Computer
“communications

Computer Communications 23 (2000) 45-61

www.elsevier.com/locate/comcom

Bounded tag fair queueing for broadband packet switching networks

Yen-Jen Cheh S.-Y. Lee

Dept. of Computer Science and Information Engineering, National Chiao Tung University, Hsin-Chu, Taiwan, ROC

Received 11 September 1998; received in revised form 15 June 1999; accepted 29 June 1999

Abstract

Fair Queueing (FQ) is an attractive packet scheduling mechanism, which can establish firewall among packet flows. Thus, the quality of
service (QoS) of each flow can be guaranteed. To implement the mechanism, three important performance issues are concerned: fairness
bounded delay, and efficiency. We propose a scheme, named BTFQ, which satisfies the three criteria. The schemeBIde(@roposed
to improve the fairness property of BTFQ and is designed to combine with a low-cost, high-speed hardware for reducing computation time.
For comparison, we classify some well-known packet scheduling schemes into six classes according to their fairness properties. BTFQ and
BTFQ + are excellent in bounded delay and efficiency. Their fairness properties, although a little bit weak, are but still very good if the
traffic load is under 95%, according to the simulation results. Because of the tradeoff among the performance issues, BTFQ and BTFQ
provide another good choice®.2000 Elsevier Science B.V. All rights reserved.

Keywords:Packet scheduling; Fair queueing; Fairness; Bounded delay; Efficiency

1. Introduction Scheduling (TSS) [14], Frame-based Fair Queueing (FFQ)
[15,20,21], and Starting Potential-based Fair Queueing
In the high-speed network, various applications are inte- (SPFQ) [20,21]. They all can provide bounded delay if the
grated together, such as Video On Demand, Video Confer-traffics of the flows constrained by Leaky Bucket [16]. It is
ence, Distant Learning, and Digital Telephony [1,2]. The complex to implement PGPS in the high-speed network
packet flow, which is a sequence of packets generatedsince PGPS needs to simulate the theoretic FQ scheme,
from an application and travels along a fixed route, requires Generalized Processor Sharing (GPS) [4], in real time.
stringent performance in delay, packet loss, and throughput. SCFQ and SFQ are easy to implement, but they both
One of the most important strategies to guarantee the perfor-provide the delay bounds that grow with the number of
mance is to fairly allocate the bandwidth of the network the flows sharing the channel. LFVC, MSFQ, SPFQ, and
channel to the flows passing through it. This leads to good TSS provide the small delay bounds independent of the
isolation for a flow without the interference from others. number of flows while they are less efficient than SCFQ.
Fair queueing (FQ) is a packet scheduling mechanism, FFQ is as efficient as SCFQ and provides the same delay
which is capable of allocating the channel bandwidth fairly. bound as TSS, but its fairness property is worse than those
The implementation of the mechanism concerns three of the above schemes.
important performance issues: fairness (in bandwidth allo- Here we propose an efficient FQ scheme, called Bounded
cation), bounded delay (for each packet), and efficiency (of Tag Fair Queueing (BTFQ), which can allocate bandwidth
scheduling algorithm) [4,14,15]. fairly and offer a small delay bound, independent of the
A lot of FQ schemes, offering fairness allocation to the number of flows. We also propose the enhancement version,
flows sharing the channel, have been proposed such aBTFQ + , which is animprovement on BTFQ in fairness. In
Packet Generalized Processor Sharing (PGPS) [4,5] (alscaddition, hardware is designed for BTFQ to reduce the
known as Weighted Fair Queueing [6]), Self-Clock Fair time on packet scheduling. The time that the hardware
Queueing (SCFQ) [8], Start-time Fair Queueing (SFQ) requires for scheduling a packet is less than the time
[11], Leap Forward Virtual Clock (LFVC) [12], Minimum required by an ADD operation in a 32-bit adder [17], if
Starting-tag Fair Queueing (MSFQ) [13], Time Shift the number of the flows sharing the channel is less than

4% 10°.
* Corresponding author. Tel.4+ 886-35712121; fax:+ 886-35724176. Th_e remaining of the paper is organized as follows. In
E-mail addressctchen@csie.nctu.edu.tw (Yen-Jen Chen) Section 2, we introduce the goal of FQ and the formal

0140-3664/00/$ - see front mattér 2000 Elsevier Science B.V. All rights reserved.
Pll: S0140-3664(99)00145-0

46 Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

Nomenclature

N number of maximum flows allowed; flow identifier is in the rangeNG; 1]
B(t1,t2): set of the backlogged flows durintl][t2]

B(t) lim At—0 B(t,t + At)

C server capacity in bits per second (bps)

W.f(t1,t2): data amount of flow (in bits) sent by server during[;t2]

G.f(t1,t2): bandwidth of flowf during [t1,t2], which is equal to/N.f (t1,t2)/(t2 — t1)
Rf: reserved rate for flowin bps

F.ij(t1,t2): fairness between any two flowisandj, backlogged duringt] t2]

D.p: delay of packet p passing through the server (including queueing delay)
queuef: gueue for flowf

L.p: length (in bits) of packep

L.f; length (in bits) of the packet at the head of quéue.

L.fnax upper bound on packet length for fldw

Linax upper bound on packet length for all flows

Srax maX—o..n-1{ L-ima/R}.

Shaxs: maximum ofL.i,/R.i of the flowsi currently backlogged and served
X.f priority of queuef

X.p: priority of packetp, which is the queue priority whemis at the head of the queue
XS priority of the packet currently served

H: ordered list of the queue priorities of all backlogged flows

T.f tag of queud, an auxiliary for computing«.f

T.p tag of packep, which is the queue tag whemis at the head of the queue
Tond lower bound of the queue tags of all backlogged flows

V.p virtual arrival time of packep

TagClock: special clock helping determiNep in the schemes BTFQ and BTF®

definitions of fairness, bounded delay, and efficiency. In the packets from the flows. Each flow, with a separate FIFO

Section 3, we describe BTFQ and show its performance. packet queue, is associated with a reserved bandwidth. Each

In Section 4, the enhanced scheme BTHFQis proposed queue is assigned a dynamic priority; the smaller the priority

and the architecture of the supporting hardware is illu- values the higher the queue priority. The packet at the head

strated. In Section 5, we classify the famous scheme, Virtual of the highest-priority queue is first moved into the server,

Clock (VC) [3], and some FQ schemes into six classes for and then the queue priority is updated immediately.

systematic comparison. In Section 6, for further comparison In the following, we give some definitions and notations

in fairness among the classes, we design a simulation to tesused.

the fairness properties of these classes. Finally, the conclu-

sion is given in Section 7. The proofs of all theorems are Definition 1. A flow fis said to bébackloggediuring time

listed in Appendix A. interval [t1t2] (including t1 andt2) if the queue forf is
never empty duringtl t2].

2. Fair queueing Definition 2. A systembusy periods a maximal interval

The goal of FQ is to allocate bandwidth fairly to the flows of time during which the server is never idle.

sharing a channel. In this section, we first introduce the)]
system model, and then formally describe the goal of FQ 2.2. Goal of fair queueing
and the definitions of fairness, bounded delay, and effi-
ciency. Finally, we describe the theoretic FQ scheme,
GPS, which helps understanding the design of practical
FQ schemes.

The goal of FQ is to share the server capacity among all
backlogged flows in proportion to their reserved rates. Thus,
if no flow changes status duringlft2], the bandwidth
G.f(t1,t2) for flow f backlogged duringt]L t2] is expected

2.1. System model as

Gf(t.t) = C(Rf/ D> Ri). Q)

Assume at mod¥l flows share the channel. We model the .

flows and the channel as a queueing system. In the system
there is a non-preemptive, work-conserving server to sendWith Eq. (1), FQ can reserve fdrthe bandwidth no less

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61

flow V.p
T.g(t1)=T.g(12)=0 : ;
I PR tagjun;f,-n-.,-Tvg(tZ) ul e
- TA12) ¢ T3
- gD - (12) - (t3)
i = = u
i - » »
T.i0) = T.j(t) _
B B L
0 ' ' queue tag

Fig. 1. Dynamics of queue tags in GPS.

than the reserved rafef, if

Ri=C.
i=0.N-1

2

With Eq. (1) and inequality (2), the criteria for FQ
schemes are defined as follows.

Definition 3 (Fairness [8]). In a scheduling scheme, for
any flowf backlogged duringtlL t2], its normalized service
in the interval is defined a®Vv.f(t1,t2)/Rf. The fairness
between any two flows, andj, backlogged duringtl t2]

47

Here,V.p denotes the virtual arrival time of packgtwhose
definition varies from one scheme to another. On the
contrary, if queud.is not empty, thenX.f and T.f are not
updated.

(b) Once a packet departs from the server, the packet at
the head of the highest priority queue is immediately moved
into the server for transmission. Let queuae the highest
priority queue. If queuéremains non-empty.f andT.f are
updated as follows:

T.f «—XTf, ®)

Xf —Tf + Lf/RE. (6)

In the next section, we introduce how to defiNep to
achieve the goal of FQ.

2.3. Theoretic scheme for fair queueing

GPS is the theoretic FQ scheme, which can achieve the
goal of FQ. The scheme can be spawned from Basic_FQ by
assuming that the queueing modefligd and defining the
virtual arrival timeV.p of a packep as the queue tag of any
flow backlogged on the arrival gf. GPS is not practical

is defined as the difference between the normalized servicessince it is based on the fluid model where the packet size is
of the two flows. Let the fairness between the flows be considered to be near zero. But the scheme contributes to the

denoted a&.ij(t1,t2). Then,F.ij(t1,t2) = |W.i(t1, t2)/Ri —
W.j(t1,t2)/R].| The scheme is said to be fair (or to be with

way for practical FQ schemes to defiWep.
Consider the Basic_FQ scheme. For each flpthe tag

the fairness property), if there is an upper bound on Tf is a step function of time with step sidef/Rf but

F.ij(t1, t2).

Definition 4 (Bounded delay [14,18]). LeD.p be the
delay of a packep from a flowf through a shared server,

possibly with a jump to the value of.p, where packep

is fromf. Whenever flowf becomes backlogged, assignment
(3) is performed. IX.f < V.p, the new value ofl.f is from
V.p, but not fromX.f. In this case, we say thatf has a tag

which employs a scheduling scheme to serve a number ofjump to V.p. Next, we show the dynamics of the flow tag

flows. On the other hand, letp be the delay of the packpgt

of the same flow through a solo server, which is dedicated
for flow f with capacity Rf. The scheduling scheme
employed by the shared server is witounded delayif
D.p = d.p + a, wherea is a small constant.

Definition 5 (Efficiency). [13]. Theefficiencyof a sche-

duling scheme is measured in two aspects: the complexities

of computingandschedulingwhich are the complexities for

computing the priority of a queue and sorting the queue

priorities, respectively.

To illustrate and compare FQ schemes, a basic scheme iﬁtl £2). Since GF(tLt2) is W.F(tL t2)/(t2 — t1)

shown as follows, named Basic_FQ, from which a lot of FQ
schemes can be spawned.

(a) Consider a packetof flow f arrives. Before the packet
is appended to quedgethe scheme checks if quetiés
empty. If queud.is empty, priority X.f and tagT.f are
updated as follows:

T.f «— max{V.p, X.f}, ©))

Xf —Tf+ LpRf. (4

with time in Fig. 1 to illustrate how GPS achieves the goal of
FQ. Denote the value at.f at timet asT.f(t). Let timetl be
the start of a busy period. Al, each queue tag and queue
priority is reset to zero. For any two flowsandj, back-
logged during {1 t2], the queue tags dfandj are the same
at any timet in [t1t2], i.e.

T.i(t) = Tj). (N

This is because packet size is near zero and no tag jump
occurs fori andj during [t1t2].

Consider the bandwidt®.f (t1, t2) while a flowf is back-
logged during {1,t2) and no flow changes the status during
let us
compute W.f(t1,t2) first. BecauseT.f has no tag jump
during [t1t2], we haveT.f «— T.f + L.f/Rf during [t1,t2].
Thus,

WL t2) = (T.f(t2) — Tf(tL)RF. (8

The sum of alW.i(t1,t2), wherel € B(t1,t2), is equal to the
total data amount sent by the work-conserving server during
[t1.t2], which is (12 — t1)C. For the flowsi, i € B(t1,t2),
their queue tags are zerotdtand the same dP from Eq.

48

flow

opgp———————————————— e —a- E |
= Xg
f . .
] X
j »----2
K : : j Xi
i : S St [] .
" " N N Led
0 . . time in TagClock

Fig. 2. Dynamics of TagClock in BTFQ.

(7). Sincef € B(t1,t2), we have
(TF2) - Tf(tl) > Ri=(2-tC. 9)
iEB(tL,t2)

The allocated bandwidthG.f(t1,t2) is thus equal to
C(Rf/Y gtz Ri). This matches the goal of FQ shown
in Eq. (1).

Next, consider the bandwidiB.g(t2,t3) when a flowg
becomes backlogged & and no flow changes status during
(t2,t3]. At t2, a packep from flow g arrives and causesgto
become backlogged. The virtual arrival tivigo is thus equal
to the queue tag of any flow backloggedtat (the time
immediately beforet2). According to assignment (3),.9
has a tag jump t&.p becausexX.g is O beforet2. All flows
backlogged during?,t3] still have the same queue tag$at
With the result of Egs. (8) and (9), the bandwi@ly(t2, t3) is
equal toC(RY/ > icpats Ri). Therefore, the goal of FQ is
achieved by GPS. In Fig. W.i(t1,t2)/Ri = W.j(t11,12)/R
from Egs. (7) and (8). Thus, the fairneSg(t1,t2) is zero.
Similarly, Fij(t2,t3) is zero. So, GPS is an ideal FQ.

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

Dequeue process: active on the departure of a
packet
3
1
if (no packet in the system) Reset (BTFQ);
else {
f « FindTopPriorityFlow (H);
p < Head (queue.f);
Transmit (p);
XS — X.f;
Delete (H, X.f);
If (queue.f is not empty) {
Tf—X£
Xf—Tf+LIRS;

Insert (H, X.1);
1
s

1

5
1
il

Fig. 4. Dequeue process of BTFQ.

bounded delay and O(ldg) complexity for computing
the smallest queue tag, whetds the number of maximum
flows allowed.

3. Bounded tag fair queueing scheme

We will describe the proposed scheme BTFQ, and show
its properties of fairness, bounded delay and efficiency.
BTFQ is spawn from Basic_FQ and defines the virtual arri-
val time V.p of packetp as the time of the special clock,
named TagClock, whep arrives.

A snapshot of the dynamics of TagClock is shown in Fig.
2, where flowf is non-backlogged while flowg, i, andj are
backlogged. Whenever a busy period starts, TagClock is
reset to zero and then acts like a real clock. However, the
time in TagClock may jump on the event that a paqket a

However, a feasible FQ scheme cannot be based on fluidflow f arrives and causes the fldwo become backlogged.
model. In the practical packet model, the queue tags of On the event, if the time in TagClock is less than the lower
backlogged flows may not be the same at any time due toboundTyy40Of the queue tags of backlogged flovgs i, and]
packet size not near zero. Thus, it is difficult to determine an in Fig. 2), the time in TagClock jumps td,,s That is,

optimal value for defining/.p. The principle for achieving a
better property in fairness is to defiNe as the value being

TagClock— max{TagClockT,.s}. About the definition
of V.p, if the arrival of packetp triggers a time jump in

as close as possible to the queue tags of all flows backloggedragClock,V.p is defined as the time in TagClock immedi-

on the arrival of packep. For example, the MSFQ scheme
definesV.p as the smallest queue tag of all backlogged

ately after the jump.
BTFQ consists of the Enqueue and Dequeue processes

flows. In fact, the scheme has the properties of fairness,dealing with the arrival and departure of every packet,

Enqueue process: active on the arrival of a
packet p from flow f
{
If (p initializes a busy period) TagClock « 0;
If (queue.f is empty) {
Tbml — XS - Snm\;
TagClock «— max {TagClock, T, };
T.f «— max {X.f, TagClock};
X.f« T.f+L.p/R.1;
Insert (H, X.f);
}
Append (queue.f, p);
b

Fig. 3. Enqueue process of BTEQ.

shown in Figs. 3 and 4. When a packdtom flow f arrives,
the Enqueue process is activef ifas been backlogged, just
append to queud. On the contrary, if has not been back-
logged untilp arrives,Ty,qis calculated a¥S— S, Where
XSis the priority of the packet currently served a8l is
maX—o.. n—1{ L-ima/Ri}. If TagClock is smaller thaifpg, it
has a jump tdly¢ Then, the virtual arrival tim&/.p is the
time in TagClock.T.f and X.f are calculated an&.f is
inserted into the ordered queue priority list Finally,
packetp is append to queueto wait for service.

The Dequeue process is active on the departure of a
packet. The function Reset(BTFQ) resexS and all
queue prioritys and tags to zero. FindTopPriority FlBiv(

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61

returns the flow with the highest queue priority among the
list H. Head(queué) removes the packet at the head of
gueuef. and then returns it. Transm) starts the transmis-
sion of packep. Finally, T.f andX.f are updated if queuids
not empty.

As for the lower bound,,4 of all backlogged queue tags,
we explain it as follows.

Theorem 1. In BTFQ, for any currently backlogged
flow f, its queue tadr.f is no less than the prioritXS of
currently served packet minu,,. Thus Ty, is assigned

XS— Spax

Next, we show the properties of fairness, bounded delay,
and efficiency as follows.

3.1. Bounded delay of BTFQ

To analyze the property of BTFQ in bounded delay, we

49

Corollary 1. BTFQ is with bounded delay.
Proof. From Theorem 3, BTFQ is a GR scheme. Since GR
scheme is with bounded delay, so is BTFQ. Proven.

With the method from GR framework, we can easily
determine the end-to-end delay bound for a fifpuif f is
constrained by the Leaky Bucket control.

Theorem 4. Let flow f be constrained by the Leaky
Bucket with paramete¢o.f,Rf) and it passes througk
BTFQ servers each of which has capadly 1 =i =k
The end-to-end delapee(f), if link propagation delays
are not counted in, of the packetfof bounded as

Dee(f) = o f/RF + (K = DLAna/RE + > Lyad/Ci.
i=1...K

(11

show BTFQ belongs to the class of Guaranteed Rate (GR) The first termo-f/R f is the delay that a packpencounters

scheduling schemes [9], all of which are with bounded
delay. An algorithm to assign packets timestamps is intro-
duced for describing the definition of the GR class as
follows.

Let p and p’ be the packets from flovi and p’ arrive
immediately precedingp. GRC() and A{) are the time-
stamp and the arrival time of packgtrespectively. GRQ)
is computed as follows. (Here, GRE) is zero ifp is the
first packet of flowf.)

GRQp) — max{A(p), GRCp")} + L.p/Rf.

With the above algorithm, the definition of the class of GR
scheduling schemes is as follows.

Definition 6. A scheduling scheme belongs to the GR
class if it guarantees that each packetvill depart from
the server by GR®) + B, whereg is a constant depending
on the scheduling scheme and the server.

To show BTFQ belongs to GR class, we show the depar-
ture time of packep is at most the value of the priority @f
X.p plus L,»/C. Then, we show thaX.p is no greater than
GRC({). Thus the departure time qf is by GRGQp) +
Lmax/'C.

Theorem 2. If packetp of flow f departs from the BTFQ
server (i.e. the server employing BTFQ) at tinzein
TagClock, z is at most the priority value ofp,
X.p plus La/C. That is,

Z=X.p+ Lma/C. (10

Theorem 3. BTFQ belongs to the GR class. That is, a
packetp of flow f will depart from the BTFQ system by
GRQp) + B, where is Ly,,/C.

the maximum burst size queued in quéwé.some servey
along the path of. The remaining terms result from the
maximum delay,L.f./Rf + L2/Ci, for the packetp
through each servérwherei # j.

3.2. Fairness of BTFQ

Recall the GPS scheme. The fairneBgj(t1,t2) is
zero, for any two flowsi and j backlogged during
[t1t2], since the queue tags of all backlogged flows are
the same at any time. In BTFQ, all these tags can be
bounded as shown in Theorem 5. With this theorem we
introduce the upper bound of the fairneiSgj(t1,t2) for
BTFQ in Theorem 6.

Definition 7. Let current time be in Tagclock. Define
packete(t) as the latest one with the largest priority value
among the packets entering the server from the start of
current busy period until time

For example, current busy period starts at 0, current time
is 10 in Tagclock, and five packetsl, p2, p3, p4, andp5,
have entered the server so far. The information for each
packet, (packet priority, enter-server time), is as follows:
p1(3, 0),p2(15, 2),p3(9, 3),p4(15, 5),p5(8, 8).p2 andp4
have the largest priority value 15, bt is the latest. Thus,
e(10) isp4.

Theorem 5. For the BTFQ system in the current busy
period, if current time ig in TagClock ande(t) is packet

r, then for each flow backlogged at t the queue tag is
bounded as

X.r — Spay = T.F = X + Lipa/C. 12

Theorem 6. For the BTFQ scheme, the fairness

50 Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

flows. Thus, BTFQ lets the time in TagClock jump to the

SeekMax poimelb lower boundT,g of all packlogggd gueue tags for being
o 1 2 3 a5 6 7 close to these tags. Evidently, it is tfigq that affects the
flag] ‘ 0 ‘ 1 ‘ 1 ‘0 ‘ X \x \x ‘ X ‘ faimess property. Therefore, the goal of BTAQIs to find
a new Ty, Which is larger than th@,q in BTFQ. Tyng in
pSO [5 [3]0]6 [x[x[x]|x]| BTFQ is the value of the served packet priotK$— Snax
pointel{} To enlarge the value ofy,g We replaceS,a With Spax
flowid o 1 2 3 47755 6 7 where Spax is the maximum ofL.i,/Ri of the flows
S0 0jo0j8)0 210 currently backlogged and served. Clear§,, is no less
pllagl] |2 | X | X |1 |Xx |0 3]|X than Spa: Since Syay i the maximum ofL.i,/Ri of all
X: disable I — flowsi. _ B _
Thus, BTFQ+ is modified from BTFQ by replacing only
Fig. 5. SeekMax system. the assignment off,qin the Enqueue process of BTFQ with
the following:
F.ij (11, t2) between any two flowsandj backlogged during
time interval [1t2] is bounded as Tond = XS— Smax+ - (14
Fij(t1,12) = Snax + MaxX{L.imad/Ri, LimadRi} + Lmax/C. All the definitions, theorems and corollaries in BTFQ are

13) still suitable for BTFQF. Although the fairness is improved,
the price paid is O(logN) time for computingS,ax: Since the
backlogged flow set may change after a packet arrives or
departs. This leads to an O(Idb§ computing complexity.

To compensate the loss of efficiency, we design a supporting

From Definition 5, the efficiency of a scheduling scheme hardware to computé&.;. The computation time, iN =
is evaluated on the complexities for computing and schedul- 4 X 10°, is no longer than that of one ADD operation in a 32-
ing queue priority. In BTFQ for computing the queue prior- bit adder.
ity X.f of a flow f, the most complex operation in Enqueue
and Dequeue is to compu8s,,. However, this operation is 4.1. Supporting Hardware for BTF®
executed only when a flow is established or released. Thus,)]
the complexity to comput¥.f is O(1) when a packet arrives The hardware, named SeekMax, is designed to compute
or departs. On the other hand, to schedMié into the ~ Swax When backlogged flow set changes. Assume at Nost
ordered listH with at mostN elements, the complexity is ~ 10Ws are in the system. L&{f] denotel fro/R T for flow f.
at least O(logN). LetH be a heap. The scheduling complex- To find Syax: rapidly, the flows are sorted according to their
ity is thus O(logN). g]._Let thg sqrted flow list befg, fl,...,fh_,,l_) V\{hereS[fi] =

In fact, BTFQ also achieves O(logldg) complexity with ~ Sfjlif0 =i < j < N.The state of flow; is indicated by the
the method in the LFVC scheme [12], with which all the flag, flagi]. If fi is backlogged or served currently, fldgh
priorities of the currently backlogged queues are mapped 1; Otherwise, 0Syay is the maximum of all thef] of the
into a finite integer range [M], where M is O(N). From flows f; with flag(i] being 1 for 0= i < N. To seekSpax: is
the result of [9], a subset of [BI] can be kept ordered by the 10 find the first flag]] being 1, where starts from 0. If such

3.3. Efficiency of BTFQ

insertion or deletion of each element in O(logldg). flagli] is found, thenSa. is Sf]. _
However, the price paid is a more complex data structure FOr example, in Fig. 5 there are flows 0, 3, 5, and 6 in the
than heap. system. HereJf] being 0 represents that flolvdoes not

From Sections 3.1-3.3, BTFQ is rather attractive in fair- €XiSt. The sorted flow listfg, fy, fz, f3) is (5, 3, 0, 6), since
ness, bounded delay, and efficiency, especially for high 5] > S3] > S0] > §6]. Thus the flags of flows 5, 3, 0,
speed network due to O(1) computing complexity. Further, and 6 are stored in flag[0] through flag[3]. In the example,
BTFQ can be enhanced in the fairness bound by some modi-

fication.
flag[0] flag[1] flag[2] flag[3]

leaf level
4. BTFQ+ N L _
BTFQ + is proposed to improve the fairness property of B : o[1] [0] branch tevel 0
BTFQ. Recall the BTFQ scheme, which defines the virtual poode N 8y ! B,
arrival timeV.p of a packep as the time in TagClock when E [o]1] branch level 1
p arrives. From the GPS scheme, the principle for achieving : BB

a better fairness property is to defidg as the value being e

as close as possible to the queue tags of all backlogged Fig. 6. Seeker of the SeekMax system.

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61

Nodein | E =left_E, +right E,,
branch B, =NOT (left E,)+ right E_,
level k ("left_"is " left son"; "right_" is "right son")
(left son) (right son) (left son) (right son)
E, Egpo Bam By BB,
[] []
pMOS nMOS
{ —
|
E, B, B.;" "B,

Fig. 7. Node logic in Seeker.

since the first flag being 1 is flag[1$nay: is Jf4], i.e. 93].
To keep the correspondence betwé&n and flag[], two
pointer arrayflag[] andpg] are for §] and flag[],

respectively. For example, flag[1] knows its correspondent,

93], by the pointer inpg1]. 3] knows its correspondent,
flag[1], by the pointer irpflag[3].
To rapidly find the first flag] being 1 whera starts from

51

Establish (flow i) {
S[i] — L., /R
Find the flag index for flow i by binary
search on flag[], and then let the index be k;
Perform_in_parallel {
Right Shift flag[k], flag[k+1], ... ;
Increase Counters pflag[pS[k]],
pllag[pS[k+1]], ..., by one;
pilag[i] —k;}
Perform_in_parallel {
Right Shift pS[k], pS[k+1], ...;
flag[k] «— the state of flow i;}
pS[k] «—1i;

1
s
Fig. 8. Flow establishment in SeekMax.

and ‘gate’. However, the delay of ‘gate’ is smaller than
those of ‘X " and * + ' in VLSI. Thus, the delay for a
node is smaller than that for a one-bit full adder. Thus,
Seeker on finding the first flag being one amadhfags is
faster than thdlog NJ-bit adder on performing an ADD
operation.

Finally, consider the time when a flow is established or
released by the BTFQ- system. At this time, insertion or
deletion is enforced on flag[]. For the consideration of

0, Seeker with a binary-tree structure is created in SeekMax.speed, we implement flag[] as the shifterMbits, p]]
A 4-flag Seeker is shown in Fig. 6. In Seeker, flags are in the as the shifter ofN words, andpflag[] as the array oN
leaf level. For the flags in a subtree, the first flag being one is counters. When a flow is established, SeekMax finds an

indicated by the bitsk, and BB,_;...By in the root of the
subtree, where the root is in branch lekelf E, is 1, then

there is a flag being one in the subtree. In this case,

B.Bx-1...Bg is the binary code of the index of the first flag
being one in the subtree. For example, BB, of the root in
Fig. 6 being 01 shows the first flag being 1 is flag[e]1)

The values ofE,, By, and B,_;...B, of a node are
computed from theE,_; and By_;...B, of the sons of the
node. The computation logic is shown in Fig. 7. If one of
the E,_, of the sons is 1E, is 1. If theE,_, of the left son is
one,Byis 0; otherwiseByis one if theE,_, of the right son is
1. TheBy_;...By of the node is copied from that of the left or
right son according t®, being zero or one. Based on the
VLSI design [7], this can be done by usimMOS and
nNMOS gates. In Fig. 7, iBy is 0, pMOS will open; other-
wise, close. The phase ¢fMOS is opposite to that of
pMOS.

To compare the node of Seeker with a one-bit full adder,
let bits A,_; and B,_; be the addends and bit,_; be the
carry_in of the adder whil§ andCy is the sum and carry_-
out, respectively. The Boolean logic for the adder is:

S = Ch1 X (A1 X By—1 + A1 X Bi_p)

+ Co1 X (Ak—g X Biog + A1 X Byy), (195

Ci = A1 XBg + Gy X (A1 + By (16)

From Eq. (16)Cy is obtained after three operations, one
‘X' and two ‘ + '. Consider the node of Seeker in Fig. 7.
B«Bx-1...Bp is obtained after three operations, ‘NOT<",

gi] being zero and then assiginsas the identifier of the
flow. The processes of establishment and release ofiflow
in SeekMax are shown in Figs. 8 and 9, respectively.

The establishment of a flow in SeekMax requires
O(log N) time due to the binary search for a flag index for
the flow. As to the instructions performed in parallel such as
“Right Shift” and “Increase Counters”, they need only one
hardware clock cycle. On the contrary, the release of a flow
requires O(1) time. These time complexities are required at
the call level only. At the packet level, the time complexity
of SeekMax is for findinds,ax by Seeker. A-flag Seeker
requires at most the time of one ADD operation in an
[log N}-bit adder.

5. Comparison

We compare BTFQ and BTFQ with some well-known
schemes in three criteria. The first is the bound of fairness
F.ij(t1,t2). For example, from Theorem &.ij(t1,t2) of

Release (flow i) {
S[i] —0;
k « pflag[i];
Perform_in_parallel {
Left Shift flag[k+1], flag[k+2], ...;
Decrease Counters pflag[pS[k+1]],
pilag[pS[k+2]], .., by one:}
Left Shift pS[k+1], pS[k+2], ...
¥

Fig. 9. Flow release in SeekMax.

52 Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

BTFQ is bounded by maxg n-1{L-Kna/RK} + with the hardware SeekMax to reduce the computation

max{L.imax/Ri, LimaxRi} + Linax/C. time. As a whole, BTFQ+ is good in fairness, bounded
The second is delay bound. Consider a ffavenstrained delay and efficiency at the same time. Notably, SPFQ has

by the Leaky Bucket(o.f,Rf) and passing throughK the same fairness bound as BTFQ, but it is classified into

servers each of which has the capadityand employs the Class 3. The reason is explained in Section 5.1. In addition,

same scheme with bounded delay. With the GR framework from Table 1, the performance of LFVC is good as a whole.

[9], flow f has an end-to-end delay boundf/Rf + K7, LFVC is compared further with the proposed schemes in

where 7 is named the latency at a server. From Theorem Section 5.2.

4, for BTFQ, the end-to-end delay of flofvis less than

of/Rf + K(L.fha/Rf + Lna/C). Hence for BTFQ T is 5.2. Comparison with the SPFQ scheme

Lfa/Rf + Lna/C. We let latencyr be the criterion for

delay bound. We describe SPFQ by means of the scheme Basic_FQ,
The third is efficiency. We compare the computing and mentioned in Section 2.2. SPFQ maintains a system clock,

scheduling complexities among these schemes. Wenamed system potential (SP), to keep the values of back-

summarize the performance data for these schemes inlogged queue tags close. When a pagkatrives, its virtual

Table 1 [15]. Noticeably, all the schemes have the schedul-arrival timeV.pis defined as the time in SP. SP (in SPFQ)

ing complexity of O(logN), except LFVC. and TagClock (in BTFQ) are alike; however, they are differ-
ent in the values that their times jump to and in the events
5.1. Classification and comparison that trigger the occurrences of the time jumps. The time in

SP may jump on the event that a packet departs from the
The schemes in Table 1 are classified into six classesserver. On the event, if the time in SP is smaller than
according to their fairness bounds. In Class 0, GPS is anthe smallest queue tag among the backlogged queues, the
ideal FQ scheme with fairness bound being zero. Since itistime jumps to the tag value. That is, SP
based on the fluid model, the lateneys zero. GPSis good ~ max{SP, MiN;.packiogged fiod T-1}} - FOr finding out the smal-
but not practical. Thus we do not discuss its complexities. In lest queue tag in O(1) time, SPFQ needs to maintain the
Class 1, PGPS schedules packets in the practical packebacklogged queue tags as an ordered list such as a heap.
model by simulating GPS in real time. Thus it is the scheme Thus it takes O(lodN) time to insert or delete a queue tag in
with very good property of fairness though it has larger the ordered list. When a packefrom a flowf arrives and
fairness bound than some schemes. Its computing complex-causes flowf to become backlogged, the queue Tafjand
ity is O(N); therefore, it is not suitable for high speed queue priorityX.f are updated immediately according to
networks even though it provides a small latency. assignments (3) and (4). Nextf and X.f are inserted into
For the Class 2 schemes, they have the good properties othe ordered queue tag and queue priority lists, respectively.
fairness since the boundsefij(t1,t2) depend on flow and These operations need O(ldg) time. Clearly, both the
j and/or the constarit,,,/C only. SCFQ and SFQ have the computing complexity and scheduling complexity are
smallest computing complexity, O(1). However, the laten- O(log N).
cies they provide increase with the number of flows. LFVC SPFQ bounds the fairnessj(tl, t2) under max_g n-1
has not this problem, but it needs a more complex data{L.ky/RK} + max{L.ina/Ri,LjmadRj} + Lmax/'C. HOw-
structure. ever, we believe the fairness of SPFQ has a tighter bound,
The fairness properties of the Class 3 schemes are worsemaxcg{ L.k/Rk} + max{L.inad Ri, LjmaRj} + Lnaxd/C,
than those of the Class 2, sinEgj(t1,t2) of the Class 3not whereB(t) is the set of the flows backlogged at timeOur
only depends on flowandj but also on the maximum of the belief arises from the way in which SPFQ defines the virtual
L.k/Rk or L kya/R Kk of some flowsk. The latencies thatthe arrival timeV.p of a packep. According to the basic scheme
Class 3 schemes provide are as good as those the PGPBasic_FQ, the way to defing.p dominates the fairness
provide while their computing complexities are O(INYy property of an FQ scheme. We find that the way of SPFQ
Thus BTFQ+ is designed to combine with a low-cost, to defineV.pis similar to those of TSS and MSFQ. TSS has
high-speed hardware for reducing the computation time. a ShiftClock like TagClock (in BTFQ). When a packet
The Class 4 schemes have larger fairness bounds than thérom a flow arrives and causes the flow to become back-
schemes of other classes except Class 5. They provide thdogged, ShiftClock is updated as follows: ShiftCloek
same latency as PGPS and have the computing complexitymax{ShiftClock min;.paciogged fiod T-1}} . Then V.p is
of O(1). In the class, BTFQ has a smaller fairness bound defined as the time in ShiftClock. MSFQ has no system
than FFQ. As for Class 5, VC is not fair, since it has no clock to help defineV.p. Thus it definesV.p as
fairness bound. MiN.packlogged or served fidw! -1} When p arrives. Obviously,
BTFQ suits the real-time applications in high speed the fairness bounds of SPFQ, TSS, and MSFQ only depend
networks due to the good properties in latency and effi- on the queue tags of the flows currently backlogged and/or
ciency. Although BTFQ is a little bit weak in fairness, served. Therefore the first term may n-1{ L Knax/’R Kk} Of
BTFQ + improves the fairness of BTFQ and combines the fairness bound declared by SPFQ should be modified to

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61

Table 1

53

Summary of the performances of scheduling schemes (the symbol # in the top of the first column represents the claggnisiberset of the flows served

and backlogged at a timtg

Scheme Fairness bound ferj(t1,t2) Latencyr Computing Scheduling
0 GPS 0 0 - -
1 PGPS L‘imax B LJmax . L.imax Lmax L~jmax Lmax} B L'imax Lmax O(N) O(lOgN)
= + U.i, = + U, L —=, . —=1, whereU. —= + ==
ma){ Ri "R PRI TR Ry R p Y TR c
_ . _ Lmax N—-1 L-kmax
_m'”{(N DRI ’T:‘%X{ RK }}
2 SCFQ L-Fiem_ax + Lii?m_ax Lima "' Lnax O(1) O(logN)
4 . ;
J Ri woxs ©
SFQ Limax |, Lijmax NZD L ke o(1) O(logN)
Ri Rj C
k=0
LFVC 2(I—-im_ax + L-jm_ax n Lmax) I—-im.ax T Lmax O(log logN) Amortized
Ri Rj C Ri C O(log logN)
3 MSFQ L~imax + L~jmax {L—k}Jr {L-imax I—~jm }} I—-imax + Lmax O(Iog N) O(Iog N)
ma){ Ri Rj s LRkS T "R R Ri C
TSS Lk L.imax L-jmax} Limax L.imax Lmax O(logN) O(logN)
—=1+ + —max | _mex
k@%{ R.k} max{ Ri ' Rj C Ri C
SPFQ #]’a])-({ Lkmax} + max{ I—-imax L~jmax} + Limax L~imax + Limax O(Iog N) O(Iog N)
k=0 | RK Ri ° Rj C Ri C
BTFQ+ L-kmax} {L-imax L-jmax}+ Lmax, L.imax + L max O(logN) O(logN)
k@%{ Rk § T RI CR; c’ Ri C
4 FFQ E + ><{|—-ima1>< L-jmax} E _ N—1{ Lkmax} L.imax + Lmax o(1) O(log N)
c TMaqTRi TRy § et = M Rk Ri c
BTFQ N-1 Lkmax} L.imax I—~jmax}> Lmax L.imax + L max 0o(1) O(logN)
T:%X{ Rk J "™ Ri "R JTC Ri C
5 VC % Limax , Lmax o(1) O(log N)
Ri C

maxepy{L.-K/RK}. SPFQ is thus classified into Class 3.

defined as the value of ServerTime. ServerTime is updated

From Table 1, SPFQ, TSS, and MSFQ have better fairnessin the following way. The backlogged flows are divided into

than BTFQ+ . Nevertheless, by sacrificing a little fairness,
BTFQ + is designed to combine with a simple hardware to
reduce the computation time.

5.3. Comparison with the LFVC scheme

two areas, high priority area (HA) and low priority area
(LA) according to their queue tags. If the queue Tafj of

the backlogged flovl is less than the value of ServerTime
plus the constant,,,,/C, flow f is put into HA; otherwise,
LA. In HA and LA, the flows are sorted according to their
gueue priorities and tags, respectively. The flow with the

First, we describe the LFVC scheme by the Basic_FQ smallest queue priority value in HA is served first. If the
scheme. LFVC maintains a system variable, named Server-queue tag of the flow becomes no less than ServerTime plus
Time, to keep the values of backlogged queue tags close.L,,/C, the flow is moved into LA. Once there is no flow in

When a packeip arrives, its virtual arrival timeV.p is

HA and the value of ServerTime is less than the smallest

54 Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

queue tag in LA, denoted Bi.i,, ServerTime will be setto becomes backlogged and the new value of the queué.tag
Tmin- When the server starts transmitting a pagkeserver- is from V.p (referred to assignment (3)), then tf@rness
Time is increased bl.p/C. The flows in LA with the queue differenceFD is defined as follows:
tags less than ServerTime pllg,,/C are moved into HA
immediately. FD=|T.f — [V2(T.g+ X.q) * Rg/2

Secondly, we analyze the efficiency of LFVC. Because
LFVC maps the queue priority values into an integer range
[0,M], whereM is O(N), it takes O(loglog\) time to insert
or delete a flow in HA by the results of [9]. In the worst case, Whereq from flow g is the packet being served when
however,N flows need to be moved into HA from LA arrives and
during one packet transmission. Thus the scheduling 0=Ra+
complexity is QN loglogN). In fact, in Table 1, =R
O(loglogN) is the amortized scheduling complexity (i.e.
the average scheduling complexity on each packet transmis- The fairness degree of an FQ scheme is thus defined as in
sion) because each packet is moved into HA at most once.the following definition.
BTFQ and BTFQ+ can also map the queue priority values
into an integer range [0,®j] and thus achieve O(loglo) Definition 9. For an FQ scheme, let the fairness difference
scheduling complexity. Their efficiencies are better than FD be the random variable given as Definition 8. EfED]
LFVC; however, their fairness properties are weaker than be the expected value of FD andS, be
that of LFVC, since LFVC is a Class 2 scheme. To further maX—_g_ n-1{L.ima/Ri}. Then, thefairness degreef the
understand the difference of fairness among the classes inscheme is defined as:
Table 1, we design a simulation to evaluate the fairness _. _
degrees of these classes. Faimess degree 1 — E[FDY/Snax 18

+ > TkxRkQ, @n

KEB(1), kg

RK.
keB(t) kg

It is reasonable to normalizgFD] by S;.xSince a good FQ
scheme should keep the difference of the queue tags of any
two backlogged flows no larger thaB,, plus a small
. constant.
It is necessary to create a way to evaluate the average . .
: . For the GPS schem&[FD] is zero since all the queue

degree of the fairness property of an FQ scheme. In this . .

9 property Q tags of backlogged flows are the same at any time. Thus its

section, the fairness degree is defined first. Then, a simula-fa_rness deares is 100%. To understand the fairmess dearee
tion is designed to measure the fairness degrees of the ! 9 ! - 70 u y > deg
f each class shown in Table 1, we perform simulation on

schemes in the classes shown in Table 1 except Class d)) . .
P the scheme with the smallest fairness bound in each class.

For Class 2, we select SCFQ while SFQ has the same fair-
6.1. Fairness degree ness bound. For Class 3, we select TSS while MSFQ has
almost the same fairness bound. For Class 4, we select
The method to capture the fairness degree is to measureBTFQ. In addition, BTFQ+ is selected for exhibiting the
the difference between ideal and practical scheduling of aimprovement on the fairness of BTFQ.
scheme. Recall the Basic_FQ scheme in Section 2.2. When We briefly introduce the selected schemes as follows.
a flowf becomes backlogged, from assignment (3) the queueRecall the Basic_FQ scheme. From assignment (3), various
tagT.fis assigned the maximum of the queue prioKtinot schemes are spawn by definingp with different values,
yet updated and theé.p wherep is the packet whose arrival ~ wherepis a packet from a flowhose arrival causes flofv
caused backlogged. Consider the case that the valu€.bf backlogged. For PGPS, which simulates a GPS scheduler,
is from V.p. Since different schemes defileg with differ- V.p is the virtual arrival time of packet in the simulated
ent values, the values atf in different schemes are differ- GPS scheduler. For SCF@,p is the priority value of the
ent in this case. However, there should be an ideal packet being served in the server. For TSS, there is a system
scheduling value fofT.f to achieve the optimal fairness. clock, ShiftClock, like TagClock of BTFQ. Whemarrives,
Since the value of .f is from V.p, according to the principle ShiftClock is set to max{ShiftClock, the smallest back-
of defining V.p (Section 2.3) the ideal value @tf should logged queue tag}. Thex.p is the time in ShiftClock. For
much near the average of the queue tags of backlogged andTFQ and BTFQ+ , whenp arrives, TagClock is set to
served flows weighted by their reserved rates. Thus, the max{TagClock,Ty.g¢, where Tyqis the lower bound of the
difference between the practical value and the ideal value backlogged queue tags. Th¥ip is the time in TagClock.
of T.f is defined as fairness difference. BTFQ and BTFQ+ are different in theifTyng The Tyg Of
BTFQ is no greater than that of BTF® . From GPS, we
know that the better the fairness of a scheme, the closer the
Definition 8. For an FQ scheme spawn from the Basic_FQ V.p of the scheme to the backlogged queue tags. For TSS,
scheme if at time a packetp of flow f arrives such that BTFQ, and BTFQ+ , since ShiftClock acts like TagClock,

6. Simulation and results

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61 55

Table 2
Traffic characteristics of input flows for Experiment 1 (the unit of avg. rate, const. rate, and peak rate is in Mbps. The unit of avg. burst and lsipkeksize
and token, respectively)

Flow Expe_1 0 1 2 3 4 5 6 7 8 9

0 (Poiss) Avg. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 1.5 3 5

1 (Const) Const. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 15 3 5

2 (IDP) Avg. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 15 3 5
Peak rate 0.64 0.64 0.32 0.32 0.192 0.192 0.128 7.5 9 10
Avg. burst 10 20 40 25 5 10 20 40 5 25

3 (PLB) (token size Avg. rate 0.064 0.064 0.064 0.064 0.064 0.064 0.064 15 3 5
Peak rate 0.64 0.64 0.32 0.32 0.192 0.192 0.128 7.5 9 10

53 bytes) Bucket size 10 20 40 25 5 10 20 40 5 25

Table 3

Traffic characteristics of input flows for Experiment 2

Flow Expe_2 0 1 2 3 4 5 6 8

0 (Poiss) Avg. rate 1 1 1 1 1 1 15 2 5 10

1 (Const) Const. rate 1 1 1 1 1 1 15 2 5 10

2 (IDP) Avg. rate 1 1 1 1 1 1 15 2 5 10
Peak rate 10 10 5 5 2 2 7.5 9 10 20
Avg. burst 10 20 40 25 5 10 20 40 5 25

3 (PLB) (token size 53 bytes) Avg. rate 1 1 1 1 15 2 5 10
Peak rate 10 10 5 5 2 2 7.5 9 10 20
Bucket size 10 20 40 25 5 10 20 40 5 25

we have the following conclusions. The fairness degree of comes from to become backlogged (from non-backlogged),

TSS is better than those of BTFQ and BTRHQ, since the
smallest backlogged queue tag is no less thap The fair-
ness degree of BTF@ is better than that of BTFQ, since

the Tyng Of BTFQ + is no less than that of BTFQ.

6.2. Experiments

TSS, BTFQ, and BTFQ+ , and design three experiments,

a flow with a lot of arrivals of such packepamust alternate
between backlog and non-backlog frequently. A flow with
strong burstiness, which can be modeled by the heavy-tailed
distributions [22,23], is not suitable for the experiments
since a long burst would make the flow stay in backlog
situation for very long time and reduce the alternating
frequency between backlog and non-backlog. In the realistic
We perform simulation on the schemes, PGPS, SCFQ, world, alot offlows are of strong burstiness and a great number
of strong-burstiness flows must be created in order to generate
Expe_1, Expe_2, and Expe_3, to find out their fairness sufficient packetp causing flows to become backlogged for
degrees. The key point of selecting the flow traffics is to exhibiting the full functioning of FQ schemes in the experi-

sufficiently exhibit the difference among the fairness ments. In fact, experiments with a large number of flows
degrees of these schemes. From Definitions 8 and 9, theincrease the difficulty of simulation. A tradeoff is to apply
fairness degree of a scheme depends on the virtual arrivalthe Poisson, constant-rate, and short-burst flows to the
times V.p of the packetp whose arrivals cause flows to experiments. These flows do not have long burst and thus
become backlogged. The more the amount of such packetgan alternate between backlog and non-backlog frequently.
p, the more accurate the results of the experiments. Because In each experiment we choose four types of traffic

the arrival of such a packet causes the flow the packet

Table 4

Traffic characteristics of input flows for Experiment 3

flows for testing: Poisson (Type 0), Constant Rate (Type

Flow Experiment 3 0 1 2 4 5 6 7 8 9

0 (Poiss) Avg. rate 0.064 1 1 1 1 15 3 5 10

1 (Const) Const. Rate 0.064 1 1 1 1 15 3 5 10

2 (IDP) Avg. rate 0.064 1 1 1 1 15 3 5 10
Peak rate 0.64 10 5 2 2 7.5 9 10 20
Avg. burst 10 20 40 5 10 20 40 5 25

3 (PLB) (token size 53 bytes) Avg. rate 0.064 1 1 1 1 1 15 10
Peak rate 0.64 10 5 2 2 7.5 9 10 20
Bucket size 10 20 40 5 10 20 40 5 25

56 Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

Table 5 Fairness degrees of varicus FQ schemes for Experiment 2.
Statistics of fairness difference for Experiment 3 (unit of server rate: Mbps,
Snax = 6629 5% —e—PGrs
Expe_3 Serverrate 115 110 105 100 é;ﬂ zgz =S
Load 0.854 0.893 0.936 0.983 n —A—T58
% 0% —%— BIH
WFQ Avg. 30.4 31.0 33.2 31.4 g 5% —— BT
Stdev. 86.9 90.3 82.1 69.9 0% : : : :
Max. 6012.0 5491.9 61341 63015 082 0891 0933 0980
SCFQ Avg. 58.0 62.9 71.1 82.7 Tralfic Load
Stdev. 140.7 139.3 133.1 97.7
Max. 4968.8 5520.8 5506.7 5162.8 Fig. 11. Fairness degree in Experiment 2.
TSS Avg. 50.2 70.8 142.0 480.7
Stdev. 194.6 246.1 400.5 681.6 o
Max. 5832.3 6071.4 6255.1 62499 distributing on the narrow band but also for those on the
BTFQ + Avg. 54.0 84.3 195.2 833.9 broadband. Expe_1 and Expe 2 are designed to test
Stdev. 218.8 3243 6018 12659 the fairness degrees of the FQ classes. In Expe_3, most of
Max. 6449.7 6466.4 6482.6 65434 g average rates of the flows are high (from 1 to 10 Mbps);
BTFQ Avg. 87.35 155.3 3845 1273.0 h f | 0.064 Mb This is desianed
Stdev. 367.7 563.0 9707 15306 owever, a few are low (_ p_s). is is designed to
Max. 6489.3 64924 6545.7 6567.2 test the BTFQ+ for exhibiting the improvement on the

fairness of BTFQ.

For each scheme, the reserved rate of a flow is set to the
1), Interrupt Deterministic Process (IDP) (Type 2), and average rate of the flow. To make various traffic loads to test
Poisson with Leaky Bucket (PLB) (Type 3). For each type a scheme, we change the server capacity, instead of adjust-
there are ten flows. Packets in the flows are of the same sizejng the input flow rates. The results of Expe_1-Expe_3 are
53 bytes, which is the packet size of the ATM network. The shown in Figs.10-12, respectively. PGPS has the highest
traffic parameters of all flows are shown in Table 2—4. fairness degree, about 98.5% in Fig. 10 and 93% in Fig. 11,

IDP is the 2-state Markov Modulated Deterministic tested by any traffic load. This represents that PGPS is the
Process [10], depicting the traffic with 2 alternated states, best scheme in fairness. For SCFQ, the fairness degree
“on” and “off”. In the “on” state traffic is constant rate while decreases with increasing traffic load. TSS, BTFQ, and
in the “off” state itis zero rate. For example, for Flow[2,9]in BTFQ + have the same situation, too. However, their fair-
Expe_1, its “on” state is long for 25 packets in average and ness degrees fall fast when load is over 95%. The reason is
introduces a peak rate of 10 Mbps. The flow in PLB is as follows.
formed by a Poisson source constrained by a Leaky Bucket. Letp be the packet from flodwhose arrival causes flofv
For example, for Flow[3,9] in Expe_1, its Poisson source backlogged. From the definition of FD, the value of queue
with average rate 5 Mbps is constrained by the Leaky tagT.fis fromV.p. Thus FD is the difference of the practical
Bucket whose token size is 53 bytes, token rate 5 Mbps, and idealV.p. The practicaV.p is theV.p defined by a FQ
bucket size 25 tokens, and output rate 10 Mbps. In the scheme. For example, SCFQ definép as the priority
three experiments, the greatest average burst among thevalue of the packet in server while TSS definép as the
IDP flows is 40 packets. These IDP flows are designed astime in ShiftClock. On the contrary, the idedlp is about
the short-burst traffics. As for the PLB flows, they are the the average of all backlogged queue tags weighted by the
traffics of Poisson shaped to short burst and are designed foiindividual reserved rates from Definition 8.
increasing the variation in testing traffic. On the high traffic load, a large number of flows with

In Expe_1, the average rates of the flows are from 0.064 small reserved rate are backlogged, so the values of the
to 5 Mbps while those are from 1 to 10 Mbps in Expe_2. backlogged queue tags distribute widely. Thus, the ideal
This represents that the testing is not only for the flows

Fairness degree of various FQ schemes for Experiment 3.
Fairness degrees of various FQ schermes for Fxperiment 1.

100%
—6— PGPS g O~ PGS
8 iPS B 95% -
5 —B 50RO a SCFQ
= TS g 0% —A—TSS
g —*— BIFG 5 85% X BIFQ
& ——EI11 . ——BIFQ
| 80%
0.79% 0.8%4 0947 0995 0.854 0.893 0.936 0.983
Traffic Load Traffic Load

Fig. 10. Fairness degree in Experiment 1. Fig. 12. Fairness degree in Experiment 3.

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61 57

and limiting their traffic characteristics, FQ can further guar-
antee bounded delay for the flows. In this paper, we propose

; TagClock a scheme BTFQ and its enhancement BT#Qto imple-
current busy ' T v ment the FQ mechanism. BTFQ is both fair and delay
period start p.p queue head bounded. It is very efficient since it computes and schedules

' ‘) the priority of flow queue in the time complexities, O(1) and

q q 1 server O(log N). BTFQ + is designed to improve the fairness

property of BTFQ and combine with a low-cost, high-
speed hardware for reducing the computation time. The
hardware can complete the work trusted by BTFQin a
V.pis near the center of the backlogged queue tagsVIfne time, which is shorter than the time of one ADD operation in
defined by TSS is farther to the ide¥lp than theV.p a[log NI-bit adder.
defined by SCFQ, since thép defined by TSS is the smal- For comparison, we classify the proposed schemes and
lest backlogged queue tag. Thus the FD of TSS is much some well-known schemes into six classes according to
larger than that of SCFQ. This leads to that the fairness their fairness bounds. Based on the criteria of fairness,
degree of TSS falls much faster than that of SCFQ on bounded delay, and efficiency, we find no class is perfect
high traffic load. From the explanation in Section 6.1, the in all aspects. Class 0 is not practical. Class 1 is not efficient.
fairness degrees of BTFQ and BTFR are not as good as Class 2 has larger bounded delay or more complex structure.
that of TSS. Thus the degrees of BTFQ and BTFOQfall Class 3 has a little loss in efficiency and fairness. Class 4 has
much faster on high traffic load, too. Nevertheless, the fair- more loss in fairness. Class 5 is unfair.
ness degrees of the FQ schemes in Class 3 and 4 are not far BTFQ + and BTFQ are the schemes in Class 3 and Class
from those in Class 1 and 2, if the traffic load is under 95%. 4, respectively. From Table 1, they provide the smallest
In Expe_1 and Expe_2, the fairness degree of BRFG® bounded delay. In addition BTFQ and BTFQ with the
almost the same as that of BTFQ. The reason is as follows.supporting hardware achieve the best efficiency. From the
In high traffic load there is often a flow with the smallest simulation results, BTFQ and BTFQ have the fairness
reserved rate (0.064 Mbps in Expe_1 and 1 Mbps in degrees near those of the schemes in Class 1 and 2, if traffic
Expe_2) backlogged or served. Th8gy; (the maximum load does not exceed 95%. Therefore, BTFQ and BRFQ
of L.fa/Rf of the served and backlogged flofyss often have excellent performance. Since no practical FQ scheme
equal toS,ax (the maximum ot f, /R f of all flowsf). This is perfect till now, BTFQ and BTFQ+ provide another
results in that th@,,q of BTFQ + is often equal to that of choices.
BTFQ. Therefore, the fairness degree of BTRQis often
equal to that of BTFQ. However, in Expe_3, since the
number of the flows with the smallest reserved rate

(0.064 Mbps) is few, the probability that at least one such .
flow is backlogged or served is small even in high traffic The authors are very grateful to the anonymous reviewers

load. Thus Sa,. is often equal to 4244 424/1) whileSya for the comments and suggestions that helped improve the

is 6625 (= 424/0.064). Th,,qof BTFQ + is hence often duality of this paper.
much greater than that of BTFQ. In this case, BTRQ
improves the fairness of BTFQ very much. This argument Appendix A
is verified by the simulation result listed in Table 5. For
example, the averages of fairness difference of TSS,
BTFQ + , and BTFQ are 70.8, 84.3, and 155.3 on the traffic Theorem 1. In BTFQ, for any currently backlogged flow
load 0.893. Obviously, the fairness degree of BTFQis f, its queue tagd.fis no less than the prioritSof currently
very close to that of TSS and far from that of BTFQ. served packet minuS; .. ThusTy,gis assigneXS— Sax
From the simulation, in general, BTFQ possess good fair-
ness property under 95% traffic load. BTFQ achieves
much better fairness property than BTFQ when the combi-
nation of the input flows, such as that in Expe_3, leads to Proof. The proof is shown by considering the relation of
that Shay is often much smaller than,S. XS and the queue priorit.f of f.
Case 1. Consider XS=Xf. Since S, ux=
maX_g n—1{LimadRi}, we have (XS— S0 =
7. Conclusions (X.f — L.f/Rf). Therefore XS— Syax = T.f.
Case?2. ConsiderXxS> X.f. The event that f becomes
FQ is a rather attractive scheduling mechanism, which backlogged must occur during the transmission of the
can fairly allocate bandwidth to the flows sharing a network currently served packet. From the Enqueue process shown
channel. By controlling the bandwidth reserved for the flows in Fig. 3, T.f is assigned max{.f, max{TagClock Ty,d}} .

Fig. 13. Relation of packets and TagClock.

Acknowledgements

58 Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

whereTy,q has been assigneXiS— S5 ThusTyq = T.f.
That is,XS— Spax = T.f.

Theorem 2. If packetp of flow f departs from the BTFQ
server (i.e. the server employing BTFQ) at tinzein
TagClock, z is at most the priority value op, X.p plus
Lmad/C. That is,

z=X.p+ Lpna/C. (A1)

Proof. In this theorem time is referred to TagClock. We
first define a special tims, and then calculate how long
after s packetp will depart. Letu be the time packep
becomes the head of queliflime sis defined as the latest
time, no later tharu (i.e. s = u), such that either of the
following events occurs:

Eventl.A busy period starts.

Event2. The time in TagClock jumps tdl,ne (Thus
S= Tpna-)

Event3.Packetq with the priority larger tharX.p (i.e.
X.q > X.p) enters the server.

We first show for all the flowg with nonempty queue at
s, regardless of which event occurs, the following holds:

(s=T.9 or X.p < X.0). (A2)

With Eventl,s= T.g since boths and T.g are zero. With
Event2, s= Ty,g = T.g from Theorem 1. With Event3,
X.qg > X.pandX.q < X.g since the queue with the smallest
priority value is served first. Thu$.p < X.g. Therefore, Eq.
(A2) holds ats. Next, we will show that

s=T.p. (A3)

With Eventl,s = 0 = T.p. With Event2, from Theorem 1,
S = Tpng = T.p. With Event3, queué must be empty & If
this is not true, the packet denoted py at the head of
queuef at s will have the priorityX.p’ less thanX.q since
X.p' = X.p and X.p < X.q. Therefore, the packet entering
the server asis notq butp’. This violates the occurrence of
Event3. Thus queukemust be empty as. This implies that
the packet of flow arriving at or later thas is with a packet
tag no less thas. Sincep becomes the head of queliat u
and queud.is empty ats, p must not arrive befors. Thus,
T.p = sand (A3) holds.

Now, consider how long aftexpacketp will depart from
the system. From the definition sfonly the packets with
X.r = X.p would enter the server aftarbeforep enters the
server. Let packetsbe from flowsh and become the head of
queueh at u’. If we replacep andu with r andu’, respec-
tively, sis still the latest time ta)’ such that either of the
three above events occurs. Thiis;, = s from Eq. (A3).

SinceL.r = (X.r = T.r)Rh,s= T.r, and X.r = X.p, the
total bits of the packegt and all the packets representedrby

do not excesgX.p — S) > i—o..n-1 Ri. These bits plus the
residual bits of the packet served sis at most(X.p —
S)C + Lnax from inequality (2). This amount of data is
sent out by the server froswntil z, which is equal taz —
S)C. Thus,(z—9C = (X.p—9C + Ly Thereforez = X.p +
Limax/'C-

Theorem 3. BTFQ belongs to the GR class. That is, a
packetp of flow f will depart from the BTFQ system by
GRGp) + B, whereB is Ly,,/C.

Proof. We know the bound of the departure timgudfom
Theorem 2, but this time is in TagClock while the time for
computing GRQ) is in real clock. Therefore, consider an
alternate BTFQ transferring TagClock to a real clock.
Instead of letting the time in TagClock jump forwarl
seconds, the alternate BTFQ subtraétfrom each queue
tag and priority. Since the relative values of the tags and
priorities with respect to each other and with respect to
TagClock is the same as in the original BTFQ, the order
in which packets are served remains the same. Thus the
original and the alternate introduce the same bounded delay.
In the alternate BTFQX.pmust not excess GR), since
the packet priority in the alternate BTFQ can be reduced.
Therefore, with Theorem 2, the departure time of paphat
BTFQ does not exceed GR® + La/C.

Theorem 4. Let flow f be constrained by the Leaky
Bucket with parameterd.f, R.) and it passes througk
BTFQ servers each of which has capadly 0 =i = K.
The end-to-end delay d3(f), if link propagation delays are
not counted in, of the packet bfs bounded as

Deoe(f) = of/Rf + (K = DLApad/RE. + > Liaf/Ci.
i=1.K

(Ad)

Proof. From Definition 6, a packep of flow f passing
through the GR server (i.e. the server employing a GR
scheme) departs from the server by GRC+ B, where

is a small constant. With the GR framework [19], if fldus
constrained by the Leaky Buckét.f, Rf) and passes
throughKGR servers and the packptdeparts from each
serveri by GRG(p) + B;, the end-to-end delay op is
bounded as

end-to-end delay op = o.f/Rf + (K — DL.f /R

+ > B

i=1.K

From Theorem 3 BTFQ is a GR scheme; that is, the
packetp departs from the BTFQ servérby GRG(p) +
Bi, where B; is L/Ci. Therefore, the theorem is proven
immediately.

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61 59

T.j(t]) segment J Tj(t2) the queue queug.wherer’ is from is empty during this
L u flow j service,q’ belongs to another busy period; otherwisg,
)) A arrives after the time” when packet” enters the server.
T'I(Ll) segment | 1;.1(t2) flow i Here,r” is the packet at the head of queyeluring the
Real Clock service oft’. We have that” > t', sincee(t”) =", e(t’) =
> r/,andX.r” > X.r’. Thusq’ arrives aftet’. Clearly,q’ enter
the server aftet’.) Either of the cases violates the proposi-
tion thatr’ andq’ is in the same busy period andis in the
server at’. Therefore, there must be packets arriving during
the service of . Let packefy” be the first one arriving. Once
Theorem 5. For the BTFQ system in the current busy q” arrives, the assignment “TagClock— max{Tyng
period, if current time ig in TagClock ande(t) is packet TagClock}” in Enqueue is executed. Thus the arrival time
r, then for each flowf backlogged at the queue tag .fis of g” is no less than th&@y.q which is X.r' — S, at this
bounded as time. Becausey' either isq” or arrives aftery”, the times
(wheng’ becomes the head of its queue) must be not earlier
X0~ Spax = TF = X0 4 Lind/C. (AS) than the arrival time off”. Thus,s = X.r'=S,,, Since the
queue ofy’ is empty whery” arrives,T.q is not less than the
Tong (i.e. Xor' — Sy at the arrival ofq”. Thus T.q' =
Proof. In this proof, time is referred to TagClock. Lepbe Xr' — Spax SinceTp=t' =s T.p= Xr' — Spax
the packet at the head of queluatt. Packetp becomes the From C1_Left.1 and C1_Left.2, we concludep =
head of queué.att’ (t' =t). Let p’ be the packet froni X.r'" — Spax Clearly, X.r must be no less thak.r'. If r =
immediately preceding. Also, letqandq’ be the packetsin r’, we are done. Otherwise,must enter the server aftér
the server at andt’, respectively. And, let’ denote the and not later thah Sincep becomes the head of queftt’

(=X]

tl 2

Fig. 14. Relationship of flow tags.

packete(t’). We depict their relation in Fig. 13. and is not in the server at we haveX.p = X.r. Since
SinceT.fattis T.p, we will show Lp/Rf = Spae TP = XiF — Spax
_ /
Xt — Sy = T.p= X1 + Lya/C. (A6) Case. T.p=Xp'.

C2_Right Show T.p = Xir + L,a/C. SupposeT.p >
From the Enqueue and Dequeue processes, we know theX.r + Ly, /C. SinceX.p’ = T.p > Xur, p’ is notr. Packet
value of T.pis either from TagClock oK.f (not updated) at p’ enters the server by, since p becomes the head of

t’. ThereforeT.pis eithert’ or X.p'. We prove the theorem queuef at t'. This violates the definition of. So, T.p <

in the two casesT.p=1t"andT.p= X.p. X.r + Lyal/C.

Casel. Tp=t'. C2_Left Show T.p = X.r — Syax. At time t' (when p

C1_Right Show T.p = X.r + L,o/C. Clearly, t' is no becomes the head of quef)ethere are two cases: One is
greater than the departure timegf With Theorem 2t < thatp’ enters the server, §83 = ¢'; another is thap arrives
X.q" + Lma/C. By the definition ofr, T.p = X.r + Ly./C. and finds queuébeing empty, s@’ # q'.

C1_Left ShowT.p = X.r-S,. Since the value off.p C2_Left.1p’ = q. We haveT.p = X.q'. Because&X.q' =

(T.p=1") is obtained from TagClock, packetmust find X.r', considerX.q’' = X.r’ andX.q' < X.r'. If X.q' = X.r',
its queue being empty when it arrives. The assignment inthenT.p = X.r’. So,T.p = X.r’ — S,a On the other hand,
Enqueue, TagClock— max{Tyq TagClock}, is thus consideiX.q’ < X.r’. Letsbe the time when' becomes the

executed. ClearlyT.p = T,nq at t’. Since Tynq is X.q' — head of its queue. Thus,= t’. With the same argument as

Snax at t', considerq’ on both casesX.q' = X.r’ and Cl Left.2, we have s=Xr'—S,x and T.q =

X.q < Xr'. X.r' — Spax Sincep’ = ', we haveT.p= X.p' = X.q >
Cl_Left.1 X.q' = Xr’. SinceT.p = T,q att’, we have X’ — Spac

T.p= Xr'—Spax C2_Left.2p' # q'. We haveT.p = X.p’ = TagClock(=

Cl_Left.2 X.q' < X.r'. Let s be the timeq’ became the t)=Tyg at t'. If Xg =Xr/, Tp=Tyg (at th=
head of its queue. Thus =1t'. We first show thats = X.r'=S,ax On the other hand, considet.q’ < X.r'. Let s
Xr' = Snax and T.q' = X’ — Sy and then thafT.p = be the time whem’ becomes the head of its queue. Thus,

X' — Spax s=t'. With the same argument as C1_Left.2, we have
Because' is notq’ in this case and’ is in the server af, Xr' = SpaxandT.q = Xir' — S SinceT.p=Xp' =1t/,

r’ departs from the server befagé Sincer’ isthe latestand ~ SOT.p= s = X.r'=Spa

largest-priority-value packet to tinté&, immediately before From C2_Left.1 and C2_Left.2, we concludep =

r’ enters the server, all queues must be empty except theX.r’ — Sy. As in the conclusion of C1_Left, we have
queue ofr’. If there were no packet arriving during the T.p = X.r — S,a Therefore, with Casel and Case2, this
service ofr’, ' would either belong to another busy period theorem is proven.

or enter the server aftet. (The reason is as follows.

Suppose that no packet arrives during the service .of Theorem 6. For the BTFQ scheme, the fairness

60 Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45-61

F.ij (t1,t2) between any two flowsandj backlogged during
time interval [1,t2] is bounded as

F.ij(t1,t2) = Spax + Max{L.imadRi, LimadRi} + Lmaxd/C.
(A7)

Proof. Since F.ij(t1, t2) is defined asW.i(tl, t2)/R.i—
W.j(t, t2)/R.j|, considerW.f(tl, t2) first, wheref isi or j.
Becausd is backlogged duringt],t2], T.fadvances step by
step during[t1,t2]. Let T.f(t) be T.f at timet. Define the
function 7 .f(t) for flow f as follows. 7.f(t) is the residual
amount of the packep in the server at, if p is from f;
otherwise, zero. Therefore,

W (L t2) = RF(T.f(t2) — T.f(t1) + 7f(tl) — wf(t2)
(A8)

WA (L t2)/Rf = (T.f(t2) — mf(t2)/RF) — (T.f(tl)

— wf(t1)/Rf) (A9)

Fig. 14 shows the relationship afi(t1), T.j(t1), T.i(t2),
andT.j(t2), where the length of segmehtaindJ represents
the value ofW.i(t1,t2)/R.i andW.j(t1,t2)/R |, respectively,
if i andj are not served &fl andt2.

Let w.ji denote(W.j(t1,t2)/Rj — W.i(t1,t2)/Ri). Then,
F.ij(t1,t2) = max{w.ji,w.ij}. To find the upper bound of
F.ij(t1,t2) is to find the upper bounds ef.ji andw.ij. We
first considerw.ji. From the Fig. 14, the maximum of.ji
occurs when segmegtandl is as long as and as short as
possible at the same time, respectively. From (A8, can
be written asw.ji = M1 + M2, where

M1 = [T.i(t]) — T.j(td) + mj(tL/Rj — mit/Ri],

M2 = [T.j(t2) — T.i(t2) + mi(t2)/Ri — mj(t2)/R]].

The work of finding the upper bound ei.ji is decom-
posed into two sub-works as follows:

Worklis to find the upper bound &l1. Consider the flow
the packet in the server Ht belongs to. We have the follow-
ing cases.

W1 CaselThe packet, denoted hy in the server atl
belongs to flowi. Thus,#.i(t1) = 0 and#.j(t1) = 0. From
Theorem 1T.j(t1) = Ty,g (at t1) = X.p — Spax Sincei is
backlogged atl, T.i(t1) = X.p. Therefore M1 =< S,

W1 _Case2The packet, denoted ly in the server atl
belongs to flowj. Thus,.j(t1) = L.gand.i(t1) = 0. With
Definition 7, let packet be e(r1), whererl is the value of
TagClock attl. From Theorem 5T.i(t1) = X.r + Lya/C.
From the definition of, X.q = X.r. If X.g= Xir, T.j(t1) =
X.r. Thus, M1 = L.g/Rj + Lo/C. If X.g< Xr, from
“Cl_Left.2” in the proof of Theorem 5T.q = X.r — Sjax
SinceX.q = T.j(t1), T.j(t1) = X.r — S;ax + L.9/R]. Hence,
M1 = Spax+ LimayC-

W1_Case3The packet in the server it belongs to flow
k, wherek # i, j. Thus.j(t1) and m.i(t1) are zero. From

Theorem 5, T.i(tl) — T.j(tl) = S,ax T Lma/C. Hence,
M1 =< S, + Lma/C. From W1 _Casel, 2, and 3, we
concludeM1 = S,ax + Lima/C.

Work2is to find the upper bound d¥12. Consider the
following cases.

W2_Casellf flow j is never served durinftl, t2], we
havew.ji = 0 sinceW.j(t1,t2) = 0.

W2_Case2Consider that flow is served duringtl, t2]
and the packet, denoted pyin the server at? is from flow
i. We havew.j(t2) =0, mi(t2) = L.p, and T.i(t2) = X.p
since flowi is backlogged at2. Let q be the latest packet
of flow j entering the server no later tha@. We have
T.j(t2) = X.g. Consider X.q = X.p. We have T.j(t2) =
T.i(t2). Since mi(t2)=L.p and wj{t2)=0 M2=
L.p/Ri = L.ipa/Ri. On the contrary, consideX.q > X.p.
Let s be the latest time, no later thdR, such that flow
becomes backlogged. Latbe the time whem enters the
server. We have = u, sincep enters the server aftgrand
X.q > X.p. Becausei is backlogged durindtl,t2], s=
tl =t2 Thusu=tl=t2 Tl = T.j(t2) = X.q, since
g is the latest packet entering the server no later t2an
From (A9), W.,tLlt2/R]j = mjtD/R]j— mjt2/R] =
Ljma/R]. Since W.i(t1,t2)/Rj =0, W.ji =< Ljn/R] =
Shax

W2_Case3Consider that flow is served duringtl,t2]
and the packet in the servertatis not from flowi. We have
m.i(t2) = 0. Let p be the packet at the head of quéw12.
Let g be the latest packet of floyventering the server no
later than t2. Thus T.p=T.i(t2) and X.q=T.j(t2).
ConsiderX.q = X.p. We haveT.j(t2) = T.i(t2) + L.p/Rii.
Since wjt2)=0 and mi(t2)=0, M2=LpRi=
L.ima/Ri. On the contrary, consideX.q > X.p. Let s be
the latest time, no later thai2, such that flowi becomes
backlogged. Leti be the time whem enters the server. We
haves = u, sincep enters the server aftgrandX.q > X.p.
Thus u=s=tl=1t2 This implies T.j(t1) =T.j(t2) =
X.gW.j(t1,t2)/R] = L.jmaRJ. Thus, wji = Lj/Rj =
Snax-

From Workl and Work2, wji=M1+M2=
Snax + LimadRI1 + Lna/C. We find the upper bound of
w.ij in the same way as above. Thus,ij = Spax+
Ljma/RJ + Lma/C. Since F.ij(t1,t2) is max{w.ij, w.ji},
F.ij(t1,12) = Spax + max{L.ima/Ri, LjmaxRj} + Lmaxd/C.

References

[1] M. de Prycker, Asynchronous Transfer Mode: Solution for Broadband
ISDN, 2, Ellis Horwood, New York, 1993.

[2] J. Kurose, Open issues and challenges in providing quality of service
guarantees in high speed networks, ACM Computer Communication
Review 23 (1) (1993) 6-15.

[3] L. Zhang, Virtual Clock: a new traffic control algorithm for packet
switching, ACM Transactions on Computer Systems 9 (2) (1991)
101-124.

[4] A.K. Parekh, R.G. Gallager, Generalized processor sharing approach

Yen-Jen Chen, S.-Y. Lee / Computer Communications 23 (2000) 45—-61 61

to flow control in integrated services networks-the single node case, scheduling of flows in high-speed networks, IEEE International
IEEE INFOCOM (1992) 915-924. Conference on Network Protocols, 1996, pp. 6—13.

[5] A.K. Parekh, R.G. Gallager, Generalized processor sharing approach [15] D. Stiliadis, A. Varma, Frame-based fair queueing: a new traffic
to flow control in integrated services networks—the multiple node scheduling algorithm for packet switched network, ACM
case, |IEEE INFOCOM (1993) 521-530. SIGMETRICS conference on measurement and modeling of compu-

[6] A. Demers, S. Keshav, S. Shenkar, Analysis and simulation of a fair ter systems, 1996, pp. 104-115.
queueing algorithm, Internetworking: Research & Experience 1 (1) [16] J. Turner, New directions in communications (or which way to the
(1990) 3-26. information age?), IEEE Communications Magazine 24 (10) (1986)

[7] D.A. Pucknell, K. Eshraghian, Basic VLSI Design: Systems and 8-15.

Circuits, 2, Prentice Hall, New York, 1987. [17] V.C. Hamacher, Z.G. Vranesic, S.G. Zaky, Computer Organization,

[8] S.J. Golestani, A self-clocked fair queueing scheme for broadband McGraw-Hill, New York, 1990, pp. 274-276.
applications, IEEE INFOCOM (1994) 636—646. [18] G.G. Xie, S.S. Lam, Delay guarantee of virtual clock server, IEEE/

[9] P.van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of ACM Transactions on Networking 3 (6) (1995) 683—-689.
an efficient priority queue, Mathematical System Theory 10 (2) [19] P. Goyal, S.S. Lam, H.M. Vin, Determining end-to-end delay bounds
(1977) 99-127. in heterogeneous networks, International Workshop on Network and

[10] W.C. Hon, D.H.K. Tsang, Y. Tao, Bandwidth allocation for Operating System Support for Digital Audio and Video, 1995, pp.
VBR video traffic in ATM networks, Fourth International Con- 287-298.
ference on Computer Communications and Networks, 1995, pp. [20] D. Stiliadis, A. Varma, Rate-Proportional Servers: a design methodol-
612-615. ogy for fair queueing algorithms, IEEE/ACM Transactions on
[11] P. Goyal, H.M. Vin, H. Cheng, Start-time fair queueing: a scheduling Networking 6 (2) (1998) 164—-174.
algorithm for integrated services packet switching networks, IEEE/ [21] D. Stiliadis, A. Varma, Efficient fair queueing algorithms for packet-
ACM Transactions on Networking 5 (5) (1997) 690-704. switched networks, IEEE/ACM Transactions on Networking 6 (2)
[12] S. Suri, G. Varghese, G. Chandranmenon, Leap forward virtual clock: (1998) 175-185.
a new fair queuing scheme with guaranteed delay and throughput [22] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the self-
fairness, IEEE INFOCOM (1997) 557-565. similar nature of ethernet traffic (extended version), IEEE/ACM
[13] Y.P. Chu, E.H. Hwang, A new packet scheduling algorithm: mini- Transactions on Networking 2 (1) (1994) 1-15.
mum starting-tag fair queueing, IEICE Transactions on Communica- [23] S. Bates, S. McLaughlin, Testing the Gaussian assumption for self-
tions E80-B (10) (1997) 1529-1536. similar teletraffic models, IEEE Signal Processing Workshop on

[14] J. Cobb, M. Gouda, A. El-Nahas, Time-shift scheduling: fair Higher-Order Statistics, 1997, pp. 444—-447.

