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Development of an on-line diagnosis system for rotor vibration
via model-based intelligent inference

Mingsian R. Bai,a) Ilong Hsiao, Hsuming Tsai, and Chinteng Lin
Department of Mechanical Engineering, Chiao-Tung University, 1001 Ta-Hsueh Road,
Hsin-Chu 30050, Taiwan, Republic of China

~Received 22 July 1998; revised 30 September 1999; accepted 2 October 1999!

An on-line fault detection and isolation technique is proposed for the diagnosis of rotating
machinery. The architecture of the system consists of a feature generation module and a fault
inference module. Lateral vibration data are used for calculating the system features. Both
continuous-time and discrete-time parameter estimation algorithms are employed for generating the
features. A neural fuzzy network is exploited for intelligent inference of faults based on the
extracted features. The proposed method is implemented on a digital signal processor. Experiments
carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in
predictive maintenance. ©2000 Acoustical Society of America.@S0001-4966~00!03201-X#

PACS numbers: 43.40.Le, 43.40.At@CBB#
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INTRODUCTION

Process automation has been a trend in mass-produ
industries worldwide. In process automation, direct cont
with the human operators is reduced and automatic me
are generally employed to monitor the health of process
ements. Early detection and isolation of machine faults
been a key issue of productivity and safety.

Traditionally, fault detection and isolation~FDI! is car-
ried out on a periodic basis to check either the overall le
or the band level of vibrations with regard to a certain thre
old and alarms are triggered if the limits are exceeded. T
class of methods is known as limit checking.1–3 As a more
advanced approach, computer-based expert systems can
be used.4,5 However, faults are usually detected by the
methods at a rather late stage near failure. Motivated by
need for early FDI, this paper proposes an on-line mod
based diagnosis technique for rotator vibration. The requ
model must be identified on the basis of the input–out
relationship of the system of interest. These techniques m
use of more information than the pure signal-based meth
that are based on only the outputs to the system. The ad
tage of including a model lies in the early detection a
isolation of faults and reduced number of sensors. Mod
based methods have been utilized for vibration monitoring
cracked beams and rotors from the structure point of view6–9

This paper has a slightly different perspective that is aim
primarily at the common rotor faults in the discrete comp
nents and the system as a whole.

The general architecture of these methods can be
vided into two major steps:~1! generation of features from
the monitored signals and~2! inference and isolation of the
faults. The dynamic model of the physical system of inter
is identified via either a recursive continuous-time algorith
or a discrete-time parameter estimation algorithm.10 On the
basis of extracted features, fault types are determined by
ing the neural fuzzy intelligent inference algorithms.11 The

a!Electronic mail: msbai@cc.nctu.edu.tw
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architecture of the model-based method is depicted in Fig
Rotating machines are chosen as the target applicatio

validate the proposed FDI techniques because they repre
a large class of industrial machinery. In particular, we us
rotor kit that is capable of producing several kinds of co
mon faults of rotating machinery. Then, we use a centrifu
fan to justify the practicality of the integrated FDI system

I. RECURSIVE PARAMETER ESTIMATION FOR
ROTORS

A. Continuous-time parameter estimation

Model-based diagnosis algorithms generally fall in
two categories: the state estimation methods1,12 and the pa-
rameter estimation methods.10,13–16State estimation method
can further be classified into three kinds of schemes: the f
detection filter,17 the parity space method,18,19 and the dedi-
cated observer method.20 In this paper, we choose the param
eter estimation method because it reflects more directly
change of system characteristics and is also robust ag
disturbances and uncertainties.

For processes with lumped parameters that can be
earized about the operating point, the dynamic models u
ally take the forms of ordinary differential equations

y~ t !1a1y~1!~ t !1¯1any~n!~ t !

5b0u~ t !1b1u~1!~ t !1¯1bmu~m!~ t !, ~1!

with

y~ t !5Y~ t !2Y0 and u~ t !5U~ t !2U0 , ~2!

whereU0 , Y0 are the steady-state~or direct current! values
of the input signalU(t) and the output signal~t! around the
operating point, andy(n)(t)5dny(t)/dtn. The process mode
in Eq. ~1! can be written more compactly in a linear regre
sion form

y~k!5cT~k!u~k!, ~3!

with the parameter vector
3150/107(1)/9/$17.00 © 2000 Acoustical Society of America
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uT~k!5@a1¯anb0¯bm# ~4!

and the data vector

cT~k!5@2y~1!~ t !¯2y~n!~ t !u~ t !¯u~m!~ t !#, ~5!

wherek is the iteration index on the discrete-time base. T
task of feature extraction here consists of estimatingu based
on the measuredc. In this paper, the recursive least-squa
~RLS!21 algorithm with forgetting factor is utilized to esti
mate the parameters. Defining the data matrix

ck
T5@c~1!c~2!c~3!¯c~k!#, ~6!

and the covariance matrix

P~k!5@ck
Tck#

21, ~7!

the procedures are summarized as follows:

~1! Initialize the parameter vectorû(k50) and the covari-
ance matrixP(k50)5pI , with p being a very large con
stant andI being the identity matrix.

~2! Obtain the input and output data to form the new d
matrix c(k) andy(k).

~3! Form the a priori prediction error«(k) using

«~k!5y~k!2cT~k!û~k21!. ~8!

~4! Update the parameter estimatesû(k) using

û~k!5û~k21!1F~k!«~k!, ~9!

where

F~k!5
P~k21!

l1cT~k!P~k21!c~k!
c~k!, ~10!

and l is called the forgetting factor that introduces i

FIG. 1. Architecture of the model-based method for the fault diagno
system.
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creasing weaker weighting on the old data in the q
dratic cost function of«(k).22

Update the covariance matrixP(k) using

P~k!5
1

l
@ I 2F~k!cT~k!#P~k21!. ~11!

~5! Setk5k11 and go to step~2!.

Some remarks should be made on the practical imp
mentation of the RLS algorithm. In principle, large initia
P(0) ~corresponding to large uncertainty and rapid fluctu
tions! and large forgetting factorsl ~close to unity! should
be selected if the input signals are not sufficiently pers
tently exciting or spectrally rich,22 which is usually the case
in the constant-speed operations of rotating machines. A
proper scaling may be necessary to improve the converge
when some of the model coefficients are out of proportion
the others.

There remains one problem to resolve before the ap
cation of the continuous-time parameter estimation. The t
derivatives in the data vectorc are usually unavailable if
only the signalsu(t) and y(t) are measured. One way t
overcome the difficulty is to use the state variable fil
~SVF!.23 It is a state representation of annth-order low-pass
transfer functionF(s),

F~s!5
yF~s!

y~s!
5

1

f 01 f 1s1¯1 f nsn , ~12!

whereyF(s) andy(s) represent the Laplace transform of th
filtered outputyF(t) and the original outputy(t), respec-
tively. It provides simultaneously the time derivatives~with-
out direct differentiation! and filtering of the noise~Fig. 2!.
In the paper, we choose a fourth-order Butterworth filter w
a cutoff frequency of 200 Hz.

After all the derivatives are obtained from the SVF, t
RLS algorithm is employed to calculate the model para
etersu. Assume that the relationship between the model
rametersu and the process coefficientsr is

u5 f ~r!, ~13!

or, in matrix form,

u5Cz, ~14!

wherez is a function ofr, i.e.,

z5g~r!. ~15!

is

FIG. 2. Block diagram of the state variable filter~SVF!.
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Thus the process coefficientsr can be obtained from the
inverse relationship

r5 f 21~u!. ~16!

A useful alternative to the forgoing continuous-time p
rameter algorithm is the discrete-time parameter estima
algorithm. The discrete-time algorithm follows basically t
same line as the continuous-time version, except that the
vectorc contains the present and past data samples ins
of time derivatives. There is no need for the SVF process
in constructing the data. The advantage of the discrete-t
algorithm lies in the fact that it accommodates better than
continuous-time version the high-order dynamics of m
complicated systems that cannot be modeled as simple
tors.

B. Modeling of rotor dynamics

In the paper, we model the rotor systems in terms
lateral vibrations that reflect the rotor faults commonly e
countered in practical applications. A classical rotor mo
suited for this purpose is the Jeffcott model.24,25

The Jeffcott model illustrated in Fig. 3, consists of
massless circular shaft with a fixed rigid circular disc su
ported by flexible bearings at the center of the shaft. The d
is mounted with its plane perpendicular to the shaft axis.
mass centerS has a radial offsete with the shaft centerW.
The disc is assumed to move only in the 1-2 plane. T
movement of the shaft centerW relative to the unloaded
position is given by coordinates (y1 ,y2) and the angle of the
disc position is given byw. The position of the pointScan be
expressed as

z15y11e cosw, ~17!

z25y21e sinw. ~18!

Assume that the damping coefficients in directions 1 an
are d1 and d2 , respectively, the stiffness of shaft isK, and
two bearings have equal pairs of stiffnessK1 andK2 in the
directions 1 and 2, respectively. The total stiffness of
shaft and bearings is

K185
K

11K/2K1
, ~19!

K285
K

11K/2K2
. ~20!

FIG. 3. The Jeffcott rotor model with flexible bearings.
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The equations of motion~as functions ofy1 , y2 , andw! can
be obtained from applying Newton’s second law in trans
tion and rotation.

Mÿ11d1ẏ11K18y15Me~ ẅ sinwt1ẇ2 coswt !, ~21!

Mÿ21d2ẏ21K28y25Me~2ẅ coswt1ẇ2 sinwt !2G, ~22!

I pẅ1e~d1ẏ11K18y1!sinwt2e~d2ẏ21K28y2!coswt5T~ t !,
~23!

whereM is the mass of the disc,G is the weight of the disc,
I p is the polar moment of inertia of disc, andT(t) is the
mechanical torque input. Assuming thaty1 andy2 are mea-
sured with reference to the equilibrium position, we can
write Eqs. ~21! and ~22!, adjusted with an angle offsetw0

that is the angle between the reference point and the cent
mass,

ÿ12j1v01ẏ11v01
2 y15e@ẅ sin~w1w0!

1ẇ2 cos~w1w0!#, ~24!

ÿ212j2v02ẏ21v02
2 y25e@2ẅ cos~w1w0!

1ẇ2 sin~w1w0!#. ~25!

Or,

ÿ112j1v01ẏ11v01
2 y15e cosw0~ ẅ sinw1ẇ2 cosw!

1e sinw0~ ẅ cosw2ẇ2 sinw!,

~26!

ÿ212j2v02y21v02
2 y25e cosw0~2ẅ cosw1ẇ2 sinw!

1e sinw0~ ẅ sinw1ẇ2 cosw!,

~27!

where

v0i5AKi8

M
, ~28!

j i5
AKi8M

2di
. ~29!

Equations~26! and ~27! form the basis of the continuous
time parameter estimation which can be recast into the lin
regression forms

yi~k!5c i
T~k!u i~k!, i 51,2, ~30!

where

c1
T~k21!5@ ÿ1ẏ1ẅ sinw1ẇ2 coswẅ cosw2ẇ2 sinw#,

~31!

c2
T~k21!5@ ÿ2ẏ2ẇ2 sinw2ẅ coswẅ sinw1ẇ2 cosw#,

~32!

u1
T~k!5@2a112a21b11b21#, ~33!

u2
T~k!5@2a122a22b12b22#, ~34!

and
317Bai et al.: Diagnoses of rotor faults
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a1i51/v0i
2 , a2i52j i /v0i , b115b125e cosw0 ,

~35!
b215b225e sinw0 .

From the model parameters, the process coefficients ca
recovered as

v0i5
1

Aa1i

, i 51,2, ~36!

j i5
a2i

2Aa1i

, i 51,2, ~37!

e5Ab11
2 1b21

2 5Ab12
2 1b22

2 . ~38!

II. INTELLIGENT INFERENCE ALGORITHMS FOR FDI

In the paper, artificial neural network and fuzzy theo
are utilized for inference of rotor faults. Figure 4 shows
mathematical model of the biological neuron, usually cal
an M -P neuron,26,27 where thei th processing element com
putes a weighted sum of its inputsx0 ,x1 ,x2 ,...,xn and out-
putsyi51 ~firing! or 0 ~not firing! according to whether this
weighted input sum is above or below a certain thresholdu i ,

yi~k11!5a~ f !(
j 50

n

wi j xi~k!2u i , ~39!

where k is the iteration index of input and output and th
activation functiona( f ) is a unit step function,

a~ f !5H 1, if f >0

0, otherwise
. ~40!

In the paper, the supervised learning network with ba
propagation is employed. The algorithm generally includ
two phases: the learning~training! process and the recall pro
cess. In the supervised learning, the objective is to reduce
error between the desired output and the calculated ou
To quantify the quality of learning, an error function is u
lized,

E5
1

2 (
i

~Ti2Ai !
2, ~41!

whereTi is the desired output vector andAi is the calculated
output vector. Methods such as the gradient search algor
can be used for finding the minimum ofE. In the training
phase, the network weightings are updated according to

FIG. 4. A schematic diagram of a McCulloch–Pitts neuron~Ref. 26!.
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sensitivity of the error function with respect to the weigh
ings

Dwi j
n 52h

]E

]wi j
n , ~42!

whereDwi j
n is the increment of the weighting between th

i th processing element of the (n21)th layer and thej th
processing element of thenth layer, andh is the step size for
the gradient search algorithm.

Since Zadeh introduced in 1965 the fuzzy sets to rep
sent vagueness of linguistics, a rapid growth in the use
fuzzy theories is witnessed in many scientific applications26

In contrast to classical sets that are crisp sets based on
binary logic ~‘‘Truth’’ or ‘‘False’’ !, the fuzzy sets are no
only to classify one element belonging to a set or not, bu
fuzzify in ‘‘Truth’’ with some degree of membership. LetÃ
be a fuzzy set andU be its universe of discourse

Ã5$~x,m Ã~x!!uxPU%, ~43!

wherem Ã(x) is the membership function ofx in the fuzzy set
Ã that represents the degree ofx belonging to the fuzzy se
Ã, and its value is usually in the interval@0, 1#. A general
architecture of a fuzzy logic control~FLC! system including
a fuzzifier, a fuzzy rule base, an inference engine, an
defuzzifier, is shown in Fig. 5. If the output from the defuzz
fier is not a control action~as in our case! for a plant, the
system becomes a fuzzy logic decision system.

In this study, a Self-cOnstructing Neural Fuzzy Infe
ence Network~SONFIN!, which is inherently a fuzzy rule-
based model possessing neural network,26 is employed for
intelligent inference and isolation of faults. This techniq
integrates the advantages of both artificial neural netw
and the fuzzy theory, and is well suited for automatic infe
ence required in the FDI application. The structure of t
SONFIN is shown in Fig. 6, whereby the network consists
six layers: the input layer, the membership layer, the fuz
rule layer, the normalization layer, the consequent layer,
the output layer. The network realizes the following fuz
model:

Rule i : IF ~x1 is Ai1 and̄ and xn is Ain!

THEN ~y is m0i1aji xj1¯ !, ~44!

whereAi j is a fuzzy set,m0i is the center of a symmetric
membership function ony, and aji is a consequent param
eter. There are no rules initially, but they are created a
adapted as on-line learning proceeds via simultaneous s
ture and parameter identification. The learning process
volves four steps: input/output space partitioning, constr

FIG. 5. Block diagram of a fuzzy logic controller~FLC! ~Ref. 26!.
318Bai et al.: Diagnoses of rotor faults
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tion of fuzzy rules, optimal consequent structu
identification, and parameter identification. The first thr
steps are for structure learning and the last step for param
learning. In the structure identification of the preconditi
part, the input space is partitioned by using an align
clustering-based algorithm, while in the structure identific
tion of the consequent part only a single value selected b
clustering method is assigned to each rule initially. Afte

FIG. 6. Structure of the Self cOnstructing Neural Fuzzy Inference Netw
~SONFIN!. In the figure,x’s are input variables;R’s are fuzzy rules;a’s are
weightings in back-propagation.

FIG. 7. Schematic of the discriminatory information~DI! method.~a! A
more discriminatory feature;~b! a less discriminatory feature.
319 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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wards, some additional significant input variables selec
via the Gram–Schmidt orthogonalization for each rule w
be added to the consequent part incrementally. Furtherm
to enhance the knowledge representation, a linear trans
mation for each input variable is incorporated into the n
work so that fewer rules are needed. Finally, in parame
identification, the RLS algorithm is used to tune the para
eters in layer 5 and the back-propagation algorithm is use
update the parameters of the membership functions in la
2. The trained neural fuzzy network is used for the sub
quent inference for faults. The unique features of SONF
are twofold. First, the structure and the weights of the n
work are automatically adjusted. Second, a high-dimensio
fuzzy system is implemented with a small number of ru
and fuzzy terms. Due to the physical meaning of the fuz
if–then rule, each input node in the SONFIN is only co
nected to its related rule nodes through its term nodes,
stead of being connected to all the rule nodes in layer 3. T
results in a small number of weights to be tuned. In so
cases, however, it is time consuming to train the netw
provided the number of inputs is large. To alleviate the d
ficulty, a Discriminatory Information~DI! method4 can be

k

FIG. 8. Experimental arrangement of the rotor kit.

FIG. 9. The time variation ofe in the normal, imbalanced, looseness, a
faulty bearing conditions of the rotor kit. Normal: ——, imbalanced:•• ,
looseness: –•–, and faulty bearing: --.
319Bai et al.: Diagnoses of rotor faults
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used to calculate the statistics of the data and retain only
inputs that account for the distinct features associated w
the different conditions. The basic idea of the DI method
to choose the features that have distributions of dist
means and small spreads with respect to different conditi
The procedure is summarized as follows:

~a! A test is performed to collect 128 samples of syst
parameters, e.g., eccentricity, damping ratio, natu
frequency, etc.

~b! Probability density functions~pdf! are calculated for
the extracted parameters in an off-line manner.

~c! If the mean value deviates from the normal case
20% and the ‘‘2-s’’ regions do not overlap, then the
parameter is considered a good discriminator for
fault type of interest and thus serves as an input v
able to the network. Otherwise, the parameter is d
carded.

An example of the use of the DI method is shown in Fig.
The feature of Fig. 7~a! shows more isolated mean valu
and smaller variances than that of Fig. 7~b!. Thus the former
feature is preferably used as the principal input to the n
work.

III. EXPERIMENTAL INVESTIGATIONS

Experiments were carried out to validate the propo
FDI technique. In particular, we verified the feature gene
tion and fault inference algorithm by using a rotor kit that
capable of producing common rotor faults. Then, a centr
gal fan was also used to justify the practicality of the F
system.

TABLE I. Effects of different faults on the estimated continuous-time p
cess coefficients for the rotor kit.~x̄: average;s: standard deviation;1:
increase;2: decrease;* : insignificant!.

Parameters

Condition
x̄ of
v01

x̄ of
v02

x̄ of
j1

x̄ of
j2

x̄ of
e

s of
v01

s of
v02

s of
j1

s of
j2

s of
e

Disturbance 2 2 * 1 * 1 1 1 1 1

Imbalance 1 * 2 * 1 1 * 2 * 1

Misalignment 1 1 1 1 1 1 1 1 1 1

Looseness * 2 2 2 2 * * 2 2 2

Faulty bearing 2 * 1 * * 1 * 1 * 1
320 J. Acoust. Soc. Am., Vol. 107, No. 1, January 2000
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A. Rotor kit

A rotor kit is used in the first part of the experimen
~Fig. 8!. The rotor kit consists of a constant-speed~1500
rpm! induction motor, a coupling, a steel shaft, two ba
bearing supports, an aluminum disk, and a disturbance m
module. Five common rotor faults, imbalance, misalignme
disturbance, mechanical looseness, and faulty bearings
be conveniently produced by the rotor kit. Imbalance is c
ated by adding an imbalanced weight on the disk. Misalig
ment is created by dislocating the coupling with a rad
offset. Disturbance is created by a frictional disk driven
another induction motor running at a different angular f
quency. The mechanical looseness is created by loose
one of the four bolts at the two bearing supports. The bea
fault is created by using a damaged outer ring. On the o
hand, the FDI system consists of two eddy-current probe
photo switch~for angular frequency measurement!, and a
personal computer equipped with a DSP card~TMS320C32!
and 32 analog I/O channels.

In case 1, the FDI method based on continuous-ti
parameter estimation is investigated. Lateral displacem
in both horizontal and vertical directions near the center
the disc are measured by two eddy-current probes. The
gular velocityV is measured by a photo switch. The me
sured signals are fed to the DSP via the analog I/O mod
with a sampling rate 200 Hz. Using the SVF method, t
time derivatives of displacements are calculated. Based
the data, the continuous-time RLS algorithm is employed
generate the features including five process coefficients.
DI procedure is used to preprocess the features and rem
the insignificant inputs. These data features then become
input vector to the neural fuzzy network. In the first~train-
ing! stage of 12-sec measurement, five types of fault and
normal condition are produced by the rotor kit, and the d
features are calculated to train the neural fuzzy network
the second~recall! stage, the rotor is restarted for five time
and for each time the faults are regenerated to verify
trained network. Each time record is further divided into t
sets to represent ten experiments. There are altogether35
3105300 experiments. Figure 9 shows the variations ofe in
the normal, imbalanced, mechanical looseness, and fa
bearing conditions, respectively, of the rotor kit. The var
tions of the other process coefficients in the other conditi
during an ongoing experiment are similarly calculated. T
effects of five types of fault on the estimated process coe
cients for the rotor kit are summarized in Table I. Appa
aring
TABLE II. Performance of the continuous-time model-based FDI technique for the rotor kit.

Condition

Result Normal Disturbance Imbalance Misalignment Looseness Faulty be

Normal 100% 0% 0% 0% 0% 0%
Disturbance 0% 92% 0% 0% 0% 0%
Imbalance 0% 8% 100% 0% 0% 0%
Misalignment 0% 0% 0% 100% 2% 0%
Looseness 0% 0% 0% 0% 98% 8%
Faulty bearing 0% 0% 0% 0% 0% 92%

Average rate of correct inference: 97.0%
320Bai et al.: Diagnoses of rotor faults
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TABLE III. Performance of the discrete-time model-based FDI technique model for the rotor kit.

Condition

Result Normal Disturbance Imbalance Misalignment Looseness Faulty bea

Normal 100% 0% 0% 0% 0% 0%
Disturbance 0% 100% 0% 0% 0% 0%
Imbalance 0% 0% 98% 0% 0% 0%
Misalignment 0% 0% 0% 96% 0% 0%
Looseness 0% 0% 2% 4% 100% 0%
Faulty bearing 0% 0% 0% 0% 0% 100%

Average rate of correct inference: 99.0%
c
th
e
e
it
ar

p
tio
a

s

n
.
si

eri-
time

is
the

w-
the
es,

III
ch-
-
ars
e

al
he
is

nt-
-
on

n-
esti-

nd
d:
ently, it is very difficult for an experienced operator to dete
and isolate the fault by merely looking at the trends in
table. This calls for the capability of automatic machin
learning of the neural fuzzy network. Table II summariz
the performance of the continuous-time FDI technique w
neural fuzzy inference for the rotor kit. The result appe
acceptable~average rate of correct inference597%!.

In case 2, the FDI technique based on discrete-time
rameter estimation is examined. The foregoing assump
that the angular frequency is constant is relaxed. It is
sumed that the discrete-time model of the rotor system i
the form

y1~k!52a1i y1~k21!2a2i y1~k22!

1b1iv̇ cos~vk!1b2iv̇ cos~v~k21!!

1b3iv̇ sin~vk!1b4iv̇ sin~v~k21!!,

i 51,2, ~45!

wherea’s andb’s are model parameters to be determined a
v̇ is the time derivative ofv that is calculated by the SVF
The above equations can be cast into the linear regres
form y(k)5cT(k)u(k) with the data vectors

Ci
T~k21!5@yi~k21!yi~k22!v̇ cos~vk!v̇

3cos~v~k21!!v̇ sin~vk!

3v̇ sin~v~k21!!#, i 51,2, ~46!

and the parameter vectors

u i
T~k!5@2a1i2a2ib1ib2ib3ib4i #. ~47!

FIG. 10. Experimental arrangement of the centrifugal fan.
oc. Am., Vol. 107, No. 1, January 2000
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Other than the parameter estimation model, the exp
mental setup remains the same as in the continuous-
case. The discrete-time parameter estimation algorithm
employed to generate the features that in turn become
input vectors to the neural fuzzy inference network. Follo
ing a procedure similar to the continuous-time algorithm,
neural fuzzy network is necessary to infer the fault typ
based on the features~model parameters in this case! ex-
tracted earlier by the discrete-time RLS algorithm. Table
summarizes the performance of the discrete-time FDI te
nique with neural fuzzy inference for the rotor kit. In com
parison with the continuous-time method, the result appe
to be slightly improved~average rate of correct inferenc
599.0%!.

B. Centrifugal fan

A more practical system, a two-horsepower centrifug
fan, is chosen for validating the proposed FDI technique. T
experimental setup including the fan and the FDI system
shown in Fig. 10. The fan system consists of a consta
speed~1750 rpm! AC induction motor, a steel shaft, a cou
pling, two bearing supports, and 12 impellers. Four comm
faults of centrifugal fans, including imbalance, misalig
ment, mechanical looseness, and faulty bearing are inv

FIG. 11. The time variation ofe in the normal, imbalanced, looseness, a
faulty bearing conditions of the centrifugal fan. Normal: ——, imbalance
•• , looseness: –•–, and faulty bearing: --.
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 Redistr
gated in the experiment. The faults are created the same
as the earlier procedures in rotor kit, except that the fau
bearing was replaced with a lubricated bearing.

In case 1, the FDI technique based on continuous-t
parameter estimation is examined. Lateral displacement
both horizontal and vertical directions near the impellers
measured by two eddy-current probes. The angular velo
V is measured by the photo switch. The other conditions
the same as in case 1 of the rotor kit. Following a proced
similar to the continuous-time algorithm, the neural fuz
network is necessary to infer the fault types, based on
features extracted earlier by the RLS algorithm. Figure
shows the variations ofe in the normal, imbalanced, me
chanical looseness, and faulty bearing conditions, res
tively. The neural fuzzy network is used to infer the fau
types, based on the features~process coefficients in this cas!
extracted earlier by the continuous-time RLS algorith
Table IV summarizes the performance of the continuo
time FDI technique with neural fuzzy inference for the ce
trifugal fan. The result appears acceptable~average rate of
correct inference598.4%!.

In case 2, the FDI method based on the discrete-t
parameter estimation technique is examined. The forego
assumption that the angular frequency is constant is rela
The other conditions remain unchanged from case 2 of
rotor kit. Following a procedure similar to the continuou
time algorithm, the neural fuzzy network is necessary to
fer the fault types, based on the features extracted earlie
the RLS algorithm. Table V summarizes the performance
the discrete-time FDI technique with neural fuzzy inferen
for the centrifugal fan. Compared to the continuous-tim
method, the result appears excellent~average rate of correc
inference5100.0%!. It is noted from Tables II–V that the

TABLE IV. Performance of the continuous-time model-based FDI te
nique for the centrifugal fan.

Condition

Result Normal Imbalance Misalignment Looseness
Faulty
bearing

Normal 92% 0% 0% 0% 0%
Imbalance 0% 100% 0% 0% 0%
Misalignment 0% 0% 100% 0% 0%
Looseness 8% 0% 0% 100% 0%
Faulty bearing 0% 0% 0% 0% 100%

Average rate of correct inference: 98.4%

TABLE V. Performance of the discrete-time model-based FDI technique
the centrifugal fan.

Condition

Result Normal Imbalance Misalignment Looseness
Faulty
bearing

Normal 100% 0% 0% 0% 0%
Imbalance 0% 100% 0% 0% 0%
Misalignment 0% 0% 100% 0% 0%
Looseness 0% 0% 0% 100% 0%
Faulty bearing 0% 0% 0% 0% 100%

Average rate of correct inference: 100.0%
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‘‘false alarm’’ rates and ‘‘failure-to-alarm’’ rates are all zer
except the case of the centrifugal fan, where 8% of the d
under ‘‘normal’’ conditions are misinterpreted as loosene
faults. In these experiments, 97% detection rate is consid
sufficient.

IV. CONCLUDING REMARKS

An on-line FDI system for rotator vibration is presente
The development of the proposed methods is divided i
two stages. First, data features are generated based on
model-based methods. Second, fault types are determ
based on the extracted features via neural fuzzy infere
algorithms. The proposed FDI system is implemented o
DSP. The usefulness of the proposed technique in identify
common rotor faults has been justified by experiments c
ducted for a rotor kit and a centrifugal fan. From the expe
mental results, the discrete-time parameter estimation
proach that does not require analytical modeling of
system yields better performance than the continuous-t
approach. However, the success of the methods hinges o
proper choices of the model structures.

The proposed FDI technique can readily be extended
other systems such as centrifugal pumps, centrifugal c
pressors, and machine tools. The system will be extended
handling multiple faults. In practical applications, inform
tion is generally incomplete. The machine condition is ge
erally unknown so that the field data are insufficient for
liable training of the network. Thus enhancing the pres
neural fuzzy inference network, in light of machine learni
and human knowledge, for an expert system suited for rob
FDI will be the focus of future research.
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