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A COMPARISON OF TWO APPROACHES FOR POWER AND SAMPLE 
SIZE CALCULz4TIONS IN LOGISTIC REGRESSION MODELS 

Gwowen Shieh 

Depanmen? ofManagement Sciefice 
National Chiao Tung University 
i-isinchu, Taiwan 30050, ROC 

Key words and phrases: Likelihood ratio test; Logistic regression; Maximum 
likelihood estimate; Power; Sample size. 

ABSTRACT 

Whittemore (1981) proposed an approach for calculating the sample size 
needed to test hypotheses with specified significance and power against a given 
alternative for logistic regression with small response probability. Based on the 
distribution of covariate, vhich cou!d be either discrete or coztinucus, this 
approach first provides a simple closed-form approximation to the asymptotic 
covariance matrix of the maximum :ikelihood estimates, aiid then ases it to 
calculate the sample size needed to test a hypothesis about the parameter. Self et 
al. (1992) described a general approach for power and sample size calculations 
within the framework of generalized linear models, which include logistic 
regression as a special case. Their approach is based on an approximation to the 
distribution of the likelihood ratio statistic. Unlike the Whittemore approach, their 
approach is not limited to situations of small response probability. However, it is 
restricted to models with a finite number of covariate configurations. This study 
compares these two approaches to see how accurate they would be for the 
calculations of power and sample size in logistic regression models with various 
response probabilities and covariate distributions. The results indicate that the 
Whittemore approach has a slight advantage in achieving the nominal power only 
for one case with small response probability. It is outperformed for all other cases 
with larger response probabilities. In general, the approach proposed in Self et al. 

Copyright Q 2000 by Marcel Dekker, Inc. 

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
31

 2
8 

A
pr

il 
20

14
 



764 SHEH 

(1992) is rccomnicndcd for all values of the response probability. However, its 
cxtensinn for logistic regression models with an infinite number of covariate 
configurations involves an arbitrary decision for categorization and leads to a 
discrete approximation. As shown in this paper, the examined discrete 
approxirnations appear to be sufficiently accurate for practical purpose. 

1 .  INTRODUCTION 

Logistic regression models are frequently used in the analysis of 

epidemiologic data concerning the relationship between potentiai risk factors and 

a disease. In such studies the involvement and cost of living subjects require extra 

attention, and accurate procedures are needed for determining the sampie size to 

achieve a prescribed power and medical standard. 

Whittemore (1981) proposed an approach for determining the sample 

size needed to test hypotheses with specified significance and power against given 

alternative for logistic regression with a small response probability. This approach 

is developed for selected distributions of a single covariate and for a class of 

exponential type distributions of several covariates. Based on the distribution of 

the covariates, the Fisher information matrix for the estimated parameters can be 

approximated by the augmented Hessian matrix of the moment generating 

function for the covariates. With this matrix one can obtain a simple closed-form 

estimate of the asymptotic covariance matrix of the maximum likelihood 

estimates (MLE), and then an approximate sampie size needed to test both 

directional and non-directional hypotheses about a single parameter by treating 

the MLE as normally distributed. Furthermore, correction factors were provided 

to enhance the accuracy of sample size calculations. In general, the response 
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LOGISTIC REGRESSION MODELS 765 

probabilities must be less than 4 percent for !he sample size apprc>ximations to be 

accurate within 10 percent. By following the Whittemore approach, Hsieh (1989) 

provided sample size tables for logistic regression for a test of one normally 

distributed covariate, possibly in the presence of other normally distributed 

covariates with specified multiple correlation with the covariate of interest. Also, 

Monte Carlo simulations were performed and they indicated that, when there is 

only one covariate in the modei, the g~veii saiiiple sizes are reasonably accmate 

for both normal and exponential distributions of the covariate, although they can 

be inaccurate for some distributions, such as doubie expoileiiiiai. 

In the framework of generalized linear models, Self ct al. (1992) 

proposed a noncentral chi-square approximation to the distribution of the 

likelihood ratio test statistic (SMO) and utilized it for the purpose of sample size 

and power calculations. Their simulation studies, including results for logistic 

regression modeis, showed that tine approach is accurate over a much wider range 

of parameter values and data configurations than the method proposed in Seif and 

Mauritsen (1988). As the logistic regression model is a special case of generalized 

linear models, the SMO approach is directly applicable and becomes an 

alternative to the Whittemore approach for the logistic regression model, 

Furthermore, this approach is not only usefbl for other generalized linear models, 

but is also more genera! than the Whittemore approach in terns of no restriction 

on the response probability and no limitation on the number of parameters being 

tested simultaneously in the hypothesis. In other words, the SMO approach 

becomes the natural choice as compared to the Whittemore approach when the 
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response probabilities are not smali, or when more than oxle parameter need to be 

tested simultaneously. However, some restrictions apply, for example, it is 

developed solely for models with a finite number of covariate configurations. See 

Tablc 1 for a summary of the differences and similarities in the two approaches, 

From an examination of Table 1, two questions arise that motivate this study. First, 

is the Whittemore app:oach rea!!y better for logistic regression with_ small 

response probability, and if it is, how much better is it than the SMO approach? 

Second, can the SMO approach be modified in order to extend its use to models 

with continuous covariates, and how accurate is it? The study of the first question 

will determine whether there is any advantage to the Whittemore approach fbr its 

aim of small response probability. Furthermore, if the advantage is substantial, 

then it is worth our attention to consult the response probability before we apply 

the Whittemore approach instead of others, since it will give more accurate results. 

On the other hand, if the advantage is very limited or does not exist, one may then 

simply apply the SMO approach for all logistic regression models regardless of 

the values of response probability. The second question is raised since it is 

common for both linear and nonlinear regression models to have continuous 

covariates or regressors. The usual practice for the chi-square goodness of fit test 

is to group the original values of covariates into finite intervals, as we do here. It 

results in an approximation of the true covariate distribution so that the SMO 

approach can be applied. It is obvious that the investigation of this question is not 

a matter of proposing a new way of extending the use of the SMO approach for 

accommodating continuous type of covariates. More importantly, the key is to 
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LOGISTIC REGRESSION MODELS 767 

Table 1 .  Comparison of two approaches for power and sample size calculations. 

Whittemore (1981) 1 Self et al. (1992) 
I l 
-7 Model / Logistic regression model / Generalized linear model 

Test statistic Maximum likelihood Likelihood ratio test 
jdistibiiiioii) 1 estimate ( a~ rma l f  I (chi-square) 

I 
Allow to test more 
than one parameter 

simultaneously 
Yes 

Tlexibility in the value 
of response No - assume small 
probability I 

Yes 

Accommodate both 
bite and inf nite Yes No - a s s u m  finite 

number of covariate 
configurations 

examine how it will affect the accuracy by using an approximation for covariates 

with an infinite number of configurations. 

Actually these two questions are intertwined, that is, as compared to the 

Whittemore approach, how accurate the extension of SMO approach is for logistic 

regression with small response probability and continuous covariates. The purpose 
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768 SHIEH 

of this paper is to compare both approaches through Monte Carlo simuiaiion 

studies that cover a wide range of response probabilities and several discrete and 

corititiuous covariate distributions. In this investigation we not only prcscnt more 

results to have a better understanding of the Whittemore approach, but we also 

shed light on the extension of the SMO approach to continuous covariates, which 

.,.. W i l l  1 1  A &xpLditc .-, its usc in applied settings. 

In Section 2, we describe the details of the two approaches for power and 

sample size calcu!ations and illustrate the sample size calculations with an 

example concerning risk factor for coronary heart disease. In Section 3, the 

designs of the simulation studies are provided. The results of the simulations are 

presented in Section 4, and Section 5 contains a brief discussion of the findings. 

2. POUTER AND SAMPLE SIZE DETERMINATION 

A logistic regression model can be described as follows. Let Yi denote 

the binary response for subject i, i = 1, ..., N. Let x, = (xi,,  ..., denote the 

vector of covariates associated with the i'h subject. Also, let yo and y = ( y , ,  ..., 

yK)T be the K + 1 unknown regression coefficients and let p, = exp(y, + x,Ty)I{l 

+ exp(\y, + xiTy)) denote the conditional probability of Yi = 1 given xi. Assume 

without loss of generality that among the K unknown parameters associated with 

the K covariates, respectively, y,  is of primary interest. We wish to test the null 

hypothesis of H,: y, = 0 against the alternative hypothesis H,: y, f 0. We shall 

now describe the two approaches for power and sample size determination. 
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LOGISTIC REGRESSION MODELS 

2.1 Whittemore Approach 

Suppose the vector of K covariates X has a joint pdf f(x) which does not 

depend on the unknown parameters yo and t y .  It follows that the maximum 

A A 

likelihood estimate (yo, y )  is asymploticdly normally distributed with mean (yo, 

y )  and covariance matrix given by the inverse of the Fisher information matrix. 

.4ssurne the response probability is small; Whittcmorc (1981) showed the 

I\ 

asymnioiic Y variance of the MLE igr nf \yi is zpp~mhiatcly v(\;.j!{Pl'.e~p(~J)~ 

7 m I?I(!:T? 

where v(y) is the second diagonal element of H-'(y) with H(y) = 1 m(!, ,(2, J , 

m = m(y) = E { ~ X ~ ( ~ ~ X ) )  is the moment-generating function of X, m'" = (m,, ..., 

mJT, mi = a d a y , ,  i = 1, ..., K, and m(2' is the K x K matrix of second partials of 

A A 

rn, mij = 8im'ayidy, , i, j = 1, ..., K. The test statistic is computed as ?!.exp(yo)(y, 

- yI)2/~(\;I) and is referred to its asymptotic distribution under the nuli hypothesis, 

which is a central chi-square distribution on 1 degree of freedom. 

To estimate the sample size needed to test the hypothesis defined above 

with significance level a and power 1 - j3, Whittemore (1981) showed the sample 

size N,, must satisfy 

where $O' = (0, y,, ..., y ~ , ) ~  and Zp is the 100(1 - p)Ih percentile of the standard 

normal distribution. 
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SHIEH 

in order to give :nose dccilrate calculation, corrections were presented. 

For the univariate case, K = 1 ,  more accurate sample size is calculated as 

2.2 SMO Approach 

Self et al. (1992) studied the power calculations for likelihood ratio test 

in generalized linear models. Since the logistic regression model is a special case 

of the generalized linear model, their approach is readily applicable here. 

However, they made the simplifying assumption that all of the covariates in the 

model are categorical. It implies that there are a finite number of distinct covariate 

configurations x,* = (x,,*, ..., x,,*)~, j = 1, ..., C. Let p(X = x,*) = x,, j = 1, ..., C, 

denote the distribution of the C distinct covariate configurations for X. Their 

approach approximates the distribution of the likelihood ratio test statistic by a 

noncentral chi-square distribution with one degree of freedom. It follows that the 

sample size needed for given significance level a and power 1 - P is calculated as 

follows. First, find the noncentrality y, of a noncentral chi-square distribution 

with one degree of freedom such that its 100.Pth percentile, x2,, I-P(yN), is equal to 
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LOGISTIC EGRESSION MODELS 771 

the lOO(1 - u)" percentile of a central chi-square distribution with one degree of 

freedom, x2,,,. Second, the sample size is computed as 

where tr(M) is the trace of M, 

b"(8) = exp(8)/{1 + e~p(B)}~ ,  8, = yo + X,*~V, Oj* = yo* + ~ , * ~ y * ,  and y *  = (0, 

y2*, ..., Y,*)~. The values (yo*, y2*, ..., yK*) represent the limiting values of the 

MLE for (yo, y2 ,  ..., y,) under the null hypothesis H,: y, = 0 as described in Self 

and Mauritsen (1988). Note that (yo*, y2*, ..., yK*) is generally not a consistent 

estimate of (yo, y,, ..., y,), 

A n 

The likelihood ratio statistic is given by 2{L,(y0, y )  - L,(;,*, G*)}, 
A  A  

where L, denotes the log-likelihood function based on a sample size N, and (yo, y )  

A h  

and (yo*, y*) denote the maximum likelihood estimators of (yo, y )  under the 

alternative and null models, respectively. The actual test is performed by referring 

the likelihood ratio statistic to its asymptotic distribution under the null hypothesis, 

which is a central chi-square distribution on 1 degree of freedom. 

As pointed out by the authors, the term K - tr(M) is usually very close to 
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772 SHIEH 

zero Moreover, Shieh and O ' B r m  (1998'1 prov~ded further evidence on rh~s  and 

advocated the slmpliclty and accuracy of usmg 

In this study we found there are no practical differences between (4) and ( 5 )  under 

a greater variety of different settmgs than Self et ai. (1992) and Shieh and G'Ri-ien 

(i998). Hence only the sample size calculated wiih (5) will bc reported here. 

It is useh! tc examine the genera! forrr?ula deccribed above in an 

example. For the purpose of illustration, we continue the sample size calculations 

in Whittemore (1981) for the problem of testing whether the incidence of 

coronary heart disease among white males aged 39-59 is related to their serum 

cholesterol level. Following the study of Hulley et al. (1980), the probability of a 

coronary heart disease event during an 18-month follow-up period for a subject 

with the mean serum cholesterol level is 0.07. The cholesterol levels in this 

population are well represented by a standard normal distribution. According to 

Whittemore's approach, the approximate response probability is 0.07; it results in 

an intercept parameter yo = -2.6593. It can be shown that v(y) = exp(-y2i2) and 

s ( y J  = { l  + (1  + y12)exp(5y1214)}/{1 + e ~ p ( - y , ~ / 4 ) } .  To detect the odds ratio of 

e0 I - 
- 1.1052 (y! = 0.1) and eo5 = 1.6487 (y, = 0.5) for a subject with a cholesterol 

level of one standard deviation above the mean with a = 0.05 and 1 - P = 0.95, 

one would need Nw, = 21147 and Nwl  = 839, respectively. To apply the SMO 

approach, we first group the range of serum cholesterol levels into classes 

(categories) with class endpoints defined in Table 2 for a (standard) normal 
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LOGISTIC REGRESSION MODELS 573 

Table 2. The endpoints for constructing approximations for Poisson, nornal, 
double exponential and exponential covariate distributions 

Poisson 
SMOl (-1, 0, 1, 3, 5 ,  00) 
SM02 ( - l , 0 ,  1 , 2 , 3 , 4 , 5 , 6 , 7 ,  a) 

Normal 
SMO1 (-03, -1.5, -0.7, 0.0, 0.7, 1.5, m) 

SM02 (-03, -2,0, -is, - 1  0, -0.5,0.0, 0.5, 1.0, 1.5, 2.0, mj 

Double exponential 
SMWI (-m, -1.5? -0,7> 0.0, 0.7, 1.5, m) 

SM02 (-a, -2, -1.5, -1.6, -6.5,9.0,0.5, 1.0, 1.5, 2.0, 00) 

Exponential 
SMOl (-1, -0.4, 0.2, 0.8, 1.6, 2.6, m) 

SM02 (-1, -0.6, -0.2, 0.2, 0.6, 1.0, 1.5, 2.0, 2.6, 3.5, m) 

distribution. The numbers of classes for these two class grouping are 6 and 10, 

respectively. The actual covariate configurations xj* and corresponding 

probabilities nj are listed in Table 3. To detect the same effects, one would need 

N,,,, = 21883 and N,,,, = 840 for the class grouping with 6 covariate 

configurations, while N,,,, = 21645 and N,,,, = 825 for the class grouping with 

10 covariate configurations, respectively. 

All the formulas mentioned above could be used to determine the 

nominal power for given values of significance level a and sample size. With this 

power calculation, the more powerful approach can be easily identified. However, 

there is no guarantee that the one that gives higher power will be always more 

accurate in achieving the nominal power. Hence we shall continue to compare the 
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774 SHIEH 

accuracy of these formulas in terms of the discrepancy between estimated actual 

power and nominal power where they are all based on the same value of sample 

size. This is demonstrated in the following simulation studies. 

3. SIMULATION DESIGNS 

in order to compare the V~hitierriorc and ShlC approaches, computer 

simulation studies are performed. The designs of our simulation studies are 

constructed from those used by Hsieh (1989). Self et al. (1992) and Whittemorc 

(198 1). They are conducted as follows. 

3.1 Covariate Distributions 

For a single covariate, we consider Bernoulli, Poisson, normal, double 

exponential and exponential distributions for X = X,. The parameter n of the 

Bernoulli distribution is chosen to be 0.05, 0.50 and 0.95. The covariates are 

standardized with mean 0 and variance 1 for Poisson, normal, double exponential 

and exponential distributions. The only multivariate distribution for X = (X,, XJT 

examined is multinomial with probability (n,, n,, n,, n,), which corresponds to (x,, 

x,) values of (0, O), (0 , I ) ,  (1, 0) and (1, I ) ,  respectively. Four sets of (n,,  n,, n,, n,) 

are studied to represent different shapes of distributions: (0.76, 0.19, 0.01, 0.04), 

(0.4, 0.1, 0.1, 0.4), (0.04, 0.01, 0.19, 0.76) and (0.25, 0.25, 0.25,0.25). 

3.2 Regression Coefficients 

In all models the parameter of interest y ~ ,  is taken to be Iog(2). The 

parameter y ~ ,  for the multinomial distribution is set to be log(2). The remaining 
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LOGISTIC REGRESSIOX MODELS 775 

parameter w, is chosen to satis@ different overail response probabilities to bc 

explained next. 

3.3 Response Probabilities 

To cover the range of response probabilities p, its value is chosen to be 

0.02, 6.15 and 0.56 foi- ,ail models. Given yj and p, :he value of \i;, is determined 

through p = E {p(X)), wher-e p(X) = exp(yj, -+ XTV)/ j 1 + cxp(yl, + XTv)] , and the 

expectation is taken with respect to the distributior! of X defined in Section3.1. 

3.4 Approximations of Covariate Distribution 

To implement the SMO approach, one needs to adopt some 

categorization (class grouping) process in order to have finite configurations for 

covariate distributions with an infinite number of values. Except for Bernoulli and 

multinomial distributions, we study two approximations for each of Poisson, 

normal, double exponential and exponential distributions. The exact distributions 

of both approximations are listed in Table 3. The related calculations of sample 

size and power using these two approximations are called the SMOl and SM02 

methods, respectively. They are constructed from the endpoints presented in Table 

2. For the sake of easy identification, the related calculations of sample size and 

power for Bernoulli and multinomial distributions is called the SMOO method. 

3.5 The Estimates of Sample Size 

Given the covariate distribution, regression coefficients and response 

probability, the estimates of sample size required to achieve significance level 
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776 SHEH 

Table 3. The approximations for Poisson, normal, doubie exponential and 
exponential covariste distributions 

Poisson 
SMOl X* = (~-1, 0, 1, 2, 4, 6) with probability 

(0.3679, 0.3679, 0.1839, 0.0766, 0.0036, 0.0001) 
SM02 X* = (-1, 0, 1, 2, 3 ,4 ,  5, 6, 7, 9) with probability (0.3679, 0.3679, 0.1839, 

0.0613, 0.0153, 0.0031, 0.0005, 0.0001, 9 ~ 1 0 - ~ ,  lo-') 

. iuormai 
C-b!.lr?? - X* = (-1.3, --! .I ,  -0.?5j 0.3Sj ! .!. > !.9'! , with nrobabi!ity 

(0.0668, 0.1752, 0.2580.9.2580, 0.1752,0.0b68) 
SMO2 X* = (-2.25, -i.75, -i.25, -0.75, -0.25, 0.25, 0.75, 1.25, 1.75, 2.25) 

--i.t hirh probability (0.0228, 0.0441, 0.0918, 0.1499, 0.1915, 0.!915, 0.!499, 
0.0918, 0.0441, 0.0218) 

Double exponential 
SMOl X* = (-1.9, -1.1, -0.35, 0.35, 1.1 ,  1.9) with probability 

(0.0599, 0.1259, 0.3142, 0.3142, 0.1259,0.0599). 
SM02 X* = (-2.25, -1.75, -1.25, -0.75, -0.25, 0.25, 0.75, 1.25, 1.75, 2.25) 

with probability (0.0296, 0.0304, 0.061 6, 0.1250, 0.2535, 0.2535, 0.1250, 
0.0616, 0.0304, 0.0296) 

Exponential 
S M O ~  X* = (-0.7, -0. 1, 0.5, 1.2, 2. i ,  3.i j with probability 

(0.4512, 0.2476, 0.1359, 0.0910, 0.0469, 0.0273) 
SM02 X* = (-0.8, -0.4, 0.0, 0.4, 0.8, 1.25, i.75, 2.30, 3.05, 3.95) with 

probability (0.3297, 0.2210, 0.1481, 0.0993, 0.0666, 0.0533, 0.0323, 
0.0225, 0.0162,O.Olll) 

0.05 and three levels of power, 0.80, 0.90 and 0.95, are calculated with Equations 

(2) or (3) for the Whittemore approach, and Equation (5) for the SMO approach 

(SMOO, SMOl and SM02). These values are listed in the first row of results for 

each of three response probabilities in Tables 4-14. These estimates provide a 

comparison of relative efficiency in terms of sample size for obtaining desired 

significance level and power. 
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Table 4. Calculated sample sizes and estimates of actual power at specified sample size for 
Bernoulli covariate (0.05) 

Whitternore SMO 

Power 0.80 0.90 0.95 0.80 0.90 0.95 
p = 0.02 
Sample size' 15674 
Nominal powerb at N,,, .6486 
Estimated power 3114 
Error ,1628 
Percentage error 25.iO 

p = 0.15 
Sample size' 25i i  
Nominal powerb at N,,,, ,6996 
Estimated power 3% 16 
E--- L L I V I  i mn 

.I "A" 

Percentage error 26.02 

p = 0.50 
Sample size" 1098 
Nominal powerb at N,,,, ,9143 
Estimated power ,9766 
Error ,0623 
Percentage error 6.81 

a The sample sizes needed to achieve power 0.8,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SMOO method in '. 

3.6 Nominal Power Calculations 

For a meaningful comparison of accuracy in the simulation study, the 

nominal powers are calculated with the three sample size estimates of SMOO or 

SM02 based on the significance level 0.05 and power 0.80, 0.90 and 0.95 

mentioned in Section 3.5. Obviously the nominal powers for SMOO or SM02 are 

very close to 0.80, 0.90 and 0.95 because this is just the inversion of Equation (5). 

However most of the nominal powers of the SMOl and Whittemore methods are 
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778 SHIEH 

Table 5. Calculated sample sizes and estimates of actual power at specified samp!e size for 
Bernoul!~ covanate (0.50) 

Whittemore 

Power 0.80 
p = 0.02 
Sample size" 4553 
Nominal powerb at N,,,, .6802 
Estimated power .8092 
Error .I290 
Pereeritage error 18.96 

p=0 .15  
Sample sizea 542 
Nominal power" at NsM, .7133 
Estimated power .ti698 
E-..-.. 
GIIUI  

i < L C  
. I > U J  

Percentage error 2 1.93 

p = 0.50 
Sample size" 224 
Nominal powerb at N,,,, ,8685 
Estimated power .9644 . 
Error ,0959 
Percentage error 11 .05 

SMO 

0.90 

4718 
,9000 
.9036 
,0036 
0.40 

7i2 
.9001 
,9040 
flfl7U 
.""dZ 

0.44 

356 
.9007 
,9034 
,0027 
0.30 

' The sample sizes needed to achieve power 0.8,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SMOO method in ". 

different from 0.80, 0.90 and 0.95 since the SMOl method uses Equation (5) with 

different covariate approximation, while the Whittemore approach is based on 

Equations (2) or (3). The major differences of nominal powers between the SMO 

and Whittemore approaches are direct consequences of using different asymptotic 

approximations described in Section 2. 

3.7 Evaluation of Estimated Powers 

Estimates of the actual power associated with given sample size and 

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
31

 2
8 

A
pr

il 
20

14
 



LOGISTIC REGRESSION MODELS 779 

'Fable 6. Caicuiated sampie sizes and estimates of actual power at specified sample size for 
Bernoulli covariate (0.95) 

Whitternore SMO 
-- . . 

Power 0.80 0.90 0.95 0.80 0.90 0.95 
11 = 0.02 
Sample sizea 33297 44469 54910 26194 35066 43367 
Nominal powerb at N,,, ,6992 3201 ,8927 ,8000 ,9000 ,9500 
Estimated power .7910 .9154 .9640 ,8320 ,9318 .9716 
Error .0918 .0953 .0713 ,0320 ,0318 ,0216 
Percentage error 13.13 Ii.62 7.99 4.00 3.53 2.27 
..-a i: p- "..> 
Sample sizea 4455 5950 7347 3689 4939 GI08 

Oi i72  Nominal ?owe2 ai N,,, .7214 .8392 ,,.,, ., .8000 ,9000 ,9500 
Estimated power -8548 ,9458 ,9796 ,8250 ,9218 ,9708 
E m r  .!334 ..,,, ._.-_ 0732 .0250 -0218 -0208 
Percentage error 18.49 12.71 7.96 3.12 2.42 2.19 

p = 0.50 
Sample sizea 1352 1805 2229 1448 1938 2396 
Nominal powerb at N,,, .8266 ,9192 ,9623 ,8002 ,9001 .9500 
Estimated power .9594 . .9868 .9950 .8062 ,9056 .9562 
Error .I328 .0676 ,0327 ,0060 .0055 ,0062 
Percentage error 16.07 7.35 3.39 0.75 0.6 1 0.65 

"he sample sizes needed to achieve power 0.8,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SMOO method in ". 

model configurations are then computed by Monte Carlo simulation based on 

5,000 replicate data sets. For each data set, the covariate is generated with the 

selected distribution in Section 3.1. In order to have a finite number of covariate 

configurations for the cases of Poisson, normal, double exponential and 

exponential distributions, an extra step is performed to calculate the empirical 

distribution, namely the percentages of generated covariate values in the 

categories with endpoints defined in Table 2. The estimated power is the 
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Table 7. Calculated sample sizes and estimates of actual power at specified sample size for 
multinomjal covanate (0.76, 0.19, 0.01, 0.04) 

Whitternore 
-- 

Power 0.80 
p = 0.02 
Sample sizea 12273 
Nominal powerb at N,,,, ,6844 
Estimated power ,8304 
Error .!460 
Percentage error 2 i .33 

11 = 0.15 
Szmple sizea 1797 
Nominal powerb at N,,,, ,8638 
Estmated power .91i8 
Error ,0480 
Percentage error 5.56 

p = 0.50 
Sample sizea 593 
Nominal powerb at N,,,, .9996 
Estimated power ,9864 
Error -.0132 
Percentage error -1.33 

SMO 

0.80 0.90 0.95 

" The sample sizes needed to achieve power 0.8,0.9, and 0.95, respectiveiy. 
The nnmina! pnwers at ca!caliltcd sample sizes of SMOO method in a. 

proportion of these 5000 replicates whose test statistic values exceed the nominal 

0.05-level critical value. Finally, the error = estimated power - nominal power and 

the percentage error = 100 x errorJ(nominal power) are calculated. All 

calculations are performed using programs written with SASJIML. 

4. SIMULATION RESULTS 

We shall discuss the results of calculated sample sizes and estimates of 
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Table 8. Calculated sample sizes and estimates of actual power at specified sampie size for 
niuitinomial covariate (0.40, 0.10, 0.10, 0.40) 

Whittemore 

Power 0.80 
p ' 0.02 
Sample sizea 7509 
Nominal powerb at N,,, ,6922 
Estimated power ,8042 
Error ,1120 
Percentage error 16.17 

p = 0.15 
Sample size" 943 
Nominal powerb at N,,,, ,7662 
Estimated power .8552 
O-nr 
-A. ". .--. noon - 
Percentage error 12.92 

p = 0.50 
Sample size' 253 
Nominal powerb at N,,, ,9590 
Estimated power .9674. 
Error ,0084 
Percentage error 0.87 

SMO 

a The sample sizes needed to achieve power 0.8,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SMOO method in ". 

actual power at specified sample sizes for the Whittemore and SMO approaches in 

Tables 4-14. 

4.1 Comparison of Sample Size Estimates 

For the covariate distributions considered in these simulations, the 

estimates of sample size given by the SMO approach, Equation (5), are generally 

smaller than those calculated from Whittemore approach, Equations (2) and (3). 
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Table 9. Calculated sample sizes and estimates of actual power at specified sample size for 
multrnomial covariate (0.04, 0.01, 0.19, 0.76) 

Whittemore 

Power 0.80 0.90 
p = 0.02 
Sample sizea 52370 6971 1 
Nominal powerb at N,,, ,6982 ,8207 
Estimated power ,8056 ,9150 
Error .I074 .0943 
Percentage error 15.38 il .49 

p = 0.15 
Sample sizea 6532 8695 
Nominal powerb at N,,,, .7286 ,8464 
Estimated power .84i8 ,9402 
Error . x 112.7 A J b  ._,a_ nu7 K 

Percentage error 15.54 11.09 

p = 0.50 
Sample size" 1616 2151 
Nominal powerb at N,,,, ,8419 .9302 
Estimated power .9456- ,9838 
Error ,0137 ,0536 
Percentage error 12.31 5.76 

SMO 

" The sample sizes needed to achieve power 0.8,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SMOO method in '. 

In other words, the SMO approach requires less sample size to achieve desired 

power at prescribed significance level. The only exceptions are the cases of 

Bernoulli, multinomial, normal and exponential distributions for response 

probability p = 0.50, and multinomial (0.76, 0.19, 0.01, 0.04) for response 

probability p = 0.15. Furthermore, there are some extraordinary large values for 

double exponential covariate calculated by the Whittemore approach in Table 13. 

This is because twice the chosen value of v, = log(2) is very close to the upper 
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Table 10. Calculated sample sizes and estimates of actual powcr at specified sample sne for 
multinomisi covariate (0.25,0.25,0.25,0.25) 

Whittemore 

Power 0.80 0.90 
p = 0.02 
Sample sizea 4484 5844 
Nominal powerb at N,,,, ,6887 ,8225 
Estimated power .go88 ,9036 
Error ,1201 ,0811 
Percentage error i 7.44 9.S7 
+=G. i5  
Sample sizeB 574 748 

R R R 5  Ncmina! pc'ver5 at N,,,, .73!9 .,,,, 
Estimated power ,8732 ,9430 
Error .I013 ,0545 
Percentage error 13.12 6.13 

p = 0.50 
Sample size" 161 209 
Nominal powerb at N,,,, ,9635 .9923 
Estimated power .9682 .9894 
Error .0047 -.0029 
Percentage error 0.48 -0.30 

SMO 

-- 

" The sample sizes needed to achieve power 0.8,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SMOO method in a. 

bound 112 for the range of the moment generating function. This result is 

consistent with the finding in Hsieh (1989) that the reported sample sizes using 

the Whittemore approach are less accurate for double exponential than normal and 

exponential covariates. 

4.2 The Accuracy of Estimated Power 

To compare the accuracy of the two approaches, we examined the 

percentage errors. Note that the nominal powers of both approximations are 
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Table 11. Calculated sample sizes and estimates of actual power at specified sample size fbr Poissun covariate 

Whittemore 
-. 

Power 0.80 
p = 0.02 
Sample sizea 980 
Nominal powerb at N,,,, ,4470 
Estimated power 3078 
Error ,3608 
Percentage error 80.71 

p = 0.15 
Sample sizea 242 
Nominal powerb at N,,,, ,3263 
Estimated power 3916 
Error .5653 
Percentage error 99.99" 

p = 0.50 
Sample sizea 170 209 
Nominal powerb at N,,,, ,3246 ,4939 
Estimated power .9790 .9932 
Error .6544 .4.993 
Percentage error 99.99" 99.99' 

SMOl 

- - 
a The sample sizes needed to achieve power 0.8,0.9, and 0.95, respectively. 

The nominal powers at calculated sample sizes of SM02  method in ". 
' The actual percentage error is larger than 99.99. 
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Table 12. Calculated sample sizes and estimates of actual power at specified sample size for normal covariate 

Power 
p = 0.02 
Sample sizea 
Nominal powerb N,,,, 
Estimated power 
Error 
Percentage error 

p = 0.15 
Sample sizea 
Nominal powerb N,,,, 
Estimated power 
Error 
Percentage error 

p = 0.50 
Sample,sizea 
Nominal powerb N,,,, 
Estimated power 
Error 
Percentage error 

Whittemorc 
.- p- 

0.80 0.90 0.95 

- 

a The sample sizes needed to achieve power 0.8, 0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SM02 method in ". 

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
31

 2
8 

A
pr

il 
20

14
 



4 
Table 13 Calculated sample sizes and estimates of actual power at specified sample s u e  For doublc exponential covanate ( 3 ~  

vl 

-- 

Power 0.80 
p = 0.02 
Sample sizea 211333 
Nominal powerb at N,,,, .0013 
Estimated power .9220 
Error .9207 
Percentage error 99.99' 

p = 0.15 
Sarnple sizea 2 10628 
Nominal powerb at N,,,, .0007 
Estimated power .9294 
Error ,9287 
Percentagc error 99.99' 

p = 0.50 
Sample sizea 210558 
Nominal powerb N,,,, .0007 
Estimated power ,9598 
Error .9591 
Percentage error 99.99" 
-- 

Whittemore 
- 

SMO 1 

" The sample sizcs needed to achieve power 0.8,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SM02 method in ". 
The actual percentage error is larger than 99.99. 
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Table 14. Calculated sample sizes and estimates of actual power at specified sample size for exponential covariate 

Whitternore 
- -- 

Power 0.80 
p = 0.02 
Sample sizea 679 
Nominal powerb at N,,,, .2985 
Estimated power 3438 
Error .5453 
Percentage error 99.99' 

p = 0.15 
Sample sizea 74 
Nominal powerb at N,,,, .9954 
Estimated power .7832 
Error -.2 122 
Percentage error -21.32 

p = 0.50 
Sample sizea 19 
Nominal powerb at N,,,, 1.0000 
Estimated power 3158 
Error -. 1842 
Percentage error -18.42 

SMO 1 

-- 

" The sample sizes needed to achieve power O.El,0.9, and 0.95, respectively. 
The nominal powers at calculated sample sizes of SM02 method in ". 
' The actual percentage error is larger than 99.99. 
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788 SRIEH 

csscntially different and are derived from the sample size estimates based on 

SMOO or SM02 method. This is different from the simulation study in Self et al. 

(1992) where same value of nominal power was set for aii competing approaches. 

Since both of the methods are based on the asymptotic approximations, the 

magnitude of sample size is a significant factor of accuracy in achieving the 

nominal poivcr. Our assessment tries to control for its effects flat may confound 

these results. 

First, we focus on the rcsults of small response probability p = 0.02. 

Although the Whittemore approach is proposed for small response probability, 

there is only one case that shows its advantage. For exponential covariate with 

power 0.95 in Table 14, the percentage error of the Whittemore approach is 0.39, 

while the percentage errors for SMOl and SM02 are 3.80 and -1.23, respectively. 

Now we turn to the results of larger response probability. When the 

overall response probabiiity p is 0.15, in ail but the niultinornial (0.76, 0.19, 0.01, 

0.04) distribution, the SMOO, SMOl and SM02 methods have smaller absolute 

percentage errors than the Whittemore method for all three levels of power. When 

the overall response probability p is 0.50, the Whittemore approach is dominated 

in all but the cases of Bernoulli (0.05), multinomial (0.76, 0.19, 0.01, 0.04), 

multinomial (0.40, 0.10, 0.10, 0.40) and multinomiai (0.25, 0.25, 0.25, 0.25) in 

Tables 4, 7, 8 and 10, respectively. We believe that these are due to the ceiling 

effects because the nominal powers are nearly one for the Whittemore approach. 

Despite the fact that the Whittemore method is designed solely for small response 

probability, however, it is somehow surprising to see that there is no degradation 
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LOGISTIC REGRESSION MODELS 789 

in the performance of Whittemore's approach for high response probabilities. In 

fact, our simulation results in Tables 4-10 show that it is more accurate for higher 

response probabilities. 

Next, we examine the performance of the SMOl and SM02  methods 

with discrete approximations of Poisson, normal, double exponential and 

exponeniiai disiriiiiiiions in F&ks 11-14. i-espectixve!y. Due to !he appruximatinr! 

of true covariate distribution, these sbso!ute percentage errors tend to be larger 

than those of Bernoulli and multinomial covariates. Both the SMOl and Sh102 

methods perform extremely well for the normal covariate. However the absolute 

percentage errors of SMO 1 may be as large as 4.3 1, 11.48 and 11.77 for Poisson, 

double exponential and exponential covariates, respectively. For the SM02 

method, the absolute percentage errors are all smaller than 7.06, 8.69 and 3.29 for 

Poisson, double exponential and exponential covariates, respectively. Note that 

the covariate distribution approximation of SM02 is a refinement of SMOl. 

Hence SM02 should be at least as accurate as SMO1. The numerical outcomes do 

not completely agree with this assertion, which reminds us that using an arbitrary 

categorization of true distribution is indeed a delicate subject. For the Poisson 

case, SMOl is better for small response probability 0.02 and is as accurate as 

SM02 for larger response probability 0.15. However SMOl becomes worse than 

SM02 when the response probability is 0.50. The SM02 method is more accurate 

for both normal and double exponential situations. However there is no 

dominance in the case of exponential case, since SM02 is better for small 

response probability 0.02, while SMOl becomes more accurate for the large 

response probability 0.15. 
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5. CONCLUSION 

This study compares the two approachcs in Whittemore (1981) and Self 

et al. (1992) for the calculations of power and sample size in logistic regression 

models. The major distinction of these two approaches is in the overall response 

probabiLity and covariatc distribution of logistic regression models. The 

Whikincrrc app~oach i s  designed just for small response pro'babiiity, while the 

Self et al. (!992) approach is proposed for a finite number of covariate 

configurations. Hence either approach has its limitations which will confine its 

applicability. In the simulation studies, we cover a wide range of data 

configurations in terms of three different values of response probability and 14 

different covariate distributions. Among them, the Poisson, normal, double 

exponential and exponential distributions represent those with an infinite number 

of covariate configurations. Overall, the results indicate that the approach of Self, 

et ai. (1992) ouiperfornx the Li7hittemorc approach, even for small response 

probability. Hence the Self et al. (1992) approach is recommended regardless of 

the magnitude of the response probability. In order to apply this approach to 

models with an infinite number of covariate configurations, however, it involves 

arbitrary categorization decisions. Despite this, it appears to be acceptable over 

the range of conditions considered here. 
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