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Summary

It is becoming increasingly common for the design of a clinical study to involve cluster samples. Very
few researches investigated the appropriate number of clusters. None of them treat cluster size and the
number of clusters as random variables. In reality, the recruitment of clusters can not be reached at one
time and the cluster sizes are usually random. The longer the recruitment takes the more expensive the
total study costs will be. This paper provides a strategy for sequential recruitment of clusters, which
can minimize the total study cost. By treating the number of additional observational subjects required
at each time point as a Markov Chain, we derive an iterative procedure for optimal strategy and study
the property of this strategy, especially the duration of the cluster recruitment. This strategy is also
extended to search for an optimal number of centers in a multi-center clinical trial.

Key words: Cluster sample; Markov chain; Principle of optimality; Sequential
method.

1. Introduction

The number of clusters has been an important planning issue in a clinical study
involving cluster samples, especially when study budget is limited. Some re-
searches have proposed the calculation of the sample size for the observational
subjects in cluster randomization trials [see, for example, DONNER (1992) and
DoONNER and KLAR (1994)]. Others have discussed the appropriate number of clus-
ters based on power analysis [see, for example HSIEH (1988)]. Very few investi-
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gated this issue from the viewpoint of study costs [see, for example, MCKINLAY
(1994) and FELDMAN, MCKINLAY and NIKNIAN (1996)]. None of them treat cluster
size and the number of clusters as random variables. In reality, the recruitment of
the study subjects (and hence the clusters) can not be reached at one time and the
cluster sizes can rarely be determined in advance. The longer the recruitment takes
the more expensive the total study costs will be. This paper is intended to study
the optimal strategy for sequential recruitment of clusters in order to minimize the
total cost of a clinical study. A typical example is to study the individuals (obser-
vational subjects) from different families (clusters) or to study the students (obser-
vational subjects) from different schools (clusters). An example can be related to a
hypothetical study, which is to investigate the elevation of systolic blood pressure
(SBP) of female adolescents after menarche. Eligible participants are female ado-
lescents who just reached menarche within three months. This hypothetical study
will measure subjects’ SBP two times: one at participation and the other at the
sixth month. The difference of these two measurements will be the major outcome
for studying elevation of SBP and the sample size for the paired ¢ test has been
determined. The subjects will be enlisted from seven graders of the participated
schools. In this hypothetical study, the number of eligible participants in each
school is random and the number of schools can be recruited per week is also
random. To find an optimal strategy for sequential recruitment of schools, which
minimizes the total study cost, will be the goal of this paper.

This paper will focus on the mathematical model and the theoretical property of
the optimal strategy for cluster recruitment that will be applicable for a clinical
study. The logistic matters of the study, unrelated to the cost, will not be investi-
gated in this paper.

Section 2 presents the mathematical model as well as the criterion for optimiza-
tion. Section 3 describes the strategy for minimizing the total cost and investigates
its properties. The moments of the duration of cluster recruitment under this
strategy are calculated in section 4. In section 5, the model is extended to find the
optimal number of centers in a multi-center clinical trial when the sample size is
pre-determined. Section 6 discusses the computing efficiency and offers an alterna-
tive strategy when sample size is very large and the optimal strategy presented in
this paper may be computationally expensive.

2. The Model

Let n be the number of observational subjects needed for a clinical study which
can be determined by a statistical power analysis. Assume that the number of
observational subjects obtained from each recruited cluster is independently and
identically distributed, denoting its distribution as p(k), k =0,1,2,... Let N,
t=1,2,... denote the number of clusters recruited in the fth week. Here we
assume all cluster recruitments will occur at the beginning of the week. Our optimal
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m N;
strategy is to find Ny, Na,...,N,, such that > >  X; > n and the expected total
cost for the study =1 j=1

m N; m
E(Qn):E Clz:l ‘ IXij—FCQZ:lNi-i-ng (1)
=1 j= i=
is minimized, where €2,, denotes the total cost for this study if the required sample
size is n, m is the number of weeks required for the cluster recruitment, C; is the
cost for each study subject, C, is the cost for each cluster, C; is the cost per week
for the study unrelated to clusters or observational subjects, and X;; represents the
number of subjects enrolled at jth cluster in the ith week. Note that in (1), the cost
is specified to be a linear function of costs for subjects, clusters and other ex-
penses, such as overhead, unrelated to either subjects or clusters. The unit costs
C1,C, and C3 are assumed to be known constants, Xjs are independent random
variables with a common distribution specified as p(k) and m is an random vari-
able depending on X;; and the choice of N/s.

Let n; denote the number of additional subjects needed to achieve the required
sample size at the beginning of rth week and N( ) be a strategy function mapping
from n, to the number of selected clusters for that week, i.e. N(n,) = N;. Mathe-
matically, we will treat {n,} as a discrete-time Markov chain with a lower triangu-
lar transition probability matrix defined as

(1) it i=j=0
N . N s if j>i
Q—(Qz])—Pr(”lHd _J’nl‘_l)_ p()o(l .]) lf 0<]§ ) (2)
Zp*(i) if j=0,i>0

where p*(') represents the distribution for Z X, 1. Note that p™() is the N,-fold

convolution of p( ) and depends on N; only through n; = i. To clarify the notation,
we may denote p*( ) as p;“( ) whenever necessary. The above assumption that
{n;} is a Markov chain implies that the study has a time-independent ability to
recruit observational units. This ability depends only on the current study status
specifying number of observational units needed to add to the study.

In this paper, we will search for an optimal strategy function N( ) among the
collection of all functions mapping from the nonnegative integers (number of addi-
tional subjects needed) to the nonnegative integers (number of clusters selected).
This strategy will minimize the expected total cost defined in (1).

3. The Optimal Strategy

From the principle of optimality [see PUTERMAN (1994)] which states that, what-
ever the initial state and the initial decision are, the remaining decisions must



880 W. CHAN, N. F. PENG: Minimum-Cost Strategy

constitute an optimal policy with regard to the state resulting from the first deci-
sion, we can rewrite (1) as the sum of the cost of the first week plus the cost of
the remaining weeks when the optimal strategies for both periods were applied,
ie.

E(Q,) = g 1(i) [iC1 + N(n1) C» + C3 + E(Q,)] + Z pi(i) [iC1 4+ N(n) C; + C3]
= p1(0) E(Q) +'§ pi(i) E(Q,—) + Ci i ipT(i) + [N(n) C2 + C3] i pi(i)

(3)

where pi( ) is the N-fold convolution of p( ). Note that in (3), i represents the
number of study subjects recruited in the first week when N(n;) clusters were
selected at the beginning of that week. Since N(n) =N(n;) =N, and

oo

Ny
> ipT(i) =F <Z X ,k> , a routine algebraic manipulation of (3) leads to
i=0

F@y) = [0 (3 300) + Wncs + &+ 5510 B@ | /11 -pi0).

(4)
Note that pf(0) = [p(0)]"'. For n=1, we have E(RQ)=[CIN(1)E(X\ 1)+
N(1) C + G;]/[1 — pM(0)] and hence an optimal strategy for N(1) can be found if
p(0) and E(X; ) are known. Iteratively, the optimal strategy for N(2), N(3), N(n)
can be found, since, in (4) E(€,) is a function of E(Q;)’s, k <n — 1 and other
presumably known quantities.

Remark 1: In the case that the number of clusters available at a particular week
is limited (deterministic or random), the minimum-cost strategy will be
N’ = min (N, N*), where N is the minimum-cost strategy described above and N*
is the available number of clusters. Denoting €2, 5 the total costs for selecting the
strategy N, then E(Q, ) = E[E(Q,y | N™)] is minimized since E(Q,n | N*) is
minimized among all possible realizations of random strategy N*.

Proposition 1: Under the minimum-cost strategy proposed above, the expected
total cost is a monotone increasing function of the sample size, i.e.
E(Q,-1) < E(Q,), for any n.

Proof: We will prove the contrapositive. Suppose that E(Q,_;) > E(R,). Let
E(Q! ) denote the total cost resulted from choosing N'(n—1) = N(n),
N'(n—2)=N(n—1), ...N'(1) =N(2) and stopping when > > X, >n— L.
Then E(Q2, ) < E(Q,), since both strategies allocate the same numbers of clus-
ters but the stopping rule for E(Q, ) stops before the strategy used for E(Q,).
This implies that E(Q] |) < E(Q,) < E(Q,-1) which contradicts the fact that
E(Q,_1) is the expected total cost for the optimal strategy.
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4. Moments of the Duration of the Recruitment

Let /; be an indicator random variable assigning value 1 if the Markov chain {n,}
1 if n,=1i forsome??

. . For
0 otherwise
i=0,1,2,...n,let m; = Pr (I; = 1). Since n; = n and hence w, = 1, we have

ot =Pt (g =1Ly = 1) 7t + Pr (I = 1| I, = 0) (1 — m,)

— i PEO) Gunt = dunt/(1 — pE(0)) .

ever reaches i, and 0 otherwise, ie. I; :{

where the summand in the summation term indicates number of times the process
stay at n. Similarly, for k =2,3,..., n —1,

k—1
k= Pr(lux=1,0,,=0,fork>1>j|L,_;=1)Pr(l,_; =1)
j=0
k—1 k—1
qn—jn—k qn—jn—k
=y dnmnk pep =)y = S etk 5)
ST TS ST e ™ (

In (5), the first equality is held since, if the Markov chain {n,} ever reaches i, it
has to come from a previous state, and the second equality is the calculation of
Pr(l,_x=1,1,_;%# 1, fork>1>j|I,_; = 1) which can be obtained similarly to
the calculation of m,_; above.

Note that, if p(0) < 1, then p*(0) < 1 and hence Pr (n, reaches 0) = 1. That is
mp = 1. From (5), we have m —e = (Q' — Pp) Ram, where @ = (mg, my,...7,),
e=1(0,..,0,1) is a n+ 1 dimensional vector, P, = diag (1,p1(0), p3(0),...,
pa(0)) is a  diagonal matrix of  dimension (n+1) x (n+ 1),
Rp = diag (0,1/1 — p7(0), 1/1 — p5(0),...,1/1 — pi(0)) is a diagonal matrix of
dimension (n+ 1) x (n+ 1) and Q' is the transpose of the transition matrix de-
fined in (2). Note that (Q' — Pa) R is the transpose of the transition probability
matrix of {n,} conditioned on the event that {n;} does not stay in the same state.
The explicit form for st can be stated in the following lemma.

Lemma 1: Under the condition p(0) < 1, = [I — (Q' — Pa) Ra] e, if the
inverse exists.

Remark 2: By the nature of (Q — Pa) R, [(Q' — PA) Ra]""'= 0, the zero ma-

trix. Therefore [I — (Q' — Pp) Ra]™" is equal to a finite sum > [(Q' — Pa) Ra)',
instead of an infinite sum. =0

Let m; denote the number of times that {n,} stays at i. From the Markovian
property, we can derive that the conditional distribution of m; given I; = 1 follows
a geometric distribution with mean 1/1 — pj{0) (consequently, variance equal to
p7(0)/1 — p(0)) and the conditional distribution of m; given I; = 0 is identically
0. Therefore, by repeatedly using the above property and the property of the con-
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ditional expectation we have
E(m;) = (1/1 = pi{0)) P(l; = 1) (6)
and
= E[(E(m; | 1))’] = [E(E(m; | I))]* + E(Var (m; | I,))
= (E(m; | I; = 1)) ; — [E(m;))*+ Var (m; | I, = 1) m;

1 2 1 g 2 pi(0)
=l = N | T )t s
; _pimJ = |; —p,-<0>} W e ™ O
Furthermore, for i < j,

E(mimj) = . z—zo: ] E(mim; | I; =k, I; = 1) Pr (I = k, I; = 1)

=Emm; | L=1,=1)Pr(,=1,1;=1)
= E(m; [ i =1) E(m; | ;= 1) Pr (L, = 1| [; = 1) Pr (I, = 1)

- =) =] 1= 0 "

where the second equality is the result of (m;|I; = 0) =0, the third equality is
due to the conditional independence of m; and m; given I; = 1 and I; = 1, and the
last equality is the consequence of the geometric distribution of m; given I; = 1.
Note that Pr (Il; = 1 |I; = 1) #Pr (I,_j_y) = 1 |1, = 1), since N(n), N(n —1),...
and N(n — (j — i)) may not be equal to N(j), NGj—1), ..., and N(j — i) corre-
spondingly. When N( ) is a constant, Pr (; = 1 |; = 1) = m,_(;_;).. Nevertheless
Pr(I; = 1|1 = 1) can be calculated using the method similar to lemma 1 by let-
ting n = j.
From (6) the expected duration of recruitment is

E(m) = 32 Em) =3 (1/1 = p{0) . ©)

i=1

The explicit form for the expected duration of recruitment can be derived in pro-
position 2.

Proposition 2: Under the condition stated in lemma 1,
Em)=1(1I—-Q+A) "e—1, where A is a (n+1) x (n+ 1) matrix with the
(1,1) element equal to 1 and all other elements equal to 0, I is a n+1
dimensional vector with all elements equal to 1 and e = (0,...,0, 1)' as defined
before.
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Proof: By lemma 1 and (9), we have
E(m)=1' —Py+A) ' m—1
—I'(I—PA+A) "' [I— (P —Pp)RA] 'e—1
=I[(I—(Q' ~Pa)Ra) (I = Pa+A)] "e—1
=1I'I-Q +A) 'e—1,
where the first equality results from the fact that my = 1 and the last equality is
the consequence of RAA = 0(,4.1)x(nr1)» Ra(l — Pa) = (I — A) and Q'A = PAA.
Proposition 3: The second moment of the duration of recruitment can be ex-
pressed as
1+ pi(0)
(1 - pi0))°

n
Proof: Since m = > _ m;,
i=1

E(m?) =

i=1

PSS M | S P

=

E(m?) = ; E(m2) + 25 E(mm) = 3 [(E(m)))> + Var (m)] +2 Y E(mim;).

i<j i=1 i<j

Equations (6), (7) and (8) and a routine algebra complete the proof.

5. Extension of the Model to Multi-Center Clinical Trials

In a multi-center clinical trial, the recruitment of the center is similar to the recruit-
ment of the cluster as described in this paper, except for the calculation of the total
cost. Ordinarily, the centers in the clinical trials are not dropped before its conclu-
sion; therefore the costs of the centers will be cumulated over time. Detailed discus-
sions on the issue of the number of centers in a multi-center clinical trial can be
found in GOLDBERG and KOURY (1990). In this section, we will extend our model
and use it to find the optimal number of centers for a clinical trial that will minimize
the expected total cost. All centers will be recruited only at the beginning of the trials
and they will be responsible for enrolling patients until the sample size is reached. In
this section, the sample size for statistical analysis is supposed to have been calcu-
lated from a fixed-effects model and therefore, is independent of the number of cen-
ters. We will further assume that the duration of follow-up as the last patient is en-
rolled is a constant T and no dropout will change the calculation of the cost.
Therefore the expected total cost for this trial can be expressed as

m N m N
E(Qn):E CIZZXU(m—i+1)+C1TZZX,-j+C2N(m+T)+(m+T)C3 s

i=1 j=1 i=1 j=1
(10)
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where €2, as in (1) denotes the total cost for this trial if the required sample size
is n, C; denotes the cost per week for each patient, C, denotes the cost per week
for each center, C3 denotes the cost per week for the coordinating center, and Xj;
represents the number of subjects enrolled at jth center in the ith week, and pa-
tients will therefore be followed for (m — i+ 1) weeks before the last patient re-
cruitment. Note that, in (10) the first term on the right represents the cost of
patients before the recruitment of last patient and the second term represents the
cost of patients after the last patient recruitmerjl\}. Similar to what described in
m
section 2, the patient recruitment stopped if > > X; > n. Therefore m is a ran-
. . . i=1 j=1

dom variable and has the following propertlesl: !
N

Lemma 2: With respect to the Markov process Y; =) X;, m, m+1 and

m(m+ 1) L =1
are stopping times.

Proof: Since m is defined to be such that >  Y; > n, {m = k} is independent of

{Yi+1, Yit2,...} for all integer k and hence T is a stopping time with respect to
{Y;}. Now observe that {m+ 1=k} ={m=k—1} is independent of
{Yk, Yi11, ...}, and hence is independent of {Y; 1, Yx12,....}. Therefore m + 1 is a

1
stopping time. Similarly @ is a stopping time, since for any possible value
1
k of @, there is one and only one integer k' <k such that
1

From lemma 2 and Wald’s equation [see, for example Ross (1983)] we can
calculate (10) as

E(Q,)
:C<HMEWW+W—E£?4>+QEWQHM+QMMM+U
+ G3(E(m) +T)

= CE(Y)) (E[m(m +1)]—-E w}> + C\TE(Y,) E(m) + CoN(E(m) +T)

+ C3(E(m)+T)

2 m

— ClE(NY) (E [";] +E u + TE(m)> + CN(E(m) +T) + C3(E(m) +T).

2
From the above equation, if E(m) and E m7 are calculated, the optimal number

of centers can be obtained from a routine integral programming procedure. The
expected duration of recruitment E(m) calculated in section 5 can now be simpli-
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n

fied as E(m) = (1/1 —p*(0))>_ P(I; = 1), where p*(0) is a N-fold convolution
1

=

of p(0). Note that > P(I; =
i=1

R O NS SR W
Hi—pror T oy

1
# 1. Similarly, E(m?) calculated in proposition 3
2 i) 7%

can be simplified as E(m?)
when N is a constant. i

6. Discussion

The technique proposed in this paper is different from the optimal stopping rule
method applied in most decision questions. The usual method is to decide if the
cluster recruitment should stop (even the patient recruitment still continuous until
the planned sample size is reached) in order to minimize the expected total costs
after observing the number of patients enrolled and the number of clusters re-
cruited. The common method usually stops before the target sample size is
reached and can not guarantee it will reach. In contrast, our method stops cluster
recruitment after the target sample size is reached.

The proposed method is also different from the sample size re-estimation meth-
od appeared in the clinical trials literature. The later is a technique used to adjust
sample size by an interim analysis without un-blinding the trial results in progress
[see, for example, SHIH (1992)]. The proposed methods is to present a strategy for
cluster recruitment by monitoring the cumulative number of observations in each
week, when keeping the study sample size as an unchanged target.

If the sample size n is large, the minimum-cost strategy proposed in section 3 may
be computationally expensive. A revision of our strategy, which is computationally
efficient but not mathematically optimal, is to find a constant N that depends on the
sample size n, at each week ¢ only through E(m). Observe that, from (1),

E(Q,) = CiE(m) NE(X11) + CoNE(m) + C3E(m)
= E(m) (C]NE(X]]) + C,N + C3) .

Since E(m) can be calculated from Proposition 2, an optimal N called NV, for
week 1 can be obtained from a routine integral programming procedure. Itera-
tively, replacing n by n — n; we can calculate E(m) and obtain N>). This iterative
procedure will be proceeded until the target sample size is reached. This revised
strategy is better than the strategy using constant N at each week and is computa-
tionally more efficient than the one proposed in section 3.
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