n— 1,1
Let ¢ and 7 be neighbors of v in CQ,(p—e{2:)) and
Cn(pa. 2(z1}), respectively.

Suppose that all of wy,w,wy,_, and w, are distinct
from w, say, dog, (uh,v) = deg, (102, 9) = dog, (W, v) =1
and dge, {1y, 1) = 2. We conslruct P, as in {4) and

Pz = {H,P;,?.UQ,'U).

where [Py = |Pf| + 1. Since CQ.(pu-s(z), Pu—a(um)} 18
isomorphic to C'@Jy, using the same arguments as
in Case 1.2, we construct /), as given by (5). Since
CQu(py—af{z)) and CQu{p, 2{wy)) are adjacent sub-
graphs, €6 (pa_a(z),pn 2(w)) is iscmorphic to CQ.
If 7 is also a neighbor of z (as shown in Fig. 6a),
we construct

h= (plk - (zhun)] U (zliz,:"’»:

CHANG ET AL.: EDGE CONGESTION AND TOPOLOGICAL PROPERTIES OF CROSSED CUBES 77

whore |Py| = |P{| 4 L. Otherwise, there oxists a common
neighbor of 2} and 2, denoted by 2", in CQ,(p,_2(2))) (as
shown in Fig. 6b) and we construct

Py= (P~ (&, ) U {2, 7, 4.0,
where || = ||+ L

Next, suppose somoe of wy, g, 0, w, are cxactly v,
say, an = us =, dog, (h_1,v) = 1, and deg, (w,,v) = 2.
We simply let P, =P/ and construct P, and [,
as above, In particular, we have + = 2 on B,. Since
CQ, (py—u(u2)) is isomorphic to C'Qp, there exists a neigh-
bor w' of v in C0Q,(pn_2{un)) satisfying ' £ w, 1. Since
CQN(I)H—Q(@):pn—ﬂ(w‘l)) and CQﬂ('z'?u_ﬂ(zf.?):ﬁﬂ—i(z?)) are
isomorphic to C'Q}4, there exists a neighbor w" of w' in
CQu(pu_c{z)) with w” £ 2y # 2, and a common neigh-
bor w™ of w” and # in CQy, (pa_u(23)) with w” £ 2, (asill-
ustrated in Fig. 6c). We construct

B = (P; - (2’21 Wz = ?J)) U (ZJQ:T"-"’H:TUsttU}s

where || = |F5| + 2. The other cases of relative posi-
tions of wy, wy, we_r,w,, and v can be similatly treated.
Thus, we have obtained n [(u,v)-paths salisfying
Conditions 1, 2, and 3. Let x be any internal verlex of
P; with 3 <{<n-2 and y be any internal vertex of
P, B, Py, and B, Clearly, p._a(2) # paa(y). More-
over, any internal vertex of P differs from those of I,
at the last two bits and differs from those of P, P, at the
first » — 2 bits. Similarly, any internal vertex of 1 differs
from those of P, at the last two bits. Thus, P, P, , I
are digjoint paths and satisfy Conditions 1, 2, and 3,

" Thus, the proof is completed. [
APPENDIX B
Proof of Lemma 5. Letw = &y . - wwp and 4 = 4y -+ 4110

Le two vertices in CQ), where (x,y) € x[u, ] Let

Pyleyy) = e =222 =)
and

Lo =) = 9

ﬁn(-’l’f, ¥} = (pr-a{r) = &2
We can assume without loss of generality that Pp{z, ) is
the shortest among all of Ps(#, ), where cach («/, 1) is
in the same equivalence class with (x,¥), i.e, (z/,¢) €
x[ vl and (m ) = (&', ¢). It follows that po(z,4) =0,
sirce otherwise we can obtain another pair of verlices in
this equivalence class having shorter path. Since {u, v} is
in Pylz,y) and is also a dim-d, d > 2, edge of €@y, it
follows that

(P2 (1), Pr-2(v)) = [, @]
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{c)

Fig. 6. lllustration in Appendix A for axamples of relative posilions of some spacific vertices in ¢y

or {py_at), pe_a(n)) = [#, &) for some 7 > 0. We first
assume that (pep(t), pr-2(v)) = [#, 5] for 4 > 0. In the
following discussion, we abbreviate “of wt " Fefgf in
{2/, #/)" by simply = ::,-{'}d'r;p‘_i;’ly:, withoul ambiguity from
the context. Let ¥ = pr_o()¥/, %}, where g} # 0 and
thus, a4 :1:nd‘r,6p'-_af] e

A a1

Case 1z (pr_a(u), pr_zlv)) = [#, &'}

Since Pgx,y) is the shortest in the equivalence class, it

follows that @ — u = &'

Lot &' — 395 wg or #%, . Tt follows that
iji(mf: T}) = (TF, Pf)‘(ms y))
Therefore, [u, v € Pyla’,y) and Pl o) = Dpia,y), ie.,
(#0%1my, ) 2= (z,y) and (&°61F0, ¥) ™ (2,7). Since
pol ' y,y) — L

and the vertices 773 and » are not adjacent,

Py(#0%1 7, y)
dees not pass through (v, v), i.c.,

(#3170, ) ¢ xiue 0]

Thus, (#9%%,v) % (z,y).

Since po{2, y) = 0 implies gfn, 3) = 1, we consider the
following three possibilities: First, let :rJ|:J:|}{L'|’-;|]';if1 iy- Then
Prlz,y) and Pu(i"%170,7/) will fivst change the zeroth
double kit It follows that [+, 2] ¢ Pple, 7} and

[o, 0] & Pu(d"E 70, 1)
e, (my) & xlwe and (&% %,y € x[w,v]. Further-
more,
Pyldatimo. o)

il
will nol route through [w, v since 2 £ 412y, Therefore,

(&% 29, 9) € x[,9]. Since aey ~y, implies
d.- =1
e Ay, and BTy £ iy, then
DPr{igacyza, o )4

will first route to a d-neighbor of a7y and then change
the zeroth double bit. It follows that

(?5» vy & -P!;(ff—’nfi‘lf“laa ']/)s
ie., (&oxiZa, 9/} & xlr.v]. Thus when i n:ﬂd'ﬁj"y’ly[}, none
of {e,4), {#"vZ0, ), (@ Tz, y), and (2. ) is

in x[u,v].



Next, let mlr?:nd':«p‘y’ly;,. Similarly, we can also show

that none of {x¥), (@=%,¥), (i"ZF1ze,y), and
(%% &g, o) s in x[u, v,

. _ _ i

Finally, let 212" ~"y3),. We can also show that

) ¢ X[ 9],

(& 05": a0, ) € x[w,v], and (:ﬁﬂflﬁjﬂ:y)) & x[u,v].
W1, then Prla, i) will route through (z,») and

(#1703
Since
1T P
then change the zoroth double bit. Let L be a path in
C€h_; given by L = Py(v,y). To be specific,

Pz, y)
It follows that (x,1/) € x[w,#] and Pplx,5)
Therefore, (x,y)

obtain exactly four clements in the same equivalence

= {& = u, v, pr_o{)0: Tn, Plpra (v)nTp; 1)).
= fjﬂ(:ﬂs 'H)

=~ (x4} piven g d’r_{})'a'cln‘:g. Thus, we
M OB 1Y

class, i.e., (z, v}, (22130, ¥), (2126, 1), and (z,1/), where
‘:’J’l?fgd‘f;p'i’lifn‘
Case 2: (pp_2(u), p—o(o)) = [&, 3+ for ¢ = 1.

Since Pp{z,y) is the shortest in the equivalence class,
it follows that @/ =u ffor some j, py(z,u)=0 and

polee, ) = 0. "

Let o/ = &%

Frwn oF 2% Fg. Tt follows that
PB(:B’,y) = (.’!If, PB(m:y»‘

Therefore, [u,7) € Pp{z’,1) and Pu(z',y) =
(&3m0, y) = (=, y) and (%o, y) = (2, 7).

f}B(xvy)r L&
let

al =r 0

and let I be a subpath of Pp(z,

E1ito
y} given by
L=l =y}
Since (@,2') is an edge, it follows that {wiug, wyzg) € B
and moreover, (o, x}#}) € K. Therefore, we obtain
PB(J"r) y) =
It follows that

(1% 7, #lalz), 2!, LY.

(%30, 4} € xfu, 7]

= PB(x,y), ie., (i‘oflfo,y)
Therefore, (&%) 7). 7) 2 (x,y) for alt =, 2.

and  Pup(E"% %, 1) = {x, ).

Since po(z,¥) = 0 implies po{w, %) = 1, there are three
possibilities: .'T:t:nn[l::p'y’ly;], :clzﬁad';p'?flya, or fc'ﬂﬁgdﬂ"y{’y{].
For .%I:cnd';p'y’l'uf, or ﬂ‘:lfn(llﬂhm{”, the vertex u is not on
Ppiax,y/) since we can first change the zeroth double bit
and 11y ]?_t‘p'-‘ﬂ?fu For 7,5, ‘m’"y’lg,r' since (z
edge for p > 2, it follows that 213" ~P4 4. Then Pr{z,1/)

is obtained by traversing from z to #! and then changing

18 ic a (iryp
et} is a dime-p
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the zeroth double bit of ', Therefore, Pr{x, 3} will not

route through [w, 1], Le, (2, ¢} & x(u,v) for all ¢/ £ 4.

Since pi’,u) =1 and py(, ) =1 for &' # 2 and
¥ #y, it follows that Pp(a,4/) will not route through
vertex u and therefore, {#',9) & x(u,v) for all &’ #£ x and
4 # . Hence, the equivalence class in [, v} containing
{z,%) has exactly four clements (2% xp,1), where
£y, = 0, 1.

We note that {z,y)-paits discussed in Case 1 are
different from those in Case 2 since ﬁ;;(:ﬂ, y)in Case 1 is
not equal to ﬁ'u(m, #) in Case 2, Therefore, these two cases
define different equivalence classes, We can show, using
similar arguments, that x(u,v) containing (z,y) with
{meoa(v), proafu)) = [£4, 2] for 4> 0 defines different
equivalence classes from others. Thus, each equivalence
class in x{u,v) contains cxactly four elements, and the
lerma is proven, [
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