
Bounded tag fair queueing for broadband packet switching networks

Yen-Jen Chen*, S.-Y. Lee

Dept. of Computer Science and Information Engineering, National Chiao Tung University, Hsin-Chu, Taiwan, ROC

Received 11 September 1998; received in revised form 15 June 1999; accepted 29 June 1999

Abstract

Fair Queueing (FQ) is an attractive packet scheduling mechanism, which can establish firewall among packet flows. Thus, the quality of
service (QoS) of each flow can be guaranteed. To implement the mechanism, three important performance issues are concerned: fairness,
bounded delay, and efficiency. We propose a scheme, named BTFQ, which satisfies the three criteria. The scheme BTFQ1 is also proposed
to improve the fairness property of BTFQ and is designed to combine with a low-cost, high-speed hardware for reducing computation time.
For comparison, we classify some well-known packet scheduling schemes into six classes according to their fairness properties. BTFQ and
BTFQ 1 are excellent in bounded delay and efficiency. Their fairness properties, although a little bit weak, are but still very good if the
traffic load is under 95%, according to the simulation results. Because of the tradeoff among the performance issues, BTFQ and BTFQ1
provide another good choices.q 2000 Elsevier Science B.V. All rights reserved.

Keywords:Packet scheduling; Fair queueing; Fairness; Bounded delay; Efficiency

1. Introduction

In the high-speed network, various applications are inte-
grated together, such as Video On Demand, Video Confer-
ence, Distant Learning, and Digital Telephony [1,2]. The
packet flow, which is a sequence of packets generated
from an application and travels along a fixed route, requires
stringent performance in delay, packet loss, and throughput.
One of the most important strategies to guarantee the perfor-
mance is to fairly allocate the bandwidth of the network
channel to the flows passing through it. This leads to good
isolation for a flow without the interference from others.

Fair queueing (FQ) is a packet scheduling mechanism,
which is capable of allocating the channel bandwidth fairly.
The implementation of the mechanism concerns three
important performance issues: fairness (in bandwidth allo-
cation), bounded delay (for each packet), and efficiency (of
scheduling algorithm) [4,14,15].

A lot of FQ schemes, offering fairness allocation to the
flows sharing the channel, have been proposed such as
Packet Generalized Processor Sharing (PGPS) [4,5] (also
known as Weighted Fair Queueing [6]), Self-Clock Fair
Queueing (SCFQ) [8], Start-time Fair Queueing (SFQ)
[11], Leap Forward Virtual Clock (LFVC) [12], Minimum
Starting-tag Fair Queueing (MSFQ) [13], Time Shift

Scheduling (TSS) [14], Frame-based Fair Queueing (FFQ)
[15,20,21], and Starting Potential-based Fair Queueing
(SPFQ) [20,21]. They all can provide bounded delay if the
traffics of the flows constrained by Leaky Bucket [16]. It is
complex to implement PGPS in the high-speed network
since PGPS needs to simulate the theoretic FQ scheme,
Generalized Processor Sharing (GPS) [4], in real time.
SCFQ and SFQ are easy to implement, but they both
provide the delay bounds that grow with the number of
the flows sharing the channel. LFVC, MSFQ, SPFQ, and
TSS provide the small delay bounds independent of the
number of flows while they are less efficient than SCFQ.
FFQ is as efficient as SCFQ and provides the same delay
bound as TSS, but its fairness property is worse than those
of the above schemes.

Here we propose an efficient FQ scheme, called Bounded
Tag Fair Queueing (BTFQ), which can allocate bandwidth
fairly and offer a small delay bound, independent of the
number of flows. We also propose the enhancement version,
BTFQ1 , which is an improvement on BTFQ in fairness. In
addition, hardware is designed for BTFQ1 to reduce the
time on packet scheduling. The time that the hardware
requires for scheduling a packet is less than the time
required by an ADD operation in a 32-bit adder [17], if
the number of the flows sharing the channel is less than
4 × 109.

The remaining of the paper is organized as follows. In
Section 2, we introduce the goal of FQ and the formal

Computer Communications 23 (2000) 45–61

COMCOM 1652

0140-3664/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(99)00145-0

www.elsevier.com/locate/comcom

* Corresponding author. Tel.:1 886-35712121; fax:1 886-35724176.
E-mail address:ctchen@csie.nctu.edu.tw (Yen-Jen Chen)

definitions of fairness, bounded delay, and efficiency. In
Section 3, we describe BTFQ and show its performance.
In Section 4, the enhanced scheme BTFQ1 is proposed
and the architecture of the supporting hardware is illu-
strated. In Section 5, we classify the famous scheme, Virtual
Clock (VC) [3], and some FQ schemes into six classes for
systematic comparison. In Section 6, for further comparison
in fairness among the classes, we design a simulation to test
the fairness properties of these classes. Finally, the conclu-
sion is given in Section 7. The proofs of all theorems are
listed in Appendix A.

2. Fair queueing

The goal of FQ is to allocate bandwidth fairly to the flows
sharing a channel. In this section, we first introduce the
system model, and then formally describe the goal of FQ
and the definitions of fairness, bounded delay, and effi-
ciency. Finally, we describe the theoretic FQ scheme,
GPS, which helps understanding the design of practical
FQ schemes.

2.1. System model

Assume at mostN flows share the channel. We model the
flows and the channel as a queueing system. In the system
there is a non-preemptive, work-conserving server to send

the packets from the flows. Each flow, with a separate FIFO
packet queue, is associated with a reserved bandwidth. Each
queue is assigned a dynamic priority; the smaller the priority
values the higher the queue priority. The packet at the head
of the highest-priority queue is first moved into the server,
and then the queue priority is updated immediately.

In the following, we give some definitions and notations
used.

Definition 1. A flow f is said to bebackloggedduring time
interval [t1,t2] (including t1 and t2) if the queue forf is
never empty during [t1,t2].

Definition 2. A systembusy periodis a maximal interval
of time during which the server is never idle.

2.2. Goal of fair queueing

The goal of FQ is to share the server capacity among all
backlogged flows in proportion to their reserved rates. Thus,
if no flow changes status during [t1,t2], the bandwidth
G:f �t1; t2� for flow f backlogged during [t1,t2] is expected
as

G:f �t1; t2� � C�R:f =
X

i[B�t1;t2�
R:i�: �1�

With Eq. (1), FQ can reserve forf the bandwidth no less

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6146

Nomenclature

N number of maximum flows allowed; flow identifier is in the range [0,N 2 1]
B�t1; t2�: set of the backlogged flows during [t1, t2]
B(t): limDt!0 B�t; t 1 Dt�
C: server capacity in bits per second (bps)
W:f �t1; t2�: data amount of flowf (in bits) sent by server during [t1,t2]
G:f �t1; t2�: bandwidth of flowf during [t1,t2], which is equal toW:f �t1; t2�=�t2 2 t1�
R:f : reserved rate for flowf in bps
F:ij �t1; t2�: fairness between any two flows,i and j, backlogged during [t1,t2]
D:p: delay of packet p passing through the server (including queueing delay)
queue.f: queue for flowf
L.p: length (in bits) of packetp
L.f: length (in bits) of the packet at the head of queue.f
L.fmax: upper bound on packet length for flowf
Lmax: upper bound on packet length for all flows
Smax: maxi�0…N21{ L:imax=R:i} :
Smax1: maximum ofL:imax=R:i of the flowsi currently backlogged and served
X.f: priority of queue.f
X.p: priority of packetp, which is the queue priority whenp is at the head of the queue
XS: priority of the packet currently served
H: ordered list of the queue priorities of all backlogged flows
T.f: tag of queue.f, an auxiliary for computingX.f
T.p: tag of packetp, which is the queue tag whenp is at the head of the queue
Tbnd: lower bound of the queue tags of all backlogged flows
V.p: virtual arrival time of packetp
TagClock: special clock helping determineV.p in the schemes BTFQ and BTFQ1

than the reserved rateR.f, ifX
i�0::N 2 1

R:i # C: �2�

With Eq. (1) and inequality (2), the criteria for FQ
schemes are defined as follows.

Definition 3 (Fairness [8]). In a scheduling scheme, for
any flow f backlogged during [t1,t2], its normalized service
in the interval is defined asW:f �t1; t2�=R:f : The fairness
between any two flows,i and j, backlogged during [t1,t2]
is defined as the difference between the normalized services
of the two flows. Let the fairness between the flows be
denoted asF:ij �t1; t2�: Then,F:ij �t1; t2� � uW:i�t1; t2�=R:i 2
W:j�t1; t2�=R:j:u The scheme is said to be fair (or to be with
the fairness property), if there is an upper bound on
F:ij �t1; t2�.

Definition 4 (Bounded delay [14,18]). LetD.p be the
delay of a packetp from a flow f through a shared server,
which employs a scheduling scheme to serve a number of
flows. On the other hand, letd.p be the delay of the packetp
of the same flowf through a solo server, which is dedicated
for flow f with capacity R.f. The scheduling scheme
employed by the shared server is withbounded delayif
D:p # d:p 1 a; wherea is a small constant.

Definition 5 (Efficiency). [13]. Theefficiencyof a sche-
duling scheme is measured in two aspects: the complexities
of computingandscheduling, which are the complexities for
computing the priority of a queue and sorting the queue
priorities, respectively.

To illustrate and compare FQ schemes, a basic scheme is
shown as follows, named Basic_FQ, from which a lot of FQ
schemes can be spawned.

(a) Consider a packetp of flow f arrives. Before the packet
is appended to queue.f, the scheme checks if queue.f is
empty. If queue.f is empty, priority X.f and tagT.f are
updated as follows:

T:f ← max{V:p;X:f } ; �3�

X:f ← T:f 1 L:p=R:f : �4�

Here,V.p denotes the virtual arrival time of packetp, whose
definition varies from one scheme to another. On the
contrary, if queue.f is not empty, thenX.f and T.f are not
updated.

(b) Once a packet departs from the server, the packet at
the head of the highest priority queue is immediately moved
into the server for transmission. Let queue.f be the highest
priority queue. If queue.f remains non-empty,X.f andT.f are
updated as follows:

T:f ← X:f ; �5�

X:f ← T:f 1 L:f =R:f : �6�
In the next section, we introduce how to defineV:p to
achieve the goal of FQ.

2.3. Theoretic scheme for fair queueing

GPS is the theoretic FQ scheme, which can achieve the
goal of FQ. The scheme can be spawned from Basic_FQ by
assuming that the queueing model isfluid and defining the
virtual arrival timeV.p of a packetp as the queue tag of any
flow backlogged on the arrival ofp. GPS is not practical
since it is based on the fluid model where the packet size is
considered to be near zero. But the scheme contributes to the
way for practical FQ schemes to defineV.p.

Consider the Basic_FQ scheme. For each flowf, the tag
T.f is a step function of time with step sizeL:f =R:f but
possibly with a jump to the value ofV.p, where packetp
is from f. Whenever flowf becomes backlogged, assignment
(3) is performed. IfX:f , V:p; the new value ofT.f is from
V.p, but not fromX.f. In this case, we say thatT.f has a tag
jump to V.p. Next, we show the dynamics of the flow tag
with time in Fig. 1 to illustrate how GPS achieves the goal of
FQ. Denote the value ofT.f at timet asT:f �t�: Let timet1 be
the start of a busy period. Att1, each queue tag and queue
priority is reset to zero. For any two flows,i and j, back-
logged during [t1,t2], the queue tags ofi andj are the same
at any timet in [t1,t2], i.e.

T:i�t� � T:j�t�: �7�
This is because packet size is near zero and no tag jump
occurs fori and j during [t1,t2].

Consider the bandwidthG:f �t1; t2� while a flowf is back-
logged during [t1,t2) and no flow changes the status during
[t1,t2). Since G:f �t1; t2� is W:f �t1; t2�=�t2 2 t1�; let us
computeW:f �t1; t2� first. BecauseT:f has no tag jump
during [t1,t2], we haveT:f ← T:f 1 L:f =R:f during [t1,t2].
Thus,

W:f �t1; t2� � �T:f �t2�2 T:f �t1��R:f : �8�
The sum of allW.i(t1, t2), wherei [B�t1; t2�; is equal to the
total data amount sent by the work-conserving server during
[t1,t2], which is �t2 2 t1�C: For the flowsi, i [B�t1; t2�;
their queue tags are zero att1 and the same att2 from Eq.

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 47

Fig. 1. Dynamics of queue tags in GPS.

(7). Sincef [B�t1; t2�; we have

�T:f �t2�2 T:f �t1��
X

i[B�t1;t2�
R:i � �t2 2 t1�C: �9�

The allocated bandwidthG:f �t1; t2� is thus equal to
C�R:f =Pi[B�t1;t2�R:i�: This matches the goal of FQ shown
in Eq. (1).

Next, consider the bandwidthG:g�t2; t3� when a flowg
becomes backlogged att2 and no flow changes status during
(t2, t3]. At t2, a packetp from flow g arrives and causesg to
become backlogged. The virtual arrival timeV.p is thus equal
to the queue tag of any flow backlogged att22 (the time
immediately beforet2). According to assignment (3),T.g
has a tag jump toV.p becauseX.g is 0 beforet2. All flows
backlogged during (t2, t3] still have the same queue tags att3.
With the result of Eqs. (8) and (9), the bandwidthG:g�t2; t3� is
equal toC�R:g=Pi[B�t2;t3�R:i�: Therefore, the goal of FQ is
achieved by GPS. In Fig. 1,W:i�t1; t2�=R:i �W:j�t1; t2�=R:j
from Eqs. (7) and (8). Thus, the fairnessFij �t1; t2� is zero.
Similarly, Fij �t2; t3� is zero. So, GPS is an ideal FQ.

However, a feasible FQ scheme cannot be based on fluid
model. In the practical packet model, the queue tags of
backlogged flows may not be the same at any time due to
packet size not near zero. Thus, it is difficult to determine an
optimal value for definingV.p. The principle for achieving a
better property in fairness is to defineV.p as the value being
as close as possible to the queue tags of all flows backlogged
on the arrival of packetp. For example, the MSFQ scheme
definesV.p as the smallest queue tag of all backlogged
flows. In fact, the scheme has the properties of fairness,

bounded delay and O(logN) complexity for computing
the smallest queue tag, whereN is the number of maximum
flows allowed.

3. Bounded tag fair queueing scheme

We will describe the proposed scheme BTFQ, and show
its properties of fairness, bounded delay and efficiency.
BTFQ is spawn from Basic_FQ and defines the virtual arri-
val time V.p of packetp as the time of the special clock,
named TagClock, whenp arrives.

A snapshot of the dynamics of TagClock is shown in Fig.
2, where flowf is non-backlogged while flowsg, i, andj are
backlogged. Whenever a busy period starts, TagClock is
reset to zero and then acts like a real clock. However, the
time in TagClock may jump on the event that a packetp of a
flow f arrives and causes the flowf to become backlogged.
On the event, if the time in TagClock is less than the lower
boundTbnd of the queue tags of backlogged flows (g, i, andj
in Fig. 2), the time in TagClock jumps toTbnd. That is,
TagClock← max{TagClock;Tbnd} : About the definition
of V.p, if the arrival of packetp triggers a time jump in
TagClock,V.p is defined as the time in TagClock immedi-
ately after the jump.

BTFQ consists of the Enqueue and Dequeue processes
dealing with the arrival and departure of every packet,
shown in Figs. 3 and 4. When a packetp from flow f arrives,
the Enqueue process is active. Iff has been backlogged, just
appendp to queue.f. On the contrary, iff has not been back-
logged untilp arrives,Tbnd is calculated asXS2 Smax where
XS is the priority of the packet currently served andSmax is
maxi�0…N21{ L:imax=R:i} : If TagClock is smaller thanTbnd, it
has a jump toTbnd. Then, the virtual arrival timeV.p is the
time in TagClock.T.f and X.f are calculated andX.f is
inserted into the ordered queue priority listH. Finally,
packetp is append to queue.f to wait for service.

The Dequeue process is active on the departure of a
packet. The function Reset(BTFQ) resetsXS and all
queue prioritys and tags to zero. FindTopPriorityFlow(H)

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6148

Fig. 2. Dynamics of TagClock in BTFQ.

Fig. 3. Enqueue process of BTEQ.

Fig. 4. Dequeue process of BTFQ.

returns the flow with the highest queue priority among the
list H. Head(queue.f) removes the packet at the head of
queue.f and then returns it. Transmit(p) starts the transmis-
sion of packetp. Finally,T.f andX.f are updated if queue.f is
not empty.

As for the lower boundTbnd of all backlogged queue tags,
we explain it as follows.

Theorem 1. In BTFQ, for any currently backlogged
flow f, its queue tagT.f is no less than the priorityXS of
currently served packet minusSmax. Thus Tbnd is assigned
XS2 Smax:

Next, we show the properties of fairness, bounded delay,
and efficiency as follows.

3.1. Bounded delay of BTFQ

To analyze the property of BTFQ in bounded delay, we
show BTFQ belongs to the class of Guaranteed Rate (GR)
scheduling schemes [9], all of which are with bounded
delay. An algorithm to assign packets timestamps is intro-
duced for describing the definition of the GR class as
follows.

Let p and p0 be the packets from flowf and p0 arrive
immediately precedingp. GRC(p) and A(p) are the time-
stamp and the arrival time of packetp, respectively. GRC(p)
is computed as follows. (Here, GRC(p0) is zero if p is the
first packet of flowf.)

GRC�p�← max{A�p�;GRC�p0�} 1 L:p=R:f :

With the above algorithm, the definition of the class of GR
scheduling schemes is as follows.

Definition 6. A scheduling scheme belongs to the GR
class if it guarantees that each packetp will depart from
the server by GRC�p�1 b; whereb is a constant depending
on the scheduling scheme and the server.

To show BTFQ belongs to GR class, we show the depar-
ture time of packetp is at most the value of the priority ofp,
X:p plus Lmax=C: Then, we show thatX.p is no greater than
GRC(p). Thus the departure time ofp is by GRC�p�1
Lmax=C:

Theorem 2. If packetp of flow f departs from the BTFQ
server (i.e. the server employing BTFQ) at timez in
TagClock, z is at most the priority value ofp,
X:p plus Lmax=C: That is,

z # X:p 1 Lmax=C: �10�

Theorem 3. BTFQ belongs to the GR class. That is, a
packetp of flow f will depart from the BTFQ system by
GRC�p�1 b; whereb is Lmax=C:

Corollary 1. BTFQ is with bounded delay.

Proof. From Theorem 3, BTFQ is a GR scheme. Since GR
scheme is with bounded delay, so is BTFQ. Proven.

With the method from GR framework, we can easily
determine the end-to-end delay bound for a flowf, if f is
constrained by the Leaky Bucket control.

Theorem 4. Let flow f be constrained by the Leaky
Bucket with parameter�s:f ;R:f � and it passes throughK
BTFQ servers each of which has capacityCi, 1 # i # k:
The end-to-end delayDE2E(f), if link propagation delays
are not counted in, of the packet off is bounded as

DE2E�f � # s:f =R:f 1 �K 2 1�L:fmax=R:f 1
X

i�1…K

Lmax=Ci :

�11�
The first terms:f =R:f is the delay that a packetpencounters

the maximum burst size queued in queue.f of some serverj
along the path off. The remaining terms result from the
maximum delay,L:fmax=R:f 1 Lmax=Ci ; for the packetp
through each serveri wherei ± j:

3.2. Fairness of BTFQ

Recall the GPS scheme. The fairnessF:ij �t1; t2� is
zero, for any two flows i and j backlogged during
[t1,t2], since the queue tags of all backlogged flows are
the same at any time. In BTFQ, all these tags can be
bounded as shown in Theorem 5. With this theorem we
introduce the upper bound of the fairnessF:ij �t1; t2� for
BTFQ in Theorem 6.

Definition 7. Let current time bet in Tagclock. Define
packete(t) as the latest one with the largest priority value
among the packets entering the server from the start of
current busy period until timet.

For example, current busy period starts at 0, current time
is 10 in Tagclock, and five packets,p1, p2, p3, p4, andp5,
have entered the server so far. The information for each
packet, (packet priority, enter-server time), is as follows:
p1(3, 0),p2(15, 2),p3(9, 3),p4(15, 5),p5(8, 8).p2 andp4
have the largest priority value 15, butp4 is the latest. Thus,
e(10) isp4.

Theorem 5. For the BTFQ system in the current busy
period, if current time ist in TagClock ande(t) is packet
r, then for each flowf backlogged at t the queue tagT.f is
bounded as

X:r 2 Smax # T:f # X:r 1 Lmax=C: �12�

Theorem 6. For the BTFQ scheme, the fairness

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 49

F:ij �t1; t2� between any two flowsi andj backlogged during
time interval [t1,t2] is bounded as

F:ij �t1; t2� # Smax 1 max{L:imax=R:i;L:jmax=R:j} 1 Lmax=C:

�13�

3.3. Efficiency of BTFQ

From Definition 5, the efficiency of a scheduling scheme
is evaluated on the complexities for computing and schedul-
ing queue priority. In BTFQ for computing the queue prior-
ity X.f of a flow f, the most complex operation in Enqueue
and Dequeue is to computeSmax. However, this operation is
executed only when a flow is established or released. Thus,
the complexity to computeX.f is O(1) when a packet arrives
or departs. On the other hand, to scheduleX.f into the
ordered listH with at mostN elements, the complexity is
at least O(logN). Let H be a heap. The scheduling complex-
ity is thus O(logN).

In fact, BTFQ also achieves O(loglogN) complexity with
the method in the LFVC scheme [12], with which all the
priorities of the currently backlogged queues are mapped
into a finite integer range [0,M], where M is O(N). From
the result of [9], a subset of [0,M] can be kept ordered by the
insertion or deletion of each element in O(loglogM).
However, the price paid is a more complex data structure
than heap.

From Sections 3.1–3.3, BTFQ is rather attractive in fair-
ness, bounded delay, and efficiency, especially for high
speed network due to O(1) computing complexity. Further,
BTFQ can be enhanced in the fairness bound by some modi-
fication.

4. BTFQ1

BTFQ 1 is proposed to improve the fairness property of
BTFQ. Recall the BTFQ scheme, which defines the virtual
arrival timeV.p of a packetp as the time in TagClock when
p arrives. From the GPS scheme, the principle for achieving
a better fairness property is to defineV.p as the value being
as close as possible to the queue tags of all backlogged

flows. Thus, BTFQ lets the time in TagClock jump to the
lower boundTbnd of all backlogged queue tags for being
close to these tags. Evidently, it is theTbnd that affects the
fairness property. Therefore, the goal of BTFQ1 is to find
a newTbnd, which is larger than theTbnd in BTFQ. Tbnd in
BTFQ is the value of the served packet priorityXS2 Smax:

To enlarge the value ofTbnd, we replaceSmax with Smax1,
where Smax1 is the maximum ofL:imax=R:i of the flows
currently backlogged and served. Clearly,Smax is no less
than Smax1 sinceSmax is the maximum ofL:imax=R:i of all
flows i.

Thus, BTFQ1 is modified from BTFQ by replacing only
the assignment ofTbnd in the Enqueue process of BTFQ with
the following:

Tbnd ← XS2 Smax1: �14�
All the definitions, theorems and corollaries in BTFQ are
still suitable for BTFQ1. Although the fairness is improved,
the price paid is O(logN) time for computingSmax1 since the
backlogged flow set may change after a packet arrives or
departs. This leads to an O(logN) computing complexity.
To compensate the loss of efficiency, we design a supporting
hardware to computeSmax1. The computation time, ifN #
4 × 109

; is no longer than that of one ADD operation in a 32-
bit adder.

4.1. Supporting Hardware for BTFQ1

The hardware, named SeekMax, is designed to compute
Smax1 when backlogged flow set changes. Assume at mostN
flows are in the system. LetS[f] denoteL:fmax=R:f for flow f.
To findSmax1 rapidly, the flows are sorted according to their
S[]. Let the sorted flow list be (f0, f1,…,fN21) whereS�fi� $
S�fj� if 0 # i , j , N: The state of flowfi is indicated by the
flag, flag[i]. If fi is backlogged or served currently, flag[i] is
1; otherwise, 0.Smax1 is the maximum of all theS[fi] of the
flows fi with flag[i] being 1 for 0# i , N: To seekSmax1 is
to find the first flag[i] being 1, wherei starts from 0. If such
flag[i] is found, thenSmax1 is S[fi].

For example, in Fig. 5 there are flows 0, 3, 5, and 6 in the
system. Here,S[f] being 0 represents that flowf does not
exist. The sorted flow list (f0, f1, f2, f3) is (5, 3, 0, 6), since
S�5� . S�3� . S�0� . S�6�: Thus the flags of flows 5, 3, 0,
and 6 are stored in flag[0] through flag[3]. In the example,

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6150

0 1 01 XXXX

.6 0 .80 0.250

2 X 1X X30X

5 3 60 XXXX

X: disable

Fig. 5. SeekMax system.

Fig. 6. Seeker of the SeekMax system.

since the first flag being 1 is flag[1],Smax1 is S[f1], i.e. S[3].
To keep the correspondence betweenS[] and flag[], two
pointer arrayspflag[] and pS[] are for S[] and flag[],
respectively. For example, flag[1] knows its correspondent,
S[3], by the pointer inpS[1]. S[3] knows its correspondent,
flag[1], by the pointer inpflag[3].

To rapidly find the first flag[i] being 1 wherei starts from
0, Seeker with a binary-tree structure is created in SeekMax.
A 4-flag Seeker is shown in Fig. 6. In Seeker, flags are in the
leaf level. For the flags in a subtree, the first flag being one is
indicated by the bits,Ek andBkBk21…B0 in the root of the
subtree, where the root is in branch levelk. If Ek is 1, then
there is a flag being one in the subtree. In this case,
BkBk21…B0 is the binary code of the index of the first flag
being one in the subtree. For example, theB1B0 of the root in
Fig. 6 being 01 shows the first flag being 1 is flag[(01)2].

The values ofEk, Bk, and Bk21…B0 of a node are
computed from theEk21 and Bk21…B0 of the sons of the
node. The computation logic is shown in Fig. 7. If one of
theEk21 of the sons is 1,Ek is 1. If theEk21 of the left son is
one,Bk is 0; otherwise,Bk is one if theEk21 of the right son is
1. TheBk21…B0 of the node is copied from that of the left or
right son according toBk being zero or one. Based on the
VLSI design [7], this can be done by usingpMOS and
nMOS gates. In Fig. 7, ifBk is 0, pMOS will open; other-
wise, close. The phase ofnMOS is opposite to that of
pMOS.

To compare the node of Seeker with a one-bit full adder,
let bits Ak21 and Bk21 be the addends and bitCk21 be the
carry_in of the adder whileSk andCk is the sum and carry_-
out, respectively. The Boolean logic for the adder is:

Sk � C 0k21 × �A0k21 × Bk21 1 Ak21 × B0k21�
1 Ck21 × �A0k21 × B0k21 1 Ak21 × Bk21�; �15�

Ck � Ak21 × Bk21 1 Ck21 × �Ak21 1 Bk21�: �16�
From Eq. (16),Ck is obtained after three operations, one

‘ × ’ and two ‘ 1 ’. Consider the node of Seeker in Fig. 7.
BkBk21…B0 is obtained after three operations, ‘NOT’, ‘× ’,

and ‘gate’. However, the delay of ‘gate’ is smaller than
those of ‘ × ’ and ‘ 1 ’ in VLSI. Thus, the delay for a
node is smaller than that for a one-bit full adder. Thus,
Seeker on finding the first flag being one amongN flags is
faster than thedlog Ne-bit adder on performing an ADD
operation.

Finally, consider the time when a flow is established or
released by the BTFQ1 system. At this time, insertion or
deletion is enforced on flag[]. For the consideration of
speed, we implement flag[] as the shifter ofN bits, pS[]
as the shifter ofN words, andpflag[] as the array ofN
counters. When a flow is established, SeekMax finds an
S[i] being zero and then assignsi as the identifier of the
flow. The processes of establishment and release of flowi
in SeekMax are shown in Figs. 8 and 9, respectively.

The establishment of a flow in SeekMax requires
O(log N) time due to the binary search for a flag index for
the flow. As to the instructions performed in parallel such as
“Right Shift” and “Increase Counters”, they need only one
hardware clock cycle. On the contrary, the release of a flow
requires O(1) time. These time complexities are required at
the call level only. At the packet level, the time complexity
of SeekMax is for findingSmax1 by Seeker. AN-flag Seeker
requires at most the time of one ADD operation in an
dlog Ne-bit adder.

5. Comparison

We compare BTFQ and BTFQ1 with some well-known
schemes in three criteria. The first is the bound of fairness
F:ij �t1; t2�: For example, from Theorem 6,F:ij �t1; t2� of

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 51

Fig. 7. Node logic in Seeker.

Fig. 8. Flow establishment in SeekMax.

Fig. 9. Flow release in SeekMax.

BTFQ is bounded by maxk�0…N21{ L:kmax=R:k} 1
max{L:imax=R:i;L:jmax=R:j} 1 Lmax=C:

The second is delay bound. Consider a flowf constrained
by the Leaky Bucket�s:f ;R:f � and passing throughK
servers each of which has the capacityC and employs the
same scheme with bounded delay. With the GR framework
[9], flow f has an end-to-end delay bound,s:f =R:f 1 Kt;
wheret is named the latency at a server. From Theorem
4, for BTFQ, the end-to-end delay of flowf is less than
s:f =R:f 1 K�L:fmax=R:f 1 Lmax=C�: Hence for BTFQt is
L:fmax=R:f 1 Lmax=C: We let latencyt be the criterion for
delay bound.

The third is efficiency. We compare the computing and
scheduling complexities among these schemes. We
summarize the performance data for these schemes in
Table 1 [15]. Noticeably, all the schemes have the schedul-
ing complexity of O(logN), except LFVC.

5.1. Classification and comparison

The schemes in Table 1 are classified into six classes
according to their fairness bounds. In Class 0, GPS is an
ideal FQ scheme with fairness bound being zero. Since it is
based on the fluid model, the latencyt is zero. GPS is good
but not practical. Thus we do not discuss its complexities. In
Class 1, PGPS schedules packets in the practical packet
model by simulating GPS in real time. Thus it is the scheme
with very good property of fairness though it has larger
fairness bound than some schemes. Its computing complex-
ity is O(N); therefore, it is not suitable for high speed
networks even though it provides a small latency.

For the Class 2 schemes, they have the good properties of
fairness since the bounds ofF:ij �t1; t2� depend on flowi and
j and/or the constantLmax=C only. SCFQ and SFQ have the
smallest computing complexity, O(1). However, the laten-
cies they provide increase with the number of flows. LFVC
has not this problem, but it needs a more complex data
structure.

The fairness properties of the Class 3 schemes are worse
than those of the Class 2, sinceF:ij �t1; t2� of the Class 3 not
only depends on flowi andj but also on the maximum of the
L:k=R:k or L:kmax=R:k of some flowsk. The latencies that the
Class 3 schemes provide are as good as those the PGPS
provide while their computing complexities are O(logN).
Thus BTFQ1 is designed to combine with a low-cost,
high-speed hardware for reducing the computation time.

The Class 4 schemes have larger fairness bounds than the
schemes of other classes except Class 5. They provide the
same latency as PGPS and have the computing complexity
of O(1). In the class, BTFQ has a smaller fairness bound
than FFQ. As for Class 5, VC is not fair, since it has no
fairness bound.

BTFQ suits the real-time applications in high speed
networks due to the good properties in latency and effi-
ciency. Although BTFQ is a little bit weak in fairness,
BTFQ 1 improves the fairness of BTFQ and combines

with the hardware SeekMax to reduce the computation
time. As a whole, BTFQ1 is good in fairness, bounded
delay and efficiency at the same time. Notably, SPFQ has
the same fairness bound as BTFQ, but it is classified into
Class 3. The reason is explained in Section 5.1. In addition,
from Table 1, the performance of LFVC is good as a whole.
LFVC is compared further with the proposed schemes in
Section 5.2.

5.2. Comparison with the SPFQ scheme

We describe SPFQ by means of the scheme Basic_FQ,
mentioned in Section 2.2. SPFQ maintains a system clock,
named system potential (SP), to keep the values of back-
logged queue tags close. When a packetp arrives, its virtual
arrival timeV.p is defined as the time in SP. SP (in SPFQ)
and TagClock (in BTFQ) are alike; however, they are differ-
ent in the values that their times jump to and in the events
that trigger the occurrences of the time jumps. The time in
SP may jump on the event that a packet departs from the
server. On the event, if the time in SP is smaller than
the smallest queue tag among the backlogged queues, the
time jumps to the tag value. That is, SP←
max{SP;mini:backlogged flow{ T:i}} : For finding out the smal-
lest queue tag in O(1) time, SPFQ needs to maintain the
backlogged queue tags as an ordered list such as a heap.
Thus it takes O(logN) time to insert or delete a queue tag in
the ordered list. When a packetp from a flow f arrives and
causes flowf to become backlogged, the queue tagT.f and
queue priorityX.f are updated immediately according to
assignments (3) and (4). Next,T.f andX.f are inserted into
the ordered queue tag and queue priority lists, respectively.
These operations need O(logN) time. Clearly, both the
computing complexity and scheduling complexity are
O(log N).

SPFQ bounds the fairnessFij (t1, t2) under maxk�0…N21

{ L:kmax=R:k} 1 max{L:imax=R:i;L:jmax=R:j} 1 Lmax=C: How-
ever, we believe the fairness of SPFQ has a tighter bound,
maxk[B�t�{ L:k=R:k} 1 max{L:imax= R:i;L:jmax=R:j} 1 Lmax=C;
whereB(t) is the set of the flows backlogged at timet. Our
belief arises from the way in which SPFQ defines the virtual
arrival timeV.p of a packetp. According to the basic scheme
Basic_FQ, the way to defineV.p dominates the fairness
property of an FQ scheme. We find that the way of SPFQ
to defineV.p is similar to those of TSS and MSFQ. TSS has
a ShiftClock like TagClock (in BTFQ). When a packetp
from a flow arrives and causes the flow to become back-
logged, ShiftClock is updated as follows: ShiftClock←
max{ShiftClock; mini:backlogged flow{ T:i}} : Then V.p is
defined as the time in ShiftClock. MSFQ has no system
clock to help define V.p. Thus it defines V.p as
mini:backlogged or served flow{ T:i} when p arrives. Obviously,
the fairness bounds of SPFQ, TSS, and MSFQ only depend
on the queue tags of the flows currently backlogged and/or
served. Therefore the first term maxk�0::N21{ L:kmax=R:k} of
the fairness bound declared by SPFQ should be modified to

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6152

maxk[B�t�{ L:k=R:k} : SPFQ is thus classified into Class 3.
From Table 1, SPFQ, TSS, and MSFQ have better fairness
than BTFQ1 . Nevertheless, by sacrificing a little fairness,
BTFQ 1 is designed to combine with a simple hardware to
reduce the computation time.

5.3. Comparison with the LFVC scheme

First, we describe the LFVC scheme by the Basic_FQ
scheme. LFVC maintains a system variable, named Server-
Time, to keep the values of backlogged queue tags close.
When a packetp arrives, its virtual arrival timeV.p is

defined as the value of ServerTime. ServerTime is updated
in the following way. The backlogged flows are divided into
two areas, high priority area (HA) and low priority area
(LA) according to their queue tags. If the queue tagT:f of
the backlogged flowf is less than the value of ServerTime
plus the constantLmax=C; flow f is put into HA; otherwise,
LA. In HA and LA, the flows are sorted according to their
queue priorities and tags, respectively. The flow with the
smallest queue priority value in HA is served first. If the
queue tag of the flow becomes no less than ServerTime plus
Lmax=C; the flow is moved into LA. Once there is no flow in
HA and the value of ServerTime is less than the smallest

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 53

Table 1
Summary of the performances of scheduling schemes (the symbol # in the top of the first column represents the class number.A�t� is the set of the flows served
and backlogged at a timet)

Scheme Fairness bound forF:ij �t1; t2� Latencyt Computing Scheduling

0 GPS 0 0 – –

1 PGPS max
L:imax

R:i
1 U:i;

L:jmax

R:j
1 U:j;

L:imax

R:i
1

Lmax

R:j
;

L:jmax

R:j
1

Lmax

R:i

� �
; whereU:i

� min �N 2 1� Lmax

R:i
;max

N 2 1

k�0

L:kmax

R:k

� �� �
L:imax

R:i
1

Lmax

C
O(N) O(logN)

2 SCFQ L:imax

R:i
1

L:jmax

R:j
L:imax

R:i
1

XN 2 1

k�0;k±i

L:kmax

C

O(1) O(logN)

SFQ L:imax

R:i
1

L:jmax

R:j
XN 2 1

k�0

L:kmax

C

O(1) O(logN)

LFVC 2
L:imax

R:i
1

L:jmax

R:j
1

Lmax

C

� �
L:imax

R:i
1

Lmax

C
O(log logN) Amortized

O(log logN)

3 MSFQ max
L:imax

R:i
1

L:jmax

R:j
; max

k[A�t�
L:k
R:k

� �
1 max

L:imax

R:i
;

L:jmax

R:j

� �� �
L:imax

R:i
1

Lmax

C
O(logN) O(logN)

TSS max
k[B�t�

L:k
R:k

� �
1 max

L:imax

R:i
;

L:jmax

R:j

� �
1

Lmax

C

L:imax

R:i
1

Lmax

C
O(logN) O(logN)

SPFQ max
N 2 1

k�0

L:kmax

R:k

� �
1 max

L:imax

R:i
;

L:jmax

R:j

� �
1

Lmax

C

L:imax

R:i
1

Lmax

C
O(logN) O(logN)

BTFQ1 max
k[A�t�

L:kmax

R:k

� �
1 max

L:imax

R:i
;

L:jmax

R:j

� �
1

Lmax

C
;

L:imax

R:i
1

Lmax

C
O(logN) O(logN)

4 FFQ 2F
C

1 max
L:imax

R:i
;

L:jmax

R:j

� �
; where

F
C
� max

N 2 1

k�0

L:kmax

R:k

� �
L:imax

R:i
1

Lmax

C
O(1) O(log N)

BTFQ max
N 2 1

k�0

L:kmax

R:k

� �
1 max

L:imax

R:i
;

L:jmax

R:j

� �
1

Lmax

C

L:imax

R:i
1

Lmax

C
O(1) O(logN)

5 VC ∞ L:imax

R:i
1

Lmax

C
O(1) O(log N)

queue tag in LA, denoted byTmin, ServerTime will be set to
Tmin. When the server starts transmitting a packetp, Server-
Time is increased byL:p=C: The flows in LA with the queue
tags less than ServerTime plusLmax=C are moved into HA
immediately.

Secondly, we analyze the efficiency of LFVC. Because
LFVC maps the queue priority values into an integer range
[0,M], whereM is O(N), it takes O(loglogN) time to insert
or delete a flow in HA by the results of [9]. In the worst case,
however,N flows need to be moved into HA from LA
during one packet transmission. Thus the scheduling
complexity is O�N loglog N�: In fact, in Table 1,
O(loglogN) is the amortized scheduling complexity (i.e.
the average scheduling complexity on each packet transmis-
sion) because each packet is moved into HA at most once.
BTFQ and BTFQ1 can also map the queue priority values
into an integer range [0,O(N)] and thus achieve O(loglogN)
scheduling complexity. Their efficiencies are better than
LFVC; however, their fairness properties are weaker than
that of LFVC, since LFVC is a Class 2 scheme. To further
understand the difference of fairness among the classes in
Table 1, we design a simulation to evaluate the fairness
degrees of these classes.

6. Simulation and results

It is necessary to create a way to evaluate the average
degree of the fairness property of an FQ scheme. In this
section, the fairness degree is defined first. Then, a simula-
tion is designed to measure the fairness degrees of the
schemes in the classes shown in Table 1 except Class 0
and 5.

6.1. Fairness degree

The method to capture the fairness degree is to measure
the difference between ideal and practical scheduling of a
scheme. Recall the Basic_FQ scheme in Section 2.2. When
a flow f becomes backlogged, from assignment (3) the queue
tagT.f is assigned the maximum of the queue priorityX.f not
yet updated and theV.p wherep is the packet whose arrival
causesf backlogged. Consider the case that the value ofT.f
is from V.p. Since different schemes defineV.p with differ-
ent values, the values ofT.f in different schemes are differ-
ent in this case. However, there should be an ideal
scheduling value forT.f to achieve the optimal fairness.
Since the value ofT.f is fromV.p, according to the principle
of defining V.p (Section 2.3) the ideal value ofT.f should
much near the average of the queue tags of backlogged and
served flows weighted by their reserved rates. Thus, the
difference between the practical value and the ideal value
of T.f is defined as fairness difference.

Definition 8. For an FQ scheme spawn from the Basic_FQ
scheme if at timet a packetp of flow f arrives such thatf

becomes backlogged and the new value of the queue tagT.f
is from V.p (referred to assignment (3)), then thefairness
differenceFD is defined as follows:

FD� uT:f 2 �1=2�T:q 1 X:q� p R:g=V

1
X

k[B�t�;k±g

T:k p R:k=V�u; �17�

where q from flow g is the packet being served whenp
arrives and

V � R:g 1
X

k[B�t�;k±g

R:k:

The fairness degree of an FQ scheme is thus defined as in
the following definition.

Definition 9. For an FQ scheme, let the fairness difference
FD be the random variable given as Definition 8. LetE[FD]
be the expected value of FD andSmax be
maxi�0…N21{ L:imax=R:i} : Then, thefairness degreeof the
scheme is defined as:

Fairness degree� 1 2 E�FD�=Smax: �18�
It is reasonable to normalizeE[FD] by Smax since a good FQ
scheme should keep the difference of the queue tags of any
two backlogged flows no larger thanSmax plus a small
constant.

For the GPS scheme,E[FD] is zero since all the queue
tags of backlogged flows are the same at any time. Thus its
fairness degree is 100%. To understand the fairness degree
of each class shown in Table 1, we perform simulation on
the scheme with the smallest fairness bound in each class.
For Class 2, we select SCFQ while SFQ has the same fair-
ness bound. For Class 3, we select TSS while MSFQ has
almost the same fairness bound. For Class 4, we select
BTFQ. In addition, BTFQ1 is selected for exhibiting the
improvement on the fairness of BTFQ.

We briefly introduce the selected schemes as follows.
Recall the Basic_FQ scheme. From assignment (3), various
schemes are spawn by definingV.p with different values,
wherep is a packet from a flowf whose arrival causes flowf
backlogged. For PGPS, which simulates a GPS scheduler,
V.p is the virtual arrival time of packetp in the simulated
GPS scheduler. For SCFQ,V.p is the priority value of the
packet being served in the server. For TSS, there is a system
clock, ShiftClock, like TagClock of BTFQ. Whenp arrives,
ShiftClock is set to max{ShiftClock, the smallest back-
logged queue tag}. ThenV.p is the time in ShiftClock. For
BTFQ and BTFQ1 , whenp arrives, TagClock is set to
max{TagClock,Tbnd}, whereTbnd is the lower bound of the
backlogged queue tags. ThenV:p is the time in TagClock.
BTFQ and BTFQ1 are different in theirTbnd. TheTbnd of
BTFQ is no greater than that of BTFQ1 . From GPS, we
know that the better the fairness of a scheme, the closer the
V.p of the scheme to the backlogged queue tags. For TSS,
BTFQ, and BTFQ1 , since ShiftClock acts like TagClock,

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6154

we have the following conclusions. The fairness degree of
TSS is better than those of BTFQ and BTFQ1 , since the
smallest backlogged queue tag is no less thanTbnd. The fair-
ness degree of BTFQ1 is better than that of BTFQ, since
the Tbnd of BTFQ 1 is no less than that of BTFQ.

6.2. Experiments

We perform simulation on the schemes, PGPS, SCFQ,
TSS, BTFQ, and BTFQ1 , and design three experiments,
Expe_1, Expe_2, and Expe_3, to find out their fairness
degrees. The key point of selecting the flow traffics is to
sufficiently exhibit the difference among the fairness
degrees of these schemes. From Definitions 8 and 9, the
fairness degree of a scheme depends on the virtual arrival
times V.p of the packetsp whose arrivals cause flows to
become backlogged. The more the amount of such packets
p, the more accurate the results of the experiments. Because
the arrival of such a packetp causes the flow the packet

comes from to become backlogged (from non-backlogged),
a flow with a lot of arrivals of such packetsp must alternate
between backlog and non-backlog frequently. A flow with
strong burstiness, which can be modeled by the heavy-tailed
distributions [22,23], is not suitable for the experiments
since a long burst would make the flow stay in backlog
situation for very long time and reduce the alternating
frequency between backlog and non-backlog. In the realistic
world, a lot offlows are of strong burstinessand a great number
of strong-burstiness flows must be created in order to generate
sufficient packetsp causing flows to become backlogged for
exhibiting the full functioning of FQ schemes in the experi-
ments. In fact, experiments with a large number of flows
increase the difficulty of simulation. A tradeoff is to apply
the Poisson, constant-rate, and short-burst flows to the
experiments. These flows do not have long burst and thus
can alternate between backlog and non-backlog frequently.

In each experiment we choose four types of traffic
flows for testing: Poisson (Type 0), Constant Rate (Type

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 55

Table 3
Traffic characteristics of input flows for Experiment 2

Flow Expe_2 0 1 2 3 4 5 6 7 8 9

0 (Poiss) Avg. rate 1 1 1 1 1 1 1.5 2 5 10
1 (Const) Const. rate 1 1 1 1 1 1 1.5 2 5 10
2 (IDP) Avg. rate 1 1 1 1 1 1 1.5 2 5 10

Peak rate 10 10 5 5 2 2 7.5 9 10 20
Avg. burst 10 20 40 25 5 10 20 40 5 25

3 (PLB) (token size 53 bytes) Avg. rate 1 1 1 1 1 1 1.5 2 5 10
Peak rate 10 10 5 5 2 2 7.5 9 10 20
Bucket size 10 20 40 25 5 10 20 40 5 25

Table 4
Traffic characteristics of input flows for Experiment 3

Flow Experiment 3 0 1 2 3 4 5 6 7 8 9

0 (Poiss) Avg. rate 0.064 1 1 1 1 1 1.5 3 5 10
1 (Const) Const. Rate 0.064 1 1 1 1 1 1.5 3 5 10
2 (IDP) Avg. rate 0.064 1 1 1 1 1 1.5 3 5 10

Peak rate 0.64 10 5 5 2 2 7.5 9 10 20
Avg. burst 10 20 40 25 5 10 20 40 5 25

3 (PLB) (token size 53 bytes) Avg. rate 0.064 1 1 1 1 1 1.5 3 5 10
Peak rate 0.64 10 5 5 2 2 7.5 9 10 20
Bucket size 10 20 40 25 5 10 20 40 5 25

Table 2
Traffic characteristics of input flows for Experiment 1 (the unit of avg. rate, const. rate, and peak rate is in Mbps. The unit of avg. burst and bucket sizeis packet
and token, respectively)

Flow Expe_1 0 1 2 3 4 5 6 7 8 9

0 (Poiss) Avg. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 1.5 3 5
1 (Const) Const. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 1.5 3 5
2 (IDP) Avg. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 1.5 3 5

Peak rate 0.64 0.64 0.32 0.32 0.192 0.192 0.128 7.5 9 10
Avg. burst 10 20 40 25 5 10 20 40 5 25

3 (PLB) (token size Avg. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 1.5 3 5
Peak rate 0.64 0.64 0.32 0.32 0.192 0.192 0.128 7.5 9 10

53 bytes) Bucket size 10 20 40 25 5 10 20 40 5 25

1), Interrupt Deterministic Process (IDP) (Type 2), and
Poisson with Leaky Bucket (PLB) (Type 3). For each type
there are ten flows. Packets in the flows are of the same size,
53 bytes, which is the packet size of the ATM network. The
traffic parameters of all flows are shown in Table 2–4.

IDP is the 2-state Markov Modulated Deterministic
Process [10], depicting the traffic with 2 alternated states,
“on” and “off”. In the “on” state traffic is constant rate while
in the “off” state it is zero rate. For example, for Flow[2,9] in
Expe_1, its “on” state is long for 25 packets in average and
introduces a peak rate of 10 Mbps. The flow in PLB is
formed by a Poisson source constrained by a Leaky Bucket.
For example, for Flow[3,9] in Expe_1, its Poisson source
with average rate 5 Mbps is constrained by the Leaky
Bucket whose token size is 53 bytes, token rate 5 Mbps,
bucket size 25 tokens, and output rate 10 Mbps. In the
three experiments, the greatest average burst among the
IDP flows is 40 packets. These IDP flows are designed as
the short-burst traffics. As for the PLB flows, they are the
traffics of Poisson shaped to short burst and are designed for
increasing the variation in testing traffic.

In Expe_1, the average rates of the flows are from 0.064
to 5 Mbps while those are from 1 to 10 Mbps in Expe_2.
This represents that the testing is not only for the flows

distributing on the narrow band but also for those on the
broadband. Expe_1 and Expe_2 are designed to test
the fairness degrees of the FQ classes. In Expe_3, most of
the average rates of the flows are high (from 1 to 10 Mbps);
however, a few are low (0.064 Mbps). This is designed to
test the BTFQ1 for exhibiting the improvement on the
fairness of BTFQ.

For each scheme, the reserved rate of a flow is set to the
average rate of the flow. To make various traffic loads to test
a scheme, we change the server capacity, instead of adjust-
ing the input flow rates. The results of Expe_1–Expe_3 are
shown in Figs.10–12, respectively. PGPS has the highest
fairness degree, about 98.5% in Fig. 10 and 93% in Fig. 11,
tested by any traffic load. This represents that PGPS is the
best scheme in fairness. For SCFQ, the fairness degree
decreases with increasing traffic load. TSS, BTFQ, and
BTFQ 1 have the same situation, too. However, their fair-
ness degrees fall fast when load is over 95%. The reason is
as follows.

Let p be the packet from flowf whose arrival causes flowf
backlogged. From the definition of FD, the value of queue
tagT.f is fromV.p. Thus FD is the difference of the practical
and idealV.p. The practicalV.p is theV.p defined by a FQ
scheme. For example, SCFQ definesV.p as the priority
value of the packet in server while TSS definesV.p as the
time in ShiftClock. On the contrary, the idealV:p is about
the average of all backlogged queue tags weighted by the
individual reserved rates from Definition 8.

On the high traffic load, a large number of flows with
small reserved rate are backlogged, so the values of the
backlogged queue tags distribute widely. Thus, the ideal

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6156

Table 5
Statistics of fairness difference for Experiment 3 (unit of server rate: Mbps,
Smax� 6625�

Expe_3 Server rate 115 110 105 100
Load 0.854 0.893 0.936 0.983

WFQ Avg. 30.4 31.0 33.2 31.4
Stdev. 86.9 90.3 82.1 69.9
Max. 6012.0 5491.9 6134.1 6301.5

SCFQ Avg. 58.0 62.9 71.1 82.7
Stdev. 140.7 139.3 133.1 97.7
Max. 4968.8 5520.8 5506.7 5162.8

TSS Avg. 50.2 70.8 142.0 480.7
Stdev. 194.6 246.1 400.5 681.6
Max. 5832.3 6071.4 6255.1 6249.9

BTFQ 1 Avg. 54.0 84.3 195.2 833.9
Stdev. 218.8 324.3 601.8 1265.9
Max. 6449.7 6466.4 6482.6 6543.4

BTFQ Avg. 87.35 155.3 384.5 1273.0
Stdev. 367.7 563.0 970.7 1530.6
Max. 6489.3 6492.4 6545.7 6567.2

Fig. 10. Fairness degree in Experiment 1.

Fig. 11. Fairness degree in Experiment 2.

Fig. 12. Fairness degree in Experiment 3.

V.p is near the center of the backlogged queue tags. TheV.p
defined by TSS is farther to the idealV.p than theV.p
defined by SCFQ, since theV.p defined by TSS is the smal-
lest backlogged queue tag. Thus the FD of TSS is much
larger than that of SCFQ. This leads to that the fairness
degree of TSS falls much faster than that of SCFQ on
high traffic load. From the explanation in Section 6.1, the
fairness degrees of BTFQ and BTFQ1 are not as good as
that of TSS. Thus the degrees of BTFQ and BTFQ1 fall
much faster on high traffic load, too. Nevertheless, the fair-
ness degrees of the FQ schemes in Class 3 and 4 are not far
from those in Class 1 and 2, if the traffic load is under 95%.

In Expe_1 and Expe_2, the fairness degree of BTFQ1 is
almost the same as that of BTFQ. The reason is as follows.
In high traffic load there is often a flow with the smallest
reserved rate (0.064 Mbps in Expe_1 and 1 Mbps in
Expe_2) backlogged or served. ThusSmax1 (the maximum
of L:fmax=R:f of the served and backlogged flowsf) is often
equal toSmax (the maximum ofL:fmax=R:f of all flows f). This
results in that theTbnd of BTFQ 1 is often equal to that of
BTFQ. Therefore, the fairness degree of BTFQ1 is often
equal to that of BTFQ. However, in Expe_3, since the
number of the flows with the smallest reserved rate
(0.064 Mbps) is few, the probability that at least one such
flow is backlogged or served is small even in high traffic
load. Thus Smax1 is often equal to 424 (� 424/1) whileSmax

is 6625 (� 424/0.064). TheTbnd of BTFQ 1 is hence often
much greater than that of BTFQ. In this case, BTFQ1
improves the fairness of BTFQ very much. This argument
is verified by the simulation result listed in Table 5. For
example, the averages of fairness difference of TSS,
BTFQ1 , and BTFQ are 70.8, 84.3, and 155.3 on the traffic
load 0.893. Obviously, the fairness degree of BTFQ1 is
very close to that of TSS and far from that of BTFQ.

From the simulation, in general, BTFQ possess good fair-
ness property under 95% traffic load. BTFQ1 achieves
much better fairness property than BTFQ when the combi-
nation of the input flows, such as that in Expe_3, leads to
that Smax1 is often much smaller than Smax.

7. Conclusions

FQ is a rather attractive scheduling mechanism, which
can fairly allocate bandwidth to the flows sharing a network
channel. By controlling the bandwidth reserved for the flows

and limiting their traffic characteristics, FQ can further guar-
antee bounded delay for the flows. In this paper, we propose
a scheme BTFQ and its enhancement BTFQ1 to imple-
ment the FQ mechanism. BTFQ is both fair and delay
bounded. It is very efficient since it computes and schedules
the priority of flow queue in the time complexities, O(1) and
O(log N). BTFQ 1 is designed to improve the fairness
property of BTFQ and combine with a low-cost, high-
speed hardware for reducing the computation time. The
hardware can complete the work trusted by BTFQ1 in a
time, which is shorter than the time of one ADD operation in
a dlog Ne-bit adder.

For comparison, we classify the proposed schemes and
some well-known schemes into six classes according to
their fairness bounds. Based on the criteria of fairness,
bounded delay, and efficiency, we find no class is perfect
in all aspects. Class 0 is not practical. Class 1 is not efficient.
Class 2 has larger bounded delay or more complex structure.
Class 3 has a little loss in efficiency and fairness. Class 4 has
more loss in fairness. Class 5 is unfair.

BTFQ1 and BTFQ are the schemes in Class 3 and Class
4, respectively. From Table 1, they provide the smallest
bounded delay. In addition BTFQ and BTFQ1 with the
supporting hardware achieve the best efficiency. From the
simulation results, BTFQ and BTFQ1 have the fairness
degrees near those of the schemes in Class 1 and 2, if traffic
load does not exceed 95%. Therefore, BTFQ and BTFQ1
have excellent performance. Since no practical FQ scheme
is perfect till now, BTFQ and BTFQ1 provide another
choices.

Acknowledgements

The authors are very grateful to the anonymous reviewers
for the comments and suggestions that helped improve the
quality of this paper.

Appendix A

Theorem 1. In BTFQ, for any currently backlogged flow
f, its queue tagT.f is no less than the priorityXSof currently
served packet minusSmax. ThusTbnd is assignedXS2 Smax:

Proof. The proof is shown by considering the relation of
XS and the queue priorityX.f of f.

Case 1. Consider XS# X:f : Since Smax�
maxi�0…N21{ L:imax=R:i} ; we have �XS2 Smax� #
�X:f 2 L:f =R:f �: Therefore,XS2 Smax # T:f :

Case2. ConsiderXS. X:f : The event that f becomes
backlogged must occur during the transmission of the
currently served packet. From the Enqueue process shown
in Fig. 3,T:f is assigned max{X:f ; max{TagClock;Tbnd}} ;

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 57

Fig. 13. Relation of packets and TagClock.

whereTbnd has been assignedXS2 Smax: ThusTbnd # T:f :
That is,XS2 Smax # T:f :

Theorem 2. If packetp of flow f departs from the BTFQ
server (i.e. the server employing BTFQ) at timez in
TagClock, z is at most the priority value ofp, X:p plus
Lmax=C: That is,

z # X:p 1 Lmax=C: �A1�

Proof. In this theorem time is referred to TagClock. We
first define a special times, and then calculate how long
after s packetp will depart. Let u be the time packetp
becomes the head of queue.f. Time s is defined as the latest
time, no later thanu (i.e. s # u), such that either of the
following events occurs:

Event1.A busy period starts.
Event2. The time in TagClock jumps toTbnd. (Thus
s� Tbnd:)
Event3.Packetq with the priority larger thanX:p (i.e.
X:q . X:p) enters the server.

We first show for all the flowsg with nonempty queue at
s, regardless of which event occurs, the following holds:

�s # T:g� or �X:p , X:g�: �A2�
With Event1,s� T:g since boths andT.g are zero. With
Event2, s� Tbnd # T:g from Theorem 1. With Event3,
X:q . X:p andX:q , X:g since the queue with the smallest
priority value is served first. ThusX:p , X:g: Therefore, Eq.
(A2) holds ats. Next, we will show that

s # T:p: �A3�
With Event1,s� 0 # T:p: With Event2, from Theorem 1,
s� Tbnd # T:p: With Event3, queue.f must be empty ats. If
this is not true, the packet denoted byp0 at the head of
queue.f at s will have the priorityX:p0 less thanX:q since
X:p0 # X:p and X:p , X:q: Therefore, the packet entering
the server ats is notq butp0. This violates the occurrence of
Event3. Thus queue.f must be empty ats. This implies that
the packet of flowf arriving at or later thans is with a packet
tag no less thans. Sincep becomes the head of queue.f at u
and queue.f is empty ats, p must not arrive befores. Thus,
T:p $ s and (A3) holds.

Now, consider how long afterspacketp will depart from
the system. From the definition ofs, only the packetsr with
X:r # X:p would enter the server afters beforep enters the
server. Let packetsr be from flowsh and become the head of
queue.h at u0. If we replacep andu with r andu0, respec-
tively, s is still the latest time tou0 such that either of the
three above events occurs. Thus,T:r $ s from Eq. (A3).

SinceL:r � �X:r 2 T:r�R:h; s # T:r ; and X:r # X:p; the
total bits of the packetp and all the packets represented byr

do not excess�X:p 2 s�Pi�0…N2 1 R:i: These bits plus the
residual bits of the packet served ats is at most�X:p 2
s�C 1 Lmax from inequality (2). This amount of data is
sent out by the server froms until z, which is equal to�z2
s�C: Thus,�z–s�C # �X:p–s�C 1 Lmax: Thereforez # X:p 1
Lmax=C:

Theorem 3. BTFQ belongs to the GR class. That is, a
packetp of flow f will depart from the BTFQ system by
GRC�p�1 b; whereb is Lmax=C:

Proof. We know the bound of the departure time ofp from
Theorem 2, but this time is in TagClock while the time for
computing GRC(p) is in real clock. Therefore, consider an
alternate BTFQ transferring TagClock to a real clock.
Instead of letting the time in TagClock jump forwardd
seconds, the alternate BTFQ subtractsd from each queue
tag and priority. Since the relative values of the tags and
priorities with respect to each other and with respect to
TagClock is the same as in the original BTFQ, the order
in which packets are served remains the same. Thus the
original and the alternate introduce the same bounded delay.

In the alternate BTFQ,X.pmust not excess GRC(p), since
the packet priority in the alternate BTFQ can be reduced.
Therefore, with Theorem 2, the departure time of packetp in
BTFQ does not exceed GRC�p�1 Lmax=C:

Theorem 4. Let flow f be constrained by the Leaky
Bucket with parameter (s .f, R.f) and it passes throughK
BTFQ servers each of which has capacityCi, 0 # i # K:

The end-to-end delay DE2E(f), if link propagation delays are
not counted in, of the packet off is bounded as

DE2E�f � # s:f =R:f 1 �K 2 1�L:fmax=R:f : 1
X

i�1::K

Lmax=Ci :

�A4�

Proof. From Definition 6, a packetp of flow f passing
through the GR server (i.e. the server employing a GR
scheme) departs from the server by GRC�p�1 b; whereb
is a small constant. With the GR framework [19], if flowf is
constrained by the Leaky Bucket�s:f ; R:f � and passes
throughKGR servers and the packetp departs from each
server i by GRCi�p�1 bi ; the end-to-end delay ofp is
bounded as

end-to-end delay ofp # s:f =R:f 1 �K 2 1�L:fmax=R:f

1
X

i�1::K

bi :

From Theorem 3 BTFQ is a GR scheme; that is, the
packetp departs from the BTFQ serveri by GRCi�p�1
bi ; whereb i is Lmax=Ci : Therefore, the theorem is proven
immediately.

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6158

Theorem 5. For the BTFQ system in the current busy
period, if current time ist in TagClock ande(t) is packet
r, then for each flowf backlogged att the queue tagT.f is
bounded as

X:r 2 Smax # T:f # X:r 1 Lmax=C: �A5�

Proof. In this proof, time is referred to TagClock. Letp be
the packet at the head of queue.f at t. Packetp becomes the
head of queue.f at t 0 �t 0 # t�: Let p0 be the packet fromf
immediately precedingp. Also, letq andq0 be the packets in
the server att and t 0, respectively. And, letr 0 denote the
packete�t 0�: We depict their relation in Fig. 13.

SinceT.f at t is T.p, we will show

X:r 2 Smax # T:p # X:r 1 Lmax=C: �A6�
From the Enqueue and Dequeue processes, we know the

value ofT.p is either from TagClock orX.f (not updated) at
t 0. Therefore,T.p is eithert 0 or X.p0. We prove the theorem
in the two cases:T:p� t 0 andT:p� X:p0:

Case1. T:p� t 0:
C1_Right. Show T:p # X:r 1 Lmax=C: Clearly, t 0 is no

greater than the departure time ofq0. With Theorem 2,t 0 #
X:q0 1 Lmax=C: By the definition ofr, T:p # X:r 1 Lmax=C:

C1_Left. Show T:p $ X:r–Smax: Since the value ofT.p
�T:p� t 0� is obtained from TagClock, packetp must find
its queue being empty when it arrives. The assignment in
Enqueue, TagClock← max{Tbnd, TagClock}, is thus
executed. Clearly,T:p $ Tbnd at t 0. Since Tbnd is X:q0 2
Smax at t 0, consider q0 on both cases:X:q0 � X:r 0 and
X:q0 , X:r 0.

C1_Left.1. X:q0 � X:r 0: SinceT:p $ Tbnd at t 0, we have
T:p $ X:r 0–Smax:

C1_Left.2. X:q0 , X:r 0: Let s be the timeq0 became the
head of its queue. Thus,s # t 0: We first show thats $
X:r 0 2 Smax and T:q0 $ X:r 0 2 Smax and then thatT:p $
X:r 0 2 Smax:

Becauser 0 is notq0 in this case andq0 is in the server att 0,
r 0 departs from the server beforeq0. Sincer 0 is the latest and
largest-priority-value packet to timet 0, immediately before
r 0 enters the server, all queues must be empty except the
queue ofr 0. If there were no packet arriving during the
service ofr 0, q0 would either belong to another busy period
or enter the server aftert 0. (The reason is as follows.
Suppose that no packet arrives during the service ofr 0. If

the queue queue.g where r 0 is from is empty during this
service,q0 belongs to another busy period; otherwise,q0

arrives after the timet 00 when packetr 00 enters the server.
Here, r 00 is the packet at the head of queue.g during the
service ofr 0. We have thatt 00 . t 0; sincee�t 00� � r 00; e�t 0� �
r 0; andX:r 00 . X:r 0: Thusq0 arrives aftert 0. Clearly,q0 enter
the server aftert 0.) Either of the cases violates the proposi-
tion thatr 0 andq0 is in the same busy period andq0 is in the
server att 0. Therefore, there must be packets arriving during
the service ofr 0. Let packetq00 be the first one arriving. Once
q00 arrives, the assignment “TagClock← max{Tbnd,
TagClock}” in Enqueue is executed. Thus the arrival time
of q00 is no less than theTbnd which is X:r 0 2 Smax at this
time. Becauseq0 either isq00 or arrives afterq00, the times
(whenq0 becomes the head of its queue) must be not earlier
than the arrival time ofq00. Thus,s $ X:r 0–Smax: Since the
queue ofq0 is empty whenq00 arrives,T.q0 is not less than the
Tbnd (i.e. X:r 0 2 Smax) at the arrival ofq00. Thus T:q0 $
X:r 0 2 Smax: SinceT:p� t 0 $ s; T:p $ X:r 0 2 Smax:

From C1_Left.1 and C1_Left.2, we concludeT:p $
X:r 0 2 Smax: Clearly, X.r must be no less thanX.r 0. If r �
r 0; we are done. Otherwise,r must enter the server aftert 0

and not later thant. Sincep becomes the head of queue.f at t 0

and is not in the server att, we haveX:p $ X:r : Since
L:p=R:f # Smax; T:p $ X:r 2 Smax:

Case2. T:p� X:p0:
C2_Right. Show T:p # X:r 1 Lmax=C: SupposeT:p .

X:r 1 Lmax=C: SinceX:p0 � T:p . X:r ; p0 is not r. Packet
p0 enters the server byt 0, since p becomes the head of
queue.f at t 0. This violates the definition ofr. So, T:p #
X:r 1 Lmax=C:

C2_Left. Show T:p $ X:r 2 Smax: At time t 0 (when p
becomes the head of queue.f), there are two cases: One is
thatp0 enters the server, sop0 � q0; another is thatp arrives
and finds queue.f being empty, sop0 ± q0:

C2_Left.1. p0 � q0: We haveT:p� X:q0: BecauseX:q0 #
X:r 0; considerX:q0 � X:r 0 andX:q0 , X:r 0: If X:q0 � X:r 0;
thenT:p� X:r 0: So,T:p $ X:r 0 2 Smax: On the other hand,
considerX:q0 , X:r 0: Let sbe the time whenq0 becomes the
head of its queue. Thus,s # t 0: With the same argument as
C1_Left.2, we have s $ X:r 0 2 Smax and T:q0 $
X:r 0 2 Smax: Sincep0 � q0; we haveT:p� X:p0 � X:q0 .
X:r 0 2 Smax:

C2_Left.2. p0 ± q0: We haveT:p� X:p0 $ TagClock��
t 0� $ Tbnd at t 0. If X:q0 � X:r 0; T:p $ Tbnd (at t 0� �
X:r 0–Smax: On the other hand, considerX:q0 , X:r 0: Let s
be the time whenq0 becomes the head of its queue. Thus,
s # t 0: With the same argument as C1_Left.2, we haves $
X:r 0 2 Smax andT:q0 $ X:r 0 2 Smax: SinceT:p� X:p0 $ t 0;
soT:p $ s $ X:r 0–Smax:

From C2_Left.1 and C2_Left.2, we concludeT:p $
X:r 0 2 Smax: As in the conclusion of C1_Left, we have
T:p $ X:r 2 Smax: Therefore, with Case1 and Case2, this
theorem is proven.

Theorem 6. For the BTFQ scheme, the fairness

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 59

Fig. 14. Relationship of flow tags.

F:ij �t1; t2� between any two flowsi andj backlogged during
time interval [t1,t2] is bounded as

F:ij �t1; t2� # Smax 1 max{L:imax=R:i;L:jmax=R:j} 1 Lmax=C:

�A7�

Proof. Since F.ij(t1, t2) is defined as |W.i(t1, t2)/R.i–
W.j(t1, t2)/R.j|, considerW.f(t1, t2) first, wheref is i or j.
Becausef is backlogged during [t1,t2], T.f advances step by
step during[t1,t2] . Let T.f(t) be T.f at time t. Define the
function p .f(t) for flow f as follows.p .f(t) is the residual
amount of the packetp in the server att, if p is from f;
otherwise, zero. Therefore,

W:f �t1; t2� � R:f* �T:f �t2�2 T:f �t1��1 p:f �t1�2 p:f �t2�
�A8�

W:f �t1; t2�=R:f � �T:f �t2�2 p:f �t2�=R:f �2 �T:f �t1�
2 p:f �t1�=R:f � �A9�

Fig. 14 shows the relationship ofT:i�t1�; T:j�t1�; T:i�t2�;
andT:j�t2�; where the length of segmentI andJ represents
the value ofW:i�t1; t2�=R:i andW:j�t1; t2�=R:j; respectively,
if i and j are not served att1 andt2.

Let w:ji denote�W:j�t1; t2�=R:j 2 W:i�t1; t2�=R:i�: Then,
F:ij �t1; t2� � max{w:ji ;w:ij } : To find the upper bound of
F:ij �t1; t2� is to find the upper bounds ofw:ji andw:ij : We
first considerw:ji : From the Fig. 14, the maximum ofw:ji
occurs when segmentJ and I is as long as and as short as
possible at the same time, respectively. From (A9),w:ji can
be written asw:ji � M1 1 M2; where

M1� �T:i�t1�2 T:j�t1�1 p:j�t1�=R:j 2 p:i�t1�=R:i�;

M2� �T:j�t2�2 T:i�t2�1 p:i�t2�=R:i 2 p:j�t2�=R:j�:
The work of finding the upper bound ofw:ji is decom-

posed into two sub-works as follows:
Work1is to find the upper bound ofM1. Consider the flow

the packet in the server att1 belongs to. We have the follow-
ing cases.

W1_Case1. The packet, denoted byp, in the server att1
belongs to flowi. Thus,p:i�t1� $ 0 andp:j�t1� � 0: From
Theorem 1,T:j�t1� $ Tbnd �at t1� � X:p 2 Smax: Sincei is
backlogged att1, T:i�t1� � X:p: Therefore,M1 # Smax:

W1_Case2. The packet, denoted byq, in the server att1
belongs to flowj. Thus,p:j�t1� # L:q andp:i�t1� � 0: With
Definition 7, let packetr bee(t1), wheret1 is the value of
TagClock att1. From Theorem 5,T:i�t1� # X:r 1 Lmax=C:

From the definition ofr, X:q # X:r : If X:q� X:r ; T:j�t1� �
X:r : Thus, M1 # L:q=R:j 1 Lmax=C: If X:q , X:r ; from
“C1_Left.2” in the proof of Theorem 5,T:q $ X:r 2 Smax:

SinceX:q� T:j�t1�; T:j�t1� $ X:r 2 Smax 1 L:q=R:j: Hence,
M1 # Smax 1 Lmax=C:

W1_Case3. The packet in the server att1 belongs to flow
k, wherek ± i, j. Thusp:j�t1� andp:i�t1� are zero. From

Theorem 5, T:i�t1�2 T:j�t1� # Smax 1 Lmax=C: Hence,
M1 # Smax 1 Lmax=C: From W1_Case1, 2, and 3, we
concludeM1 # Smax 1 Lmax=C:

Work2 is to find the upper bound ofM2. Consider the
following cases.

W2_Case1. If flow j is never served during�t1; t2�; we
havew:ji # 0 sinceW:j�t1; t2� � 0:

W2_Case2. Consider that flowj is served during�t1; t2�
and the packet, denoted byp, in the server att2 is from flow
i. We havep:j�t2� � 0; p:i�t2� # L:p; and T:i�t2� � X:p
since flowi is backlogged att2. Let q be the latest packet
of flow j entering the server no later thant2. We have
T:j�t2� � X:q: Consider X:q # X:p: We have T:j�t2� #
T:i�t2�: Since p:i�t2� # L:p and p:j�t2� � 0; M2 #
L:p=R:i # L:imax=R:i: On the contrary, considerX:q . X:p:
Let s be the latest time, no later thant2, such that flowi
becomes backlogged. Letu be the time whenq enters the
server. We haves $ u; sincep enters the server afterq and
X:q . X:p: Becausei is backlogged during�t1; t2�; s #
t1 # t2: Thus u # t1 # t2: T:j�t1� � T:j�t2� � X:q; since
q is the latest packet entering the server no later thant2.
From (A9), W:j�t1; t2�=R:j � p:j�t1�=R:j 2 p:j�t2�=R:j #
L:jmax=R:j: Since W:i�t1; t2�=R:j $ 0; w:ji # L:jmax=R:j #
Smax:

W2_Case3. Consider that flowj is served during�t1; t2�
and the packet in the server att2 is not from flowi. We have
p:i�t2� � 0: Let p be the packet at the head of queue.i at t2.
Let q be the latest packet of flowj entering the server no
later than t2. Thus T:p� T:i�t2� and X:q� T:j�t2�:
ConsiderX:q # X:p: We haveT:j�t2� # T:i�t2�1 L:p=R:i:
Since p:j�t2� $ 0 and p:i�t2� � 0; M2 # L:p=R:i #
L:imax=R:i: On the contrary, considerX:q . X:p: Let s be
the latest time, no later thant2, such that flowi becomes
backlogged. Letu be the time whenq enters the server. We
haves $ u; sincep enters the server afterq andX:q . X:p:
Thus u # s # t1 # t2: This implies T:j�t1� � T:j�t2� �
X:q:W:j�t1; t2�=R:j # L:jmax=R:j: Thus, w:ji # L:jmax=R:j #
Smax:

From Work1 and Work2, w:ji � M1 1 M2 #
Smax 1 L:imax=R:i 1 Lmax=C: We find the upper bound of
w:ij in the same way as above. Thus,w:ij # Smax 1
L:jmax=R:j 1 Lmax=C: Since F:ij �t1; t2� is max{w:ij ;w:ji } ;
F:ij �t1; t2� # Smax 1 max{L:imax=R:i;L:jmax=R:j} 1 Lmax=C:

References

[1] M. de Prycker, Asynchronous Transfer Mode: Solution for Broadband
ISDN, 2, Ellis Horwood, New York, 1993.

[2] J. Kurose, Open issues and challenges in providing quality of service
guarantees in high speed networks, ACM Computer Communication
Review 23 (1) (1993) 6–15.

[3] L. Zhang, Virtual Clock: a new traffic control algorithm for packet
switching, ACM Transactions on Computer Systems 9 (2) (1991)
101–124.

[4] A.K. Parekh, R.G. Gallager, Generalized processor sharing approach

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–6160

to flow control in integrated services networks-the single node case,
IEEE INFOCOM (1992) 915–924.

[5] A.K. Parekh, R.G. Gallager, Generalized processor sharing approach
to flow control in integrated services networks—the multiple node
case, IEEE INFOCOM (1993) 521–530.

[6] A. Demers, S. Keshav, S. Shenkar, Analysis and simulation of a fair
queueing algorithm, Internetworking: Research & Experience 1 (1)
(1990) 3–26.

[7] D.A. Pucknell, K. Eshraghian, Basic VLSI Design: Systems and
Circuits, 2, Prentice Hall, New York, 1987.

[8] S.J. Golestani, A self-clocked fair queueing scheme for broadband
applications, IEEE INFOCOM (1994) 636–646.

[9] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of
an efficient priority queue, Mathematical System Theory 10 (2)
(1977) 99–127.

[10] W.C. Hon, D.H.K. Tsang, Y. Tao, Bandwidth allocation for
VBR video traffic in ATM networks, Fourth International Con-
ference on Computer Communications and Networks, 1995, pp.
612–615.

[11] P. Goyal, H.M. Vin, H. Cheng, Start-time fair queueing: a scheduling
algorithm for integrated services packet switching networks, IEEE/
ACM Transactions on Networking 5 (5) (1997) 690–704.

[12] S. Suri, G. Varghese, G. Chandranmenon, Leap forward virtual clock:
a new fair queuing scheme with guaranteed delay and throughput
fairness, IEEE INFOCOM (1997) 557–565.

[13] Y.P. Chu, E.H. Hwang, A new packet scheduling algorithm: mini-
mum starting-tag fair queueing, IEICE Transactions on Communica-
tions E80-B (10) (1997) 1529–1536.

[14] J. Cobb, M. Gouda, A. El-Nahas, Time-shift scheduling: fair

scheduling of flows in high-speed networks, IEEE International
Conference on Network Protocols, 1996, pp. 6–13.

[15] D. Stiliadis, A. Varma, Frame-based fair queueing: a new traffic
scheduling algorithm for packet switched network, ACM
SIGMETRICS conference on measurement and modeling of compu-
ter systems, 1996, pp. 104–115.

[16] J. Turner, New directions in communications (or which way to the
information age?), IEEE Communications Magazine 24 (10) (1986)
8–15.

[17] V.C. Hamacher, Z.G. Vranesic, S.G. Zaky, Computer Organization,
McGraw-Hill, New York, 1990, pp. 274–276.

[18] G.G. Xie, S.S. Lam, Delay guarantee of virtual clock server, IEEE/
ACM Transactions on Networking 3 (6) (1995) 683–689.

[19] P. Goyal, S.S. Lam, H.M. Vin, Determining end-to-end delay bounds
in heterogeneous networks, International Workshop on Network and
Operating System Support for Digital Audio and Video, 1995, pp.
287–298.

[20] D. Stiliadis, A. Varma, Rate-Proportional Servers: a design methodol-
ogy for fair queueing algorithms, IEEE/ACM Transactions on
Networking 6 (2) (1998) 164–174.

[21] D. Stiliadis, A. Varma, Efficient fair queueing algorithms for packet-
switched networks, IEEE/ACM Transactions on Networking 6 (2)
(1998) 175–185.

[22] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the self-
similar nature of ethernet traffic (extended version), IEEE/ACM
Transactions on Networking 2 (1) (1994) 1–15.

[23] S. Bates, S. McLaughlin, Testing the Gaussian assumption for self-
similar teletraffic models, IEEE Signal Processing Workshop on
Higher-Order Statistics, 1997, pp. 444–447.

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45–61 61

