Development of an on-line diagnosis system for rotor vibration
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An on-line fault detection and isolation technique is proposed for the diagnosis of rotating
machinery. The architecture of the system consists of a feature generation module and a fault
inference module. Lateral vibration data are used for calculating the system features. Both
continuous-time and discrete-time parameter estimation algorithms are employed for generating the
features. A neural fuzzy network is exploited for intelligent inference of faults based on the
extracted features. The proposed method is implemented on a digital signal processor. Experiments
carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in
predictive maintenance. @000 Acoustical Society of Amerid&0001-496600)03201-X]

PACS numbers: 43.40.Le, 43.40.KEBB]

INTRODUCTION architecture of the model-based method is depicted in Fig. 1.
Rotating machines are chosen as the target application to
Process automation has been a trend in mass-productiaalidate the proposed FDI techniques because they represent
industries worldwide. In process automation, direct contach large class of industrial machinery. In particular, we use a
with the human operators is reduced and automatic meanstor kit that is capable of producing several kinds of com-
are generally employed to monitor the health of process elmon faults of rotating machinery. Then, we use a centrifugal
ements. Early detection and isolation of machine faults haan to justify the practicality of the integrated FDI system.
been a key issue of productivity and safety.
Traditionally, fault detection and isolatiaiDl) is car-
ried out on a periodic basis to check either the overall leve| precURSIVE PARAMETER ESTIMATION FOR
or the band level of vibrations with regard to a certain threshroTORS
old and alarms are triggered if the limits are exceeded. This ] ) o
class of methods is known as limit checkitig.As a more /- Continuous-time parameter estimation
advanced approach, computer-based expert systems can also Model-based diagnosis algorithms generally fall into
be used:® However, faults are usually detected by thesetwo categories: the state estimation metdddsnd the pa-
methods at a rather late stage near failure. Motivated by theameter estimation method%!3-¢State estimation methods
need for early FDI, this paper proposes an on-line modelean further be classified into three kinds of schemes: the fault
based diagnosis technique for rotator vibration. The requiredetection filter” the parity space methdd;*°and the dedi-
model must be identified on the basis of the input—outputated observer methdfIn this paper, we choose the param-
relationship of the system of interest. These techniques maketer estimation method because it reflects more directly the
use of more information than the pure signal-based methodshange of system characteristics and is also robust against
that are based on only the outputs to the system. The advadisturbances and uncertainties.
tage of including a model lies in the early detection and For processes with lumped parameters that can be lin-
isolation of faults and reduced number of sensors. Modelearized about the operating point, the dynamic models usu-
based methods have been utilized for vibration monitoring oflly take the forms of ordinary differential equations
cracked beams and rotors from the structure point of Vigw. D4 A v D) 4t ay(t
This paper has a slightly different perspective that is aimeal( )+ay (Y 2y (1)
primarily at the common rotor faults in the discrete compo-  =bgu(t)+bu®(t)+---+bu™(t), (1)
nents and the system as a whole. .
The general architecture of these methods can be dlv—V'th
vided into two major stepsil) generation of features from y(t)=Y(t)=Yy and u(t)=U(t)— Uy, (2)

the monitored signals an@) inference and isolation of the whereU,, Y, are the steady-stater direct current values

faults. The dynamic model of the physical system of interesbf the input signal(t) and the output signdt) around the
is identified via either a recursive continuous-time algorithmOperating point, ang™(t) = d"y(t)/dt". The process model

or a discrete-time parameter estimation algonf‘ﬁrﬁ_)n the in Eq. (1) can be written more compactly in a linear regres-
basis of extracted features, fault types are determined by Ugion form

ing the neural fuzzy intelligent inference algorithfdsThe
y(k)=yT(k)0(k), ()

3E|ectronic mail: msbai@cc.nctu.edu.tw with the parameter vector
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FIG. 1. Architecture of the model-based method for the fault diagnosi

system.

07(k)=[ay *-anby - -bp] (4)
and the data vector
YT =[—yP(®)-=yPOut)--u™n], (5

P o0

S

Y ()

FIG. 2. Block diagram of the state variable filSVF).

creasing weaker weighting on the old data in the qua-
dratic cost function ok (k).?2
Update the covariance matri(k) using

1
P(k)=X[l—F(k)iﬂT(k)]P(k—l)- (11)

(5) Setk=k+1 and go to step2).
Some remarks should be made on the practical imple-

mentation of the RLS algorithm. In principle, large initial
P(0) (corresponding to large uncertainty and rapid fluctua-

Jions) and large forgetting factors (close to unity should

be selected if the input signals are not sufficiently persis-
tently exciting or spectrally rick? which is usually the case
in the constant-speed operations of rotating machines. Also,
proper scaling may be necessary to improve the convergence
when some of the model coefficients are out of proportion to
the others.

There remains one problem to resolve before the appli-

wherek is the iteration index on the discrete-time base. Thecation of the continuous-time parameter estimation. The time

task of feature extraction here consists of estimatifgased

derivatives in the data vectaf are usually unavailable if

on the measureg. In this paper, the recursive least-squareonly the signalsu(t) and y(t) are measured. One way to
(RLS)*" algorithm with forgetting factor is utilized to esti- overcome the difficulty is to use the state variable filter

mate the parameters. Defining the data matrix

U= D) P(2)¢(3) (k)] (6)
and the covariance matrix
P(K) =[] (7

the procedures are summarized as follows:

(1) Initialize the parameter vectat(k=0) and the covari-
ance matri¥?(k=0)=pl, with p being a very large con-
stant and being the identity matrix.

(SVP.Z It is a state representation of ath-order low-pass
transfer functionF(s),

Ye(s) 1
y(s) fotfis+---+f s

whereyg(s) andy(s) represent the Laplace transform of the
filtered outputyg(t) and the original outpuy(t), respec-
tively. It provides simultaneously the time derivativegth-

out direct differentiation and filtering of the noiséFig. 2).

In the paper, we choose a fourth-order Butterworth filter with

F(s)= (12)

(2) Obtain the input and output data to form the new date? cutoff frequency of 200 Hz.

matrix (k) andy(k).
(3) Form the a priori prediction errar(k) using

s(K=y(k)— (K Bk—1). 8
(4) Update the parameter estimai@) using
(k)= 0(k—1)+F(k)s(k), 9)
where
P(k—1)
F(k) (k), (10)

BTG

and \ is called the forgetting factor that introduces in-
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After all the derivatives are obtained from the SVF, the
RLS algorithm is employed to calculate the model param-
etersd. Assume that the relationship between the model pa-
rametersd and the process coefficienisis

6=1(p), (13
or, in matrix form,
6=Cz, (14)
wherez is a function ofp, i.e.,
z=g(p). (19
Bai et al.: Diagnoses of rotor faults 316



The equations of motiotas functions ofy,, y,, andg) can
be obtained from applying Newton’s second law in transla-
tion and rotation.

L
Qh

MV, +dy,+ Ky, =Me(p singt+ o2 coset), (21)

MV, +d,y,+ Koy,=Me(— ¢ coset+ p? sinpt) — G, (22

|pibte(diy1+Kiy1)singt—e(dyy,+Kjy,)coset=T(1),
(23

whereM is the mass of the dis& is the weight of the disc,
o ) I, is the polar moment of inertia of disc, aidt) is the
Thus the process coefficients can be obtained from the mechanical torque input. Assuming that andy, are mea-
inverse relationship sured with reference to the equilibrium position, we can re-
p=f"1(9). (16) write_ Egs.(21) and (22), adjusted with an_angle offsedy
that is the angle between the reference point and the center of
A useful alternative to the forgoing continuous-time pa-mass,
rameter algorithm is the discrete-time parameter estimation i ) L
algorithm. The discrete-time algorithm follows basically the ¥+ 2é1@0Y1+ @g1y1=€[ & Sin(e+ ¢o)
same line as the continuous-time version, except that the data +p2cod o+ @o)], (24)
vector ¢ contains the present and past data samples instead
of time derivatives. There is no need for the SVF processing  §,+2&,wq,y,+ w3y, =€[ — & cog o+ @)
in constructing the data. The advantage of the discrete-time o
algorithm lies in the fact that it accommodates better than the e sin(e+¢o)]. (25
continuous-time version the high-order dynamics of moreg.
complicated systems that cannot be modeled as simple ro-
tors. Y1+ 2€, 0011+ w5y1= € COSeo(  Sing+ o2 cose)

FIG. 3. The Jeffcott rotor model with flexible bearings.

+esingy(p cosp— @2 sing),

B. Modeling of rotor dynamics (26)
In the paper, we model the rotor systems in terms of Y2+ 2&,00Y2+ w3y ,= € COS@o( — p COS@+ ? sing)
lateral vibrations that reflect the rotor faults commonly en-
countered in practical applications. A classical rotor model
suited for this purpose is the Jeffcott modef? 27
The Jeffcott model illustrated in Fig. 3, consists of a\vhere
massless circular shaft with a fixed rigid circular disc sup-
ported by flexible bearings at the center of the shaft. The disc \/K\f
Woj = ™M’

+esingy(d sing+ o2 cose),

is mounted with its plane perpendicular to the shaft axis. Its (28)
mass centet has a radial offseé with the shaft centeWV.

The disc is assumed to move only in the 1-2 plane. The \/KI’_M

movement of the shaft centé# relative to the unloaded &= . (29

position is given by coordinatey{,y,) and the angle of the 2d
disc position is given by. The position of the poinBcan be  Equations(26) and (27) form the basis of the continuous-

expressed as time parameter estimation which can be recast into the linear
2,=y,+ecose, 17) regression forms
- = T . i =
. - S gvhere
Assume that the damping coefficients in directions 1 and
ared, andd,, respectively, the stiffness of shaft ks and Y1 (k—1)=[V1Y1% sing+ &2 cosed cose— o2 sing],
two bearings have equal pairs of stiffnéég andK, in the (31)
directions 1 and 2, respectively. The total stiffness of the . N ) o >
shaft and bearings is Po(K=1)=[V2Y2¢° Sinp— ¢ cosp@ sinp+ ¢ COSZD],)
32
’ K T
Ki=1s K/2K,’ (19 01(K)=[—as1—ab11bx], (33
) K 03(K)=[ —as,—axbybyl, (34
Ke=17 KI2K," 20 and
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a2i=2§i/a)0i , bllz blzzeCOSQDO!

(39

b21: b22: esin ®g-

From the model parameters, the process coefficients can
recovered as

woi=—=, =12, (36)

f=—2 12 (37)
' 2ay’ o

e= b2, +b3,=\bZ,+b>, (39

II. INTELLIGENT INFERENCE ALGORITHMS FOR FDI

x u(x) 1‘/1 (62) ¥ x
|——>‘ Fuzzifier H Ine.t;eg:: © H Defuzzifier @-’—S;;s

| or
! outputs

'
'
'

E Fuzzy i y
vi rule ;
| base |1

___________

FIG. 5. Block diagram of a fuzzy logic controlléFLC) (Ref. 26.

sensitivity of the error function with respect to the weight-
ings

JE

e
WhereAwi”j is the increment of the weighting between the
&h processing element of then{ 1)th layer and thejth
processing element of theth layer, andy is the step size for
the gradient search algorithm.

Since Zadeh introduced in 1965 the fuzzy sets to repre-
sent vagueness of linguistics, a rapid growth in the use of
fuzzy theories is witnessed in many scientific applicatiths.

In contrast to classical sets that are crisp sets based on the
binary logic (“Truth” or “False” ), the fuzzy sets are not
only to classify one element belonging to a set or not, but to
fuzzify in “Truth” with some degree of membership. L&t

be a fuzzy set antd be its universe of discourse

A={(x,pa(x))|xeU},

Awjj=

(42

(43)

In the paper, artificial neural network and fuzzy theory whereuz(x) is the membership function efin the fuzzy set
are utilized for inference of rotor faults. Figure 4 shows aj inat represents the degreeobelonging to the fuzzy set

mathematical model of the biological neuron, usually calle

an M-P neuron?®?’where theith processing element com-

putes a weighted sum of its inputg,x,X,,... X, and out-
putsy;=1 (firing) or 0 (not firing) according to whether this
weighted input sum is above or below a certain threstio|d

n

yi(k+1>=a<f>20 wi;Xi (K)— 6, (39)
e

dx

A, and its value is usually in the intervgd, 1]. A general
architecture of a fuzzy logic contrdFLC) system including
a fuzzifier, a fuzzy rule base, an inference engine, and a
defuzzifier, is shown in Fig. 5. If the output from the defuzzi-
fier is not a control actiorfas in our casefor a plant, the
system becomes a fuzzy logic decision system.

In this study, a Self-cOnstructing Neural Fuzzy Infer-
ence Network(SONFIN), which is inherently a fuzzy rule-

wherek is the iteration index of input and output and the based model possessing neural netwrls employed for

activation functiona(f ) is a unit step function,
1, if f=0

f)= .
at) 0, otherwise

(40)

intelligent inference and isolation of faults. This technique
integrates the advantages of both artificial neural network
and the fuzzy theory, and is well suited for automatic infer-
ence required in the FDI application. The structure of the

In the paper, the supervised learning network with back-SONFIN is shown in Fig. 6, whereby the network consists of

propagation is employed. The algorithm generally include

Six layers: the input layer, the membership layer, the fuzzy

two phases: the learninitraining process and the recall pro- rule layer, the normalization layer, the consequent_layer, and
cess. In the supervised learning, the objective is to reduce tH8€ output layer. The network realizes the following fuzzy
error between the desired output and the calculated outpuf?0del:

To quantify the quality of learning, an error function is uti- Rule i: IF (x, is A;; and--and X, is Ai,)

lized,
(44)

where A;; is a fuzzy setmy; is the center of a symmetric
membership function oy, anda;; is a consequent param-
whereT,; is the desired output vector ard is the calculated eter. There are no rules initially, but they are created and
output vector. Methods such as the gradient search algorithmdapted as on-line learning proceeds via simultaneous struc-
can be used for finding the minimum & In the training ture and parameter identification. The learning process in-
phase, the network weightings are updated according to theolves four steps: input/output space partitioning, construc-

THEN (y is mg+a;x;+--),

E=33 (T-A)? (41
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Layer 1 wards, some additional significant input variables selected

via the Gram—-Schmidt orthogonalization for each rule will

be added to the consequent part incrementally. Furthermore,
FIG. 6. Structure of the Self cOnstructing Neural Fuzzy Inference Networkto e.nhance the IanWIGdg_e rep_res_entatlon, a Ilnear transfor-
(SONFIN). In the figureX's are input variablesR's are fuzzy rulesa's are ~ Mation for each input variable is incorporated into the net-
weightings in back-propagation. work so that fewer rules are needed. Finally, in parameter

identification, the RLS algorithm is used to tune the param-
tion of fuzzy rules, optimal consequent structure €ters in layer 5 and the back-propagation algorithm is used to
identification, and parameter identification. The first threeupdate the parameters of the membership functions in layer
steps are for structure learning and the last step for paramet@r The trained neural fuzzy network is used for the subse-
learning. In the structure identification of the preconditionquent inference for faults. The unique features of SONFIN
part, the input space is partitioned by using an alignedire twofold. First, the structure and the weights of the net-
clustering-based algorithm, while in the structure identifica-work are automatically adjusted. Second, a high-dimensional
tion of the consequent part only a single value selected by &izzy system is implemented with a small number of rules

clustering method is assigned to each rule initially. After-and fuzzy terms. Due to the physical meaning of the fuzzy
if—then rule, each input node in the SONFIN is only con-

nected to its related rule nodes through its term nodes, in-
stead of being connected to all the rule nodes in layer 3. This

Eccentricity (e, mm)

1
results in a small number of weights to be tuned. In some
Unbalance , cases, however, it is time consuming to train the network
o . . . . .
@ provided the number of inputs is large. To alleviate the dif-
A ficulty, a Discriminatory Information(DI) method can be
7 Mean value of eccentricity(e)
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20 .
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FIG. 9. The time variation o€ in the normal, imbalanced, looseness, and
FIG. 7. Schematic of the discriminatory informatigBl) method.(a) A faulty bearing conditions of the rotor kit. Normal: ——, imbalanced.;
more discriminatory featurdp) a less discriminatory feature. looseness: —, and faulty bearing: --.
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TABLE |. Effects of different faults on the estimated continuous-time pro- A, Rotor kit
cess coefficients for the rotor kifx: average;o: standard deviation;-: o ) ) ]
increase;—: decrease*: insignifican). A rotor kit is used in the first part of the experiments

(Fig. 8. The rotor kit consists of a constant-spe@d00

rpm) induction motor, a coupling, a steel shaft, two ball-
X of Xof Xof Xof Xof oof ocof cof cof cof  bearing supports, an aluminum disk, and a disturbance motor

Condition  wo; woz & & € wor wz &1 & module. Five common rotor faults, imbalance, misalignment,

Parameters

0]

Disturbance - — * 4+ * 4+ 4+ 4+ 4+ 4 disturbance, mechanical looseness, and faulty bearings can
Imbalance e S S be conveniently produced by the rotor kit. Imbalance is cre-
t/llsallgnment ir + o+ +f j j + + F ated by adding an imbalanced weight on the disk. Misalign-
ooseness - — - — — - - . . . . . I
Faulty bearing — * + * % 4+ % 4 x4 ment is created by dislocating the coupling with a radial

offset. Disturbance is created by a frictional disk driven by
another induction motor running at a different angular fre-
guency. The mechanical looseness is created by loosening
used to calculate the statistics of the data and retain only thgne of the four bolts at the two bearing supports. The bearing
inputs that account for the distinct features associated witl it is created by using a damaged outer ring. On the other
the different conditions. The basic idea of the DI method ishand, the FDI system consists of two eddy-current probes, a
to choose the features that have distributions of distincbhot0 switch (for angular frequency measuremgnand a

means and small spreads with respect to different condition%ersonad computer equipped with a DSP ca1S320C32
The procedure is summarized as follows: and 32 analog I/O channels.

(@ A test is performed to collect 128 samples of system In case 1, the FDI method based on continuous-time
parameters, e.g., eccentricity, damping ratio, naturaparameter estimation is investigated. Lateral displacements

frequency, etc. in both horizontal and vertical directions near the center of
(b) Probability density functiongpdf) are calculated for the disc are measured by two eddy-current probes. The an-
the extracted parameters in an off-line manner. gular velocity Q) is measured by a photo switch. The mea-

(c) If the mean value deviates from the normal case bysured signals are fed to the DSP via the analog I/O module
20% and the “2¢” regions do not overlap, then the Wwith a sampling rate 200 Hz. Using the SVF method, the
parameter is considered a good discriminator for thdime derivatives of displacements are calculated. Based on
fault type of interest and thus serves as an input varithe data, the continuous-time RLS algorithm is employed to
able to the network. Otherwise, the parameter is disgenerate the features including five process coefficients. The
carded. DI procedure is used to preprocess the features and remove

the insignificant inputs. These data features then become the

An example of the use of the DI method is shown in Fig. 7.input vector to the neural fuzzy network. In the fifstain-

The feature of Fig. (@ shows more isolated mean values ing) stage of 12-sec measurement, five types of fault and the

and smaller variances than that of Figb)z Thus the former normal condition are produced by the rotor kit, and the data

feature is preferably used as the principal input to the netfeatures are calculated to train the neural fuzzy network. In

work. the secondrecall) stage, the rotor is restarted for five times
and for each time the faults are regenerated to verify the
trained network. Each time record is further divided into ten

. EXPERIMENTAL INVESTIGATIONS sets to represen_t ten exp(_eriments. There are gltqgevh_ér 6

X 10= 300 experiments. Figure 9 shows the variatione iof
Experiments were carried out to validate the proposedhe normal, imbalanced, mechanical looseness, and faulty

FDI technique. In particular, we verified the feature generabearing conditions, respectively, of the rotor kit. The varia-

tion and fault inference algorithm by using a rotor kit that is tions of the other process coefficients in the other conditions

capable of producing common rotor faults. Then, a centrifu-during an ongoing experiment are similarly calculated. The
gal fan was also used to justify the practicality of the FDI effects of five types of fault on the estimated process coeffi-
system. cients for the rotor kit are summarized in Table I. Appar-

TABLE II. Performance of the continuous-time model-based FDI technique for the rotor kit.

Condition
Result Normal Disturbance Imbalance Misalignment Looseness Faulty bearing

Normal 100% 0% 0% 0% 0% 0%

Disturbance 0% 92% 0% 0% 0% 0%
Imbalance 0% 8% 100% 0% 0% 0%
Misalignment 0% 0% 0% 100% 2% 0%
Looseness 0% 0% 0% 0% 98% 8%
Faulty bearing 0% 0% 0% 0% 0% 92%

Average rate of correct inference: 97.0%
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TABLE Ill. Performance of the discrete-time model-based FDI technique model for the rotor kit.

Condition
Result Normal Disturbance Imbalance Misalignment Looseness Faulty bearing
Normal 100% 0% 0% 0% 0% 0%
Disturbance 0% 100% 0% 0% 0% 0%
Imbalance 0% 0% 98% 0% 0% 0%
Misalignment 0% 0% 0% 96% 0% 0%
Looseness 0% 0% 2% 4% 100% 0%
Faulty bearing 0% 0% 0% 0% 0% 100%

Average rate of correct inference: 99.0%

ently, it is very difficult for an experienced operator to detect ~ Other than the parameter estimation model, the experi-
and isolate the fault by merely looking at the trends in themental setup remains the same as in the continuous-time
table. This calls for the capability of automatic machine-case. The discrete-time parameter estimation algorithm is
learning of the neural fuzzy network. Table Il summarizesemployed to generate the features that in turn become the
the performance of the continuous-time FDI technique withinput vectors to the neural fuzzy inference network. Follow-
neural fuzzy inference for the rotor kit. The result appeardng a procedure similar to the continuous-time algorithm, the
acceptabldaverage rate of correct inferene87%,). neural fuzzy network is necessary to infer the fault types,
In case 2, the FDI technique based on discrete-time pabased on the featurgsnodel parameters in this casex-

rameter estimation is examined. The foregoing assumptiotracted earlier by the discrete-time RLS algorithm. Table Il
that the angular frequency is constant is relaxed. It is assummarizes the performance of the discrete-time FDI tech-
sumed that the discrete-time model of the rotor system is ofique with neural fuzzy inference for the rotor kit. In com-

the form parison with the continuous-time method, the result appears
to be slightly improved(average rate of correct inference
Y200 = — agyy(k— 1)~ azy; (k—2) o be slightly improved(averag
=99.0%).
+b4jw cog wk) +byiw cog w(k—1))
+ b Sin(wk) + by sin(w(k—1)), B. Centrifugal fan
i=1,2, (45) A more practical system, a two-horsepower centrifugal

an, is chosen for validating the proposed FDI technique. The

\{vher;ahastgndbds ?retWOdefi)F’tﬁratmeterf t? ?e ddgtetrrr]n mSe\(jlfl n(prerimental setup including the fan and the FDI system is
@ IS the ime derivative o atis calculated by the . shown in Fig. 10. The fan system consists of a constant-

The above equations can be cast into the linear regressiq eed(1750 rpm AC induction motor, a steel shaft, a cou-

— T H
form y(k) =" (k) 6(k) with the data vectors pling, two bearing supports, and 12 impellers. Four common
Wl (k—1)=[y;(k—1)y;(k—2)é cog wk) faults of centrifugal fans, including imbalance, misalign-

o ment, mechanical looseness, and faulty bearing are investi-
X codw(k—1))w sin(wk)

X w sm( (1)( k— 1))], i=12, (46) Mean value of eccentricity(e)
1 . . . ; : :
and the parameter vectors R R .- .
0.8r e e e e e e ]
T — ey, N .
6; (K)=[—agi—apbiibsibaiby]. (47) Lo 1
£
04F - ..

Unbalance T e T e e ST
Photo switch Welglllt 02r o — ]

o ‘ . ) . . . ‘ . .

Probes Y1 0 5 10 15 20 25 30 35 40 45 50
\ No. of decision
Standard deviation value of eccentricity(e)

i 0.3 T T T T T T T ¥ v
1 0.251 o L . . I
x1 c 0.2»;f/_‘./._¥7,’/\'Jv\qrn/\uryi\irg\/\“—in«c‘a\,u\“ﬂ\‘/\/;\‘\'{’\v_
// 0.15 RSN N ORISR NUUURRIRRIRURRLARES
N (e ]

T™MS320 | | PC 0.05 ‘ : ‘ ) s ; . : ;

C32 0 5 10 15 20 26 30 35 40 45 50
No. of decision
AD/DA
Lateral displacement: ) L . i
x1,yl FIG. 11. The time variation oé in the normal, imbalanced, looseness, and
faulty bearing conditions of the centrifugal fan. Normal: ——, imbalanced:
FIG. 10. Experimental arrangement of the centrifugal fan. -+, looseness: —, and faulty bearing: --.
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TABLE IV. Performance of the continuous-time model-based FDI tech-‘“fa|se alarm” rates and ‘“failure-to-alarm’ rates are all zero
nique for the centrifugal fan. except the case of the centrifugal fan, where 8% of the data
under “normal” conditions are misinterpreted as looseness

Condition
faults. In these experiments, 97% detection rate is considered
Faulty — gyjfficient
Result Normal Imbalance Misalignment Loosenebgaring '
Normal 92% 0% 0% 0% 0% V. CONCLUDING REMARKS
Imbalance 0% 100% 0% 0% 0% ) ) o
Misalignment 0% 0% 100% 0% 0% An on-line FDI system for rotator vibration is presented.
Looseness 8% 0% 0% 100% 0% The development of the proposed methods is divided into

0% 0% 0% 0% 100%

Average rate of correct inference: 98.4%

Faulty bearing two stages. First, data features are generated based on two

model-based methods. Second, fault types are determined
based on the extracted features via neural fuzzy inference
) ) algorithms. The proposed FDI system is implemented on a
gated in the experiment. The faults are created the same Waysp The usefulness of the proposed technique in identifying
as the earlier procedure; in rotor kit, except that the faulty.ommon rotor faults has been justified by experiments con-
bearing was replaced with a lubricated bearing. ~ ducted for a rotor kit and a centrifugal fan. From the experi-
In case 1, the FDI technique based on continuous-timgyenta| results, the discrete-time parameter estimation ap-
parameter estimation is examined. Lateral displacements IBroach that does not require analytical modeling of the
both horizontal and vertical directions near the impellers argystem yields better performance than the continuous-time
measured by two eddy-current probes. The angular velocityyproach. However, the success of the methods hinges on the
Q) is measured by the photo switch. The other conditions arBroper choices of the model structures.
the same as in case 1 of th_e rotor kit_. Following a procedure  The proposed FDI technique can readily be extended to
similar tq the contmuous_—tlme algorithm, the neural fuzzy gther systems such as centrifugal pumps, centrifugal com-
network is necessary to infer the fault types, based on thgessors, and machine tools. The system will be extended for
features extracted earlier by the RLS algorithm. Figure 1lyandling multiple faults. In practical applications, informa-
shows the variations o¢ in the normal, imbalanced, me- jon is generally incomplete. The machine condition is gen-
chanical looseness, and faulty bearing conditions, respegsra|ly unknown so that the field data are insufficient for re-
tively. The neural fuzzy network is used to infer the fault |iapje training of the network. Thus enhancing the present
types, based on the featurg@socess coefficients in this case npeyral fuzzy inference network, in light of machine learning

extracted earlier by the continuous-time RLS algorithm.5ng human knowledge, for an expert system suited for robust
Table IV summarizes the performance of the continuousgp) will be the focus of future research.

time FDI technigue with neural fuzzy inference for the cen-
trifugal fan. The result appears acceptat@eerage rate of AckKNOWLEDGMENTS
correct inference 98.4%). .
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