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Abstract

This study formulates a universal velocity ®eld that is kinematically admissible for application in the extrusion of non-axisymmetric rods.

Then upper bound theorem dictates that a better upper bound solution heavily depends on the precise conformity of the velocity ®eld

postulated. However, a compromise must frequently be made, since the formulation is in general rather complicated. The kinematically

admissible velocity ®eld proposed herein has the following features: (a) it is three-dimensional, (b) it is non-uniformally distributed in the

axial direction, and (c) the formulation is straight-forward once the boundary of the deformation zone is speci®ed. In addition, the velocity

®eld is applied to the extrusion of rectangular, hexagonal, and octagonal rods from round billets. Moreover, the extrusion loads are

calculated against process variables such as the semi-die angle, the percentage reduction of area, and the friction factor. Furthermore, the

velocity ®eld is compared with results from the literature, indicating that the present results render a better upper bound solution for

application in extrusion than do previous results. # 2000 Published by Elsevier Science S.A. All rights reserved.

Nomenclature

r, �, y cylindrical coordinates

R0, Rf(�) radius of the billet before extrusion and

the product profile function after extru-

sion, respectively

Rs0(�,y) a function that represents the die surface

V0, Vf entrance velocity of the billet and exit

velocity of the extruded product, respec-

tively

ÿ s; ÿ f surfaces of shear velocity discontinuities

and friction, respectively

Vr, V�, Vy velocity components of the billet in

cylindrical coordinates (r,�,y), respec-

tively

!(�,y) angular velocity of the billet

U(y), D(r,�,y) uniform and non-uniform velocity com-

ponent along the extrusion axis of the

billet, respectively

@U(r)/@y first derivative of the uniform velocity

component along the extrusion axis of the

billet with respect to y

@!(�,y)/@y first derivative of the angular velocity of

the billet with respect to �
Z(�,y) function of (�,Rs0,L)

@Z(�,y)/@y first derivative of function Z(�,y) with

respect to y

@Rs0(�,y)/@y first derivative of the die surface function

with respect to y

@Rs0(�,y)/@� first derivative of the die surface function

with respect to �
�f(y) angle of a surface of geometrical sym-

metry

� optimization parameter introduced in the

velocity field

L die length(dimensionless)

J total power consumption in extrusion
_W i; _W s; _W f power dissipation due to internal defor-

mation, internal shear of the billet and

friction at the die surface, respectively

Vp volume of the plastic region

�y; _�" the yield stress and effective strain rate of

the material, respectively
_"ij components of the strain rate tensor

DVÿ s
;DVÿ f

the relative slip velocity on ÿ sand ÿ f

surfaces, respectively
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Pavg average extrusion pressure

a semi-die angle

R.A. reduction of the area of the billet

m friction factor at the die surface

1. Introduction

Non-axisymmetric extrusion, which is used widely to

produce rectangular, hexagonal and other non-regular sec-

tions, has received increasing interest. Hill [1] demonstrated

the feasibility of three-dimensional analysis of the metal-

working process. Juneja and Prakash [2] derived an upper

bound solution to extrude rod with a polygonal cross-section

through straightly converging dies, by utilizing a spherical

velocity ®eld with a cylindrical surface of velocity discon-

tinuity. In a related investigation, Boer and Webster [3]

obtained an upper bound solution to draw square sections

from a round billet. Later, Hoshino and Gunasekera [4±7]

proposed an upper bound model to extrude polygonal sec-

tions from a round billet. Yang and Lee [8] proposed the

conformal mapping approach to derive a kinematically

admissible velocity ®eld for extrusion through concave

and convex shaped dies. Yang et al. [9] also analyzed the

three-dimensional extrusion of arbitrarily-shaped sections.

Kiuchi et al. [10,11] derived a three-dimensional velocity

®eld for non-symmetric extrusion. However, owing to the

complexity of establishing the three-dimensional kinemati-

cally admissible velocity ®eld, the above investigations

assumed that the velocity component in the extrusion direc-

tion is uniform at any cross-section. However, such an

assumption does not conform to the actual deformation

behavior.

In this study, the authors present a novel numerical model

based on the upper bound theorem to analyze the extrusion

of non-axisymmetric rods with an arbitrary section pro®le

(Fig. 1). This model is advantageous in that the three-

dimensional kinematically admissible velocity ®eld has a

non-uniform velocity component in the extrusion direction.

In addition, establishing the velocity ®eld is relatively

simple and straight-forward once the die pro®le function

is known. The derived velocity ®eld is applied to the

extrusion of rectangular, hexagonal, octagonal and round

rods to demonstrate the effectiveness of the proposed

method. Finally, comparison of the present results with

available results from the literature reveals a close corre-

spondence.

2. Derivation of the velocity field

When applying the upper bound approach to analyze

plastic deformation, a properly constructed admissible velo-

city ®eld is deemed essential to ensure the accuracy of the

®nal solution. To be admissible, the velocity components

must ful®ll the conditions of incompressibility, and the

boundary conditions required by the geometry, and must

be continuous except at particular surfaces where velocity

slips are allowed. Thus, the geometrical con®guration of the

material during plastic deformation must be known. In the

extrusion process, the geometrical con®guration of the billet

is con®ned by the die surface. If function Rs0(�,y) represents

the billet geometry in the deformation zone, then, according

to condition of incompressibility:Z �f 0

0

Z R0

0

V0rdrd� �
Z �f y

0

Z Rs0�;y

0

Vy r; �; y� �rdrd�; (1)

where (as shown in Fig. 2) V0 denotes the velocity of the

billet before entering the die entrance plane A±A0, and

Vy(r,�,y) represents the velocity component of billet in

the extrusion direction during plastic deformation, i.e. the

section bounded by the die surface, die entrance plane and

the die exit plane B±B0. When the material leaves the die exit

plane, it moves forward under a uniform speed Vf. If R0 is the

radius of the billet before extrusion, then Rs0(�,y) is a

function representing the geometrical configuration of the

Fig. 1. Schematic diagram of the extrusion of a hexagonal shaped section

rod.

Fig. 2. Velocity component along the y-axis.
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billet during deformation. In addition, �f(0) and �f(y) are the

ranges of integration in the � direction at y � 0 and y � y,

respectively. To accommodate a non-uniform component of

velocity along the extrusion axis, a convex distribution

function D(r,�,y) is introduced herein, i.e.:

Vy r; �; y� � � D r; �; y� �U y� � � 1ÿ 4�y Lÿy� �
Rs2

0 �; y� �L2
r2

� �
U y� �;

(2)

where U(y) is the uniform component of Vy(r,�,y) The

convexity of Vy(r,�,y) is determined by the parameter �,

which is subjected to optimization when calculating the total

energy. L denotes the length of deformation zone. Vy(r,�,y)

is also subjected to the following boundary conditions:

Vy r; �; 0� � � U 0� �; Vy r; �; L� � � U L� �: (3)

Substituting Eq. (2) into Eq. (1) and rearranging yields:

U y� � � V0

R �f 0

0 Rs2
0 �; 0� �d�

1ÿ 2�y Lÿy� �
L2

� �R �f y

0 Rs2
0 �; y� �d�

: (4)

The condition of incompressibility can be expressed as:

_"rr � _"�� � _"yy � @Vr r; �; y� �
@r

� 1

r
Vr r; �; y� � � @V� r; �; y� �

@�

� �
� @Vy r; �; y� �

@y
� 0: (5)

To simplify the formulation of the velocity field, the rota-

tional velocity component is assumed to be distributed

linearly over the radius, i.e.:

V� r; �; y� � � r�w��; y�: (6)

At the axis of extrusion, r � 0, the velocity component

Vy(r,�,y) must be zero. Substituting Eqs. (2) and (6) into

Eq. (5) and rearranging leads to:

Vr r; �; y� � � ÿ r

2

@U y� �
@y

� @w �; y� �
@�

� �
� r3

4
Z �; y� � @U y� �

@y
� @Z �; y� �

@y
U y� �

� �
: (7)

Here,

Z �; y� � � 4�y Lÿy� �
Rs2

0 �; y� �L2
: (8)

On the other hand, at r � Rs0(�,y), the material must flow

along the die surface. Thus:

Vr Rs0 �; y� �; �; y� � � V� Rs0 �; y� �; �; y� � 1

Rs0 �; y� �
@Rs0 �; y� �

@�

� Vy Rs0 �; y� �; �; y� � @Rs0 �; y� �
@y

� w �; y� � @Rs0 �; y� �
@�

� Vy Rs0 �; y� �; �; y� � @Rs0 �; y� �
@y

: (9)

At the angle of symmetry surface �f(y), there exist no

rotational velocity, thereby leading to !(�f(y),y) � 0. Com-

bining Eqs. (7) and (9), rearranging leads to:

! �; y� � � ÿ 2

Rs2
0 �; y� �

Z �f y

0

�
Vy Rs0 �; y� �; �; y� �Rs0 �; y� �

� @Rs0 �; y� �
@y

� Rs2
0 �; y� �

2

@U y� �
@y
ÿRs4

0 �; y� �
4

� @Z �; y� �
@y

U y� � � Z �; y� � @U y� �
@y

� ��
d�: (10)

The velocity components becomes:

Vy r; �; y� � � D r; �; y� �U y� � � 1ÿ 4�y Lÿy� �
Rs2

0 �; y� �L2
r2

� �
U y� �;

(11)

V� r; �; y� � � r�!��; y�; (12)

Vr r; �; y� � � ÿ r

2

@U y� �
@y

� @! �; y� �
@�

� �
� r3

4
Z �; y� � @U y� �

@y
� @Z �; y� �

@y
U y� �

� �
: (13)

Here,

U y� � � V0

R �f0

0
Rs2

0 �; 0� �d�
1ÿ 2�y Lÿy� �

L2

� �R �f y

0
Rs2

0 �; y� �d�
; (14)

! �; y� � � ÿ 2

Rs2
0 �; y� �

Z �f y

0

�
Vy Rs0 �; y� �; �; y� �Rs0 �; y� �

� @Rs0 �; y� �
@y

� Rs2
0 �; y� �

2

@U y� �
@y
ÿRs4

0 �; y� �
4

� @Z �; y� �
@y

U y� � � Z �; y� � @U y� �
@y

� ��
d�; (15)

Z �; y� � � 4�y Lÿy� �
Rs2

0 �; y� �L2
: (16)

One of the characteristics of this velocity field state is that

when function Rs0(�,y) is known, all of the velocity com-

ponents can be readily formulated. According to the velocity

field formulated above, the strain rate can be calculated as

follows:

_"rr � @Vr r; �; y� �
@r

; _"�� � 1

r

@V� r; �; y� �
@�

� Vr r; �; y� �
r

;

_"yy � @Vy r; �; y� �
@y

; (17)

_"r� � 1

2

@V� r; �; y� �
@r

ÿV� r; �; y� �
r

� 1

r

@Vr r; �; y� �
@�

� �
;

_"�y � 1

2

@V� r; �; y� �
@y

� 1

r

@Vy r; �; y� �
@�

� �
;

_"yr � 1

2

@Vr r; �; y� �
@y

� @Vy r; �; y� �
@r

� �
:
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3. Upper bound solution

The upper bound theorem speci®es that the power, J,

consumed in the plastic deformation zone should be mini-

mized with respect to � for the actual velocity ®eld:

J � _W i � _W s � _W f : (18)

The internal deformation power, _W i, is:

_W i �
Z

Vp

�y� _�"dV

� 2���
3
p
Z L

0

Z �fy

0

Z Rs0�;y

0

�y� 1

2
_"ij _"ij

� �1=2

rdrd�dy: (19)

The shear power _W s is attributed to the velocity disconti-

nuity (slip) on the rigid-plastic zone interface, plane A±A0

and B±B0; i.e.:

_W s�
Z
ÿ s

1���
3
p ��y�DVÿ s

ds

� 1���
3
p
Z �f 0

0

Z Rs0�;0

0

�y� V2
� r; �; 0� ��V2

r r; �; 0� �
h i1=2

rdrd�

� 1���
3
p
Z �fL

0

Z Rs0�;L

0

�y� V2
� r; �; L� ��V2

r r; �; L� �
h i1=2

rdrd�:

(20)

In this study, the friction factor m is used to calculate the

friction energy loss on the die surface and m is deemed

constant during the extrusion process. Thus, the friction

power dissipated on die surface, _W f , becomes:

_W f �
Z
ÿ f

m���
3
p ��y�DVÿ f

ds � m���
3
p
Z L

0

Z �fy

0

�y�DVÿ f

� 1�
�
@Rs0 �; y� �

@y

� �2

� 1

Rs0 �; y� �
@Rs0 �; y� �

@�

� �2�1=2

Rs0 �; y� �d�dy; (21)

where:

DVÿ f
� V2

r r; �; y� � � V2
� r; �; y� � � V2

y r; �; y� �
n o1=2

: (22)

4. Results and discussion

To demonstrate the effectiveness of the proposed velocity

®eld, several non-axisymmetric extrusions are selected as

the objects of study, i.e. from round rod to square, hexagonal

and octagonal sections. The dies used herein are equal-angle

divided and linearly connected converging dies as shown in

Fig. 3. In this manner, Rs0(�,y) can be expressed as:

Rs0��; y� � R0ÿ R0ÿRf���� �� y
L

h in o
; (23)

where Rf(�) is the exit profile function of the billet. Owing to

the entrance and exit cross-sections not being of the same

shape, the semi-die angle in this study is defined as half of

the die surface inclination in all of the calculations that

follow. The results are shown below.

Fig. 4 indicates that for extrusion at small semi-die angles,

the pressures required are larger than those for larger semi-

die angles. Increasing the semi-die angle implies a gradual

decrease of extrusion pressure, which then reaches a mini-

mum pressure. Beyond this optimal semi-die angle, the

extrusion pressure increases with the semi-die angle. Such

an increase is due to that the two dominant components of

Fig. 3. Extrusion die for a hexagonal cross-section.

Fig. 4. Effects of the semi-die angle on the extrusion pressure.
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the power consumed in the extrusion process, i.e., the

internal deformation power and the friction power con¯ict

with each other. With a smaller semi-die angle, the length of

contact between the billet and the die is longer, causing

signi®cantly high friction losses. On the other hand, for a

larger semi-die angle, the die length is shorter; thus, the

internal deformation becomes a predominant factor. Accord-

ing to Fig. 4, the extrusion pressure increases with an

increase of the reduction of area at the same semi-die angle.

For the working conditions indicated in the ®gure, the

extrusion pressures apparently reach a minimum at a

semi-die angle of between 108 and 208.
Fig. 5 illustrates the effects of friction factor m on the

extrusion pressure. Herein, the extrusion pressure increases

with an increasing friction factor. If the friction factor m is

zero, no power losses occur on the die surface. The total

extrusion pressure consists mainly of the internal deforma-

tion component. Fig. 6 displays the parameter � against

friction factor m. Eq. (2) clearly indicates that when � is

large, the Vy(r,�,y) at die surface is small. This ®nding

suggests that the distribution of Vy(r,�,y) over the radius

has a more prominent convexity. For a larger friction factor

m, the die surfaces are more sticky; the velocity component

along the extrusion axis tends to be distorted more severely

also. Therefore, � increases with an increase of friction

factor m.

Fig. 7 presents the in¯uence of the product shape by

plotting the extrusion pressure against the number of section

sides. According to this ®gure, the extrusion pressure is

larger when the number of sides of the exit cross-section is

smaller. Although the difference between two product

shapes in terms of the extrusion pressure is appreciable, it

decreases with an increase of the number of section sides.

When the number of section sides increases, the product

cross-section approaches circular and the extrusion pressure

is closer to that of axisymmetric extrusion.

An important features in this study is that the velocity

component in the extrusion axis is not uniform. Fig. 8

summarizes the effects of � on the extrusion pressure. This

®gure reveals that for the given set of process variables, the

extrusion pressure calculated with a uniform velocity along

the extrusion axis exceeds that of the non-uniform velocity

®eld. On the other hand, the larger the semi-die angle

implies a more severe deformation. Thus, the effect of �

Fig. 5. Effects of the friction factor m on the extrusion pressure.

Fig. 6. Effects of the friction factor m on �.

Fig. 7. Effects of the product shape on the extrusion pressure.

Fig. 8. Effects of � on the extrusion pressure.
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is more prominent, as indicated from the difference in the

extrusion pressure.

Fig. 9 compares the results of this study with the upper

bound solution of Gunasekera and Hoshino [7]. According

to this ®gure, extrusion pressures are shown against the

relative die length (L/R0). These comparisons reveal that the

proposed method offers a superior upper bound solution.

5. Conclusions

This study present a novel model based on the upper

bound theorem and, then, applies it to the extrusion of non-

axisymmetric-shaped sections. The kinematically admissi-

ble velocity ®eld formulated has a convex velocity distribu-

tion along the extrusion axis. The model proposed herein is

applied to the extrusion of rectangular, hexagonal, and

octagonal sections. The extrusion pressures are plotted

against various variables such as semi-die angle, friction

factor and reduction ratio. Based on the results in this study,

the following can be concluded.

1. The extrusion pressure is the lowest for semi-die angle

of between 108 and 208.

2. A higher friction factor renders more severe velocity

distortions in the extrusion direction for a given die

geometrical configuration.

3. Shape complexity significantly influences the extrusion

pressure. For the same round billet, the extrusion

pressure decreases with an increase of the number of

sides of the section of the product.

4. The proposed three-dimensional velocity field renders a

better upper bound solution than the existing mode [7].

It can also be applied to extrude sections with arbitrary

cross-sectional shapes.
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