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AUGMENTED IFN LEARNING MODEL

By Shih-Lin Hung,1 Member, ASCE, and J. C. Jan2

ABSTRACT: Solving engineering problems is a creative, experiential process. An experienced engineer gen-
erally solves a new problem by recalling and reusing some similar instances examined before. According to
such a method, the integrated fuzzy neural network (IFN) learning model was developed and implemented as
a computational model for problem solving. This model has been applied to design problems involving a
complicated steel structure. Computational results indicate that, because of its simplicity, the IFN model can
learn the complicated problems within a reasonable computational time. The learning performance of IFN,
however, relies heavily on the values of some working parameters, selected on a trial-and-error basis. In this
work, we present an augmented IFN learning model by integrating a conventional IFN learning model with two
novel approaches—a correlation analysis in statistics and a self-adjustment in mathematical optimization. This
is done to facilitate the search for appropriate working parameters in the conventional IFN. The augmented IFN
is compared with the conventional IFN using two steel structure design examples. This comparison reveals a
superior learning performance for the augmented IFN learning model. Also, the problem of arbitrary trial-and-
error selection of the working parameters is avoided in the augmented IFN learning model.
INTRODUCTION

Solving engineering problems—such as those of analysis
and design—is a creative, experiential process in which the
experiences and combined knowledge of engineers serve as
resources. An experienced engineer generally solves a new
problem in the following stages. First, he or she recalls in-
stances that were similar but produced resolution, while prop-
erly considering the functional requirements of those instances.
Then, the engineer attempts to derive the solution from these
similar instances through adaptation or synthesis. After the
problem is solved, the new instance is then stored in her/his
memory as an additional knowledge resource for solving fu-
ture problems.

The described stages can be implemented as a computa-
tional model for problem solving, one that utilizes a case base
of previously solved problems when solving a new one. In
symbolic artificial intelligence (AI), case-based reasoning
(Carbonell 1981) is an effective means of facilitating computer
program development. It attempts to solve problems by di-
rectly accessing the case base. This approach relies on the
explicit symbolic representation of a case base established
from experience. With a given case base, case-based reasoning
uses a representation involving specific episodes of problem
solving, not only to solve a new problem, but also to learn
how to solve the new problem. Based on the approach of case-
based reasoning, the way to solve engineering problems has
received considerable attention (Maher et al. 1995).

Artificial neural networks (ANNs), on the other hand, con-
stitute a different AI approach, one that has made rapid ad-
vances in recent years. Such networks have the ability to de-
velop, from training instances, their own solutions to a class
of problems. The method of representation used by ANNs,
essentially a continuous function, is conducive to generaliza-
tion beyond the original set of training instances used in their
development. The feasibility of applying ANN computing to
engineering problems has received increasing interest, partic-
ularly on supervised neural networks with the back-propaga-
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tion (BP, Rumelhart et al. 1986) learning algorithm. Vanluch-
ene and Sun (1990) applied the back-propagation learning
algorithm to structural engineering. Gunaratnam and Gero
(1994) discussed the effect of the representation of input/out-
put pairs on the learning performance of a BP neural network.
Also, several other researchers have applied neural networks
to engineering design and related problems (Hajela and Berke
1991; Ghaboussi et al. 1991; Kang and Yoon 1994; Stephen
and Vanluchene 1994; Elkordy et al. 1994).

The learning processes of back-propagation (BP) supervised
neural network learning models, however, always take a long
time. Therefore, several different approaches have been de-
veloped to enhance the learning performance of the BP learn-
ing algorithm. Such an approach is to develop parallel learning
algorithms on multiprocessor computers to reduce the overall
computational time (Hung and Adeli 1991b, 1992, 1994b;
Adeli and Hung 1993a). Another approach is to develop more
effective neural network learning algorithms to reduce learning
cycles (Adeli and Hung, 1993a, 1994a; Hung and Lin, 1994).
A third approach involves the development of a hybrid learn-
ing algorithm—for instance, by integrating a genetic algo-
rithm with neural network algorithms to improve the overall
learning performance (Hung and Adeli 1991b, 1994b).

Another category of learning in ANN includes unsupervised
neural network learning models that are generally used in clas-
sification problems (Carpenter and Grossberg 1988; Adeli and
Hung 1993b). In structural engineering, Adeli and Park (1995)
employed a counterpropagation neural network (CPN), which
combines supervised and unsupervised neural networks, to
solve complicated engineering design problems. That investi-
gation concluded that a CPN learning model can learn how to
solve complicated structural design problems within a reason-
able computation time. Recently, authors Hung and Jan (1997,
1999) presented an integrated fuzzy neural network (IFN)
learning model in structural engineering. The IFN learning
model combined a novel unsupervised fuzzy neural network
(UFN) reasoning model with a supervised neural network
learning model using the adaptive L-BFGS learning algorithm
(Hung and Lin 1994). The IFN learning model was applied to
steel beam design problems. That work contended that the IFN
learning model is a robust and effective ANN learning model.
In addition, the IFN model can interpret a large number of
instances for a complicated engineering problem within a rea-
sonable computational time, owing to its simplicity in com-
putation. However, the performance of the IFN learning model
is heavily affected by some working parameters that are prob-
lem dependent and obtained via trial and error.

In this work, we present a more effective neural network
RNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 2000 / 15
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FIG. 1. Conventional IFN Learning Model

learning model, called the augmented IFN learning model, by
integrating a conventional IFN learning model with two newly
developed approaches. The first approach, correlation analysis
in statistics, is employed to assist users in determining the
appropriate working parameter to be used in the fuzzy mem-
bership function. The second approach, self-adjustment in
mathematical optimization, is used to obtain appropriate
weights, systematically, for each decision variable required in
the input of training instances. The novel model is imple-
mented in C language on a DEC3000/600 workstation. The
augmented IFN learning model proposed herein is applied to
two structural engineering problems to verify its learning per-
formance. The first example is a steel beam design problem.
The second example involves the preliminary design of steel
structure buildings. The two examples are also used to train a
conventional IFN learning model, for the sake of comparison.

REVIEW OF IFN LEARNING MODEL

This section briefly reviews the integrated fuzzy neural net-
work (IFN) learning model (Hung and Jan 1997, 1999). The
IFN learning model combines two sub-ANN learning models.
One is a novel, unsupervised fuzzy neural network (UFN) rea-
soning model: a single-layered laterally connected network
with an unsupervised competing learning algorithm. The other
is an offline assistant model: a supervised neural network
learning model with the adaptive L-BFGS learning algorithm
(Hung and Lin 1994). The IFN learning model is schemati-
cally depicted in Fig. 1.

Assume that U is an associated instance base, with N solved
16 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 20
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instances U1, U2, . . . , UN and X is a new instance. Instance
Uj is defined as a pair, including input Uj,i and its correspond-
ing output Uj,o. If there are M decision variables in the input
and K items of data in the output, the input Uj,i and output Uj,o

of instance Uj are represented as vectors of the decision vari-
ables and data, and are denoted as Uj,i = . . . , and1 2 M{u , u , u }j j j

Uj,o = . . . , Similarly, the new instance X can also1 2 K{o , o , o }.j j j

be defined as a pair including input Xi and unsolved output
Xo, respectively. The input Xi is a set of decision variables as
Xi = {x1, x2, . . . , xM}. The output Xo is currently a null vector.

The learning stage in the IFN model is performed in two
sub-ANN models concurrently. First, the offline assistant su-
pervised neural network model is trained, based on the adap-
tive L-BFGS supervised learning algorithm using these N
given instances. In the UFN reasoning model, however, the
learning process simply involves selecting appropriate work-
ing parameters for the fuzzy membership function and weights
for each decision variable in the input. The process is imple-
mented in the following steps. The first step attempts to de-
termine the degree of difference between any two distinct in-
stances in base V, which contains P instances randomly
selected from instance base U. Therefore, a total of T = =PC 2

P(P 2 1)/2 degrees of difference must be computed. The func-
tion of degree of difference, diff(Ui,i, Uj,i), is employed to mea-
sure the difference, dij, of two inputs Ui,i and Uj,i for instances
Ui and Uj in V. The function is defined as the modified square
of Euclidean distance and represented as

M

m m 2d = diff (U , U ) = a (w u 2 w u ) (1)ij i,i j,i m i i j jO
m=1

where wi and am denote predefined weights and are used to
represent the degree of importance for the ith instance in the
instance base for the mth decision variable in the input. The
weights wi are generally set as constant one. The weights am,
however, are set by trial and error. After the values of dij for
all instances in base V are computed, the average of the sum
of dij, denoted as = avg(dij) = (dij)/T, can be computed.Td̄ (ij t=1

The second step entails determining the fuzzy membership
function. The relationship of ‘‘similarity’’ between any two
instances is represented using a fuzzy membership function.
In the UFN reasoning model, a quasi-Z-type membership func-
tion is used and defined as

m(d ) = f (R , R , d )ij max min ij

0 if d $ Rij max

R R 2 R dmax min min ij= if R < d < Rmin ij maxH (R 2 R )dmax min ij

1 if d # Rij min (2)

The terms Rmax and Rmin are two working parameters that define
the upper and lower bounds of ‘‘degree of difference.’’ The
lower bound Rmin is set as a constant 1025. The upper bound,
however, is set as Rmax = The term h is a real number¯hd .ij

between zero and one and it was set by trial and error. Con-
sequently, the degree of similarity for instances Ui and Uj can
be determined from the fuzzy membership function.

After learning in the UFN and in the assistant supervised
learning model is completed, any new instance X can be solved
via the IFN learning method. The reasoning in UFN is per-
formed through a single-layered, laterally connected network
with an unsupervised competing algorithm, and it is imple-
mented in three steps. The first step involves searching for
some instances from the instance base U that resemble the new
instance X according to their inputs; that is, the degree of dif-
ference, dXj, between the inputs, Xi and Uj,i, for instance X and
instance Uj in base U is calculated. The input Xi of instant X
is presented to the first node and the input Uj,i of instance Uj
00
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is presented to the ( j 1 1)th node simultaneously. The degree
of difference dXj is then computed using (1) as diff (Xi, Uj,i) =

am(wxx
m 2 The second step entails representingM m 2( w u ) .m=1 j j

the relationships among the new instance and its similar in-
stances, with dXj less than Rmax. The fuzzy set, of ‘‘similarS ,sup,X

to X’’ was then expressed as follows:

S = (m /S ) 1 (m /S ) 1 ??? 1 (m /S ) 1 ??? (3)sup,X 1 1 2 2 p p

where Sp = pth similar instance to instance X; the term ‘‘1’’
denotes a union operator; and mp = corresponding fuzzy mem-
bership value.

The final step involves generating the output Xo vector of
instance X by synthesizing the outputs of its similar instances
according to their associated fuzzy membership values using
center of gravity (COG) or mean of maximum (MOM) meth-
ods (Hung and Jan 1999). For the given unsolved instance X,
assume that P similar instances are in fuzzy set Ssup,x; they are
classified into C distinct clusters according to their outputs.
Then, the output Xo of instance X yielded via these two meth-
ods are defined, respectively, as follows:

p

m Sk k,oO
k=1

X = (COG) (4)po

mkO
k=1

C

max km Sk max,oO
k=1

X = (MOM) (5)o C

maxmkO
k=1

where mk denotes the membership value for the kth similar
instance in fuzzy set Ssup,x. Correspondingly, denotes themaxmk

membership value for the most similar instance in the kthkSmax

cluster.
The reasoning process of the UFN depends on determining

the degree of similarity among X and Uj. Consequently, no
solution can be generated by the UFN reasoning model if the
new instance entirely differs from all instances in the instance
base, e.g., all dXi are greater than Rmax. In addition, using in-
appropriate working parameters would allow for the possibility
that no similar instances can be derived. For the above issues,
the undertrained adaptive L-BFGS supervised neural network
is used as an assistant system to generate an approximate out-
put for the new instance.

AUGMENTED IFN LEARNING MODEL

In the conventional IFN learning model, working param-
eters (such as wj, am, Rmax, and Rmin) are selected subjectively
by users, and generally, on a trial-and-error basis. Conse-
quently, the learning performance is highly affected by these
parameters, especially Rmax and am. In this work, two novel
approaches are employed for assisting the users to determine
these parameters and weights systematically. One approach,
correlation analysis in statistics, is used to determine the ade-
quate Rmax value in the fuzzy membership function. The other
approach, self-adjustment based on mathematical optimization
theory, is employed to find proper values for weights am.

Correlation Analysis for Rmax in Fuzzy
Membership Function

In conventional IFU, the similarity measurement between
two instances heavily depends on the value of parameter Rmax.
A small value of Rmax implies that a strict similar relationship
between instances is utilized. Consequently, most of the in-
stances are sorted as dissimilar. As a result, few similar in-
JO
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FIG. 2. Example of Accumulative Correlation Curve

stances to the new instance can be found and, ordinarily, no
solution can be generated via the UFN reasoning model. On
the other hand, a loose similar relationship is adopted under
the case of a larger Rmax. Accordingly, a large number of in-
stances are taken to be ‘‘similiar instances’’ and the solution
generated via these similar instances is inferior. Here, the lin-
ear correlation analysis in statistics is employed to facilitate
the determination of appropriate value of Rmax in the fuzzy
membership function. The analysis is a process that aims to
measure the strength of the association between two sets of
variables that are assumed to be linearly related.

For the above instance base U with N instances, the corre-
lation analysis in the fuzzy membership function is imple-
mented in the following steps. The first step is to determine
the degree of difference between any two instances in the base
U using the aforementioned function of degree difference in
(1). Hence, a total of 1 N ) resembling samples Sij(Ui,o,

N(C 2

Uj,o, dij) can be compiled. A resembling sample contains two
instances’ outputs (Ui,o and Uj,o) and the corresponding degree
of difference (dij). Thereafter, two arrays, At and Bt, can be
assorted from resembling samples in the case of dij less than
or equal to a prescribed value, say t. The elements in At and
Bt are the first and second items, respectively, of these resem-
bling samples. Next, the accumulative correlation coefficient,
AcoCORREL(At, Bt, t), is calculated for arrays At and Bt with
the degree of difference less than or equal to t. Assume that
for a total P resembling samples with dij less than a prescribed
t, the arrays At and Bt can be denoted as

A = {a ua = U [ S , for d # t} = {a , a , . . . , a }t k k i,o ij ij 1 2 p

B = {b ub = U [ S , for d # t} = {b , b , . . . , b }t k k j,o ij ij 1 2 p

The value of the accumulative correlation coefficient equals

Cov(A , B , t)t t
AcoCORREL(A , B , t) = (6)t t

s sA Bt t

p
1

Cov(A , B , t) = (a 2 m )(b 2 m ) s.t. d # t (7)t t k A k B ijO t tp k=1

where and are standard errors of arrays At and Bt;s s mA B At t t

and are the means of At and Bt. The formulas expressed inmBt

(6) and (7) represent the relationship between the accumulative
correlation coefficient to any value of t. An accumulative cor-
relation curve can be plotted as a function of t and AcoCOR-
REL(At, Bt, t). Fig. 2 demonstrates an accumulative correlation
curve for two arrays At = sin (x) and Bt = 0.95(x 2 x3/3! 1
x5/5!) such that x = 2p 1 (p/15)i, i = 0 to 30. Shown in Fig.
2, the curve falls from one to zero as the value of t increases,
and it resembles the quasi-Z-type fuzzy membership function
defined in (2) for the case of Rmin equal to zero. Note that the
URNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 2000 / 17
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appropriate Rmax equals a certain value of t, such that instances
in the instance base U have a certain degree of correlation.

Obviously, the smaller the t implies a larger accumulative
correlation coefficient, indicating a strong relationship between
the two arrays, e.g., the strongest correlation, t = 0, between
the two arrays refers to the case in which the instances in the
two sets are identical and the value of AcoCORREL(At, Bt, t)
equals one. In such a case, no solution to a new instance can
be generated via the UFN reasoning model except for when
identical instances exist in the instance base. In order to avoid
this issue here, we set AcoCORREL(At, Bt, t) equal to 0.8 as
the lower bound for similarity measurement. The value of t
corresponding to this lower bound is adopted as the appropri-
ate value of Rmax.

Self-Adjustment Approach for Selecting Weights am

Except for Rmax, the selected weights am also significantly
affect the learning performance for the conventional IFN. This
occurrence has been investigated in the earlier work (Hung
and Jan 1999). The learning results indicated that significant
improvements were achieved as the weights were gradually
updated via a basis of heuristic knowledge associated with
learning problems. In this study, a more systematical approach
—self-adjustment based on mathematical optimization—is
adopted to facilitate the search for appropriate weights.

For the above instance base U with N instances, the self-
adjustment approach can be briefly stated as consisting of the
following steps. First, set up the corresponding working pa-
rameters, Rmax, Rmin, and wj, where Rmax is determined using
the aforementioned correlation analysis approach and where
parameter Rmin and weights wj are set as constants in this work.
Meanwhile, weights am for each decision variable in the input
are directly initialized as one. Then, based on these working
parameters, the outputs for training instances are found via the
UFN reasoning model. Then the error, Ei, between the com-
puted and desired outputs, Y and Ui,o, for training instance Ui,
is calculated. The system error, E, for a total N instances is
then defined as half of the average sum of errors and denoted
as

N
1

E = E (8)iO2N i=1

K

k k 2E = (y 2 o ) (9)i iO
k=1

where and yk = kth items of data in desired and computedkoi

outputs, Ui and Y, respectively. Note that the system error is
an implicit function of the weights am as E(am).

Weights am in the UFN reasoning model are adjusted to
reduce the system error as much as possible. This goal can be
achieved if a set of appropriate weights, am, are used. The
problem, then, can be considered as an unconstrained opti-
mization problem, that is, searching a set of optimum weights
by iteration to minimize the system error. In the mathematical
optimization approaches, the conjugate gradient (CG) method
has been proved an efficient means of solving the problem.
The weights am are updated in each iteration, say the (s 1
1)th iteration, as = 1 The term l is step length(s11) (s) (s)a a ld .m m

and is set as a constant in this work. The search direction
is defined as(s)d

(s) (s) (s)d = g = 2=E(a ) if s = 0m
(10a,b)H (s) (s) (s) (s21)d = g 1 b d if s > 0

where
(s) T (s)(g ) g(s) (s) (s)b = , and g = 2=E(a )m(s21) T (s21)(g ) g
18 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 20
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FIG. 3. Augmented IFN Learning Model

The iteration is terminated as the value of or(s11)ig i
2 is sufficiently small. The term is the(s11) (s) (s)uE(a ) E(a )u gm m

negative gradient vector of function E(am). For simplicity, the
superscript (s), denoted as the sth iteration, is ignored. Here-
inafter, vector g is derived using chain rule and denoted as

N
E(a ) 1 Em ig = = (11)O

a 2N am mi=1

22
Ei k k= 2 (y 2 o ) f (d )i ipO SO D
am k p

k m m 23 o f 9(d )(u 2 u ) f (d )p ip i p ipSO O
p p

k m m 22 f (d )o f 9(d )(u 2 u )ip p ip i pO O D
p p (12)

where index p denotes the pth similar instance in fuzzy set
and indices m and k denote the mth decision variableS ,sup,Ui

in the input and the kth data item in the output vectors, re-
spectively.

Augmented IFN Learning Model

In this section, we present an augmented IFN learning
model. Fig. 3 schematically depicts the procedures of the aug-
mented IFN learning model. Instead of using a constant work-
ing parameter Rmax, as in conventional IFN, the appropriate
parameter is determined using correlation analysis. Mean-
while, the appropriate weights am are adapted during the self-
adjustment process through a mathematical approach. These
two approaches, called self-organized learning, are used to en-
hance the learning capability of the conventional IFN learning
model. The procedure of the augmented IFN learning model
can be summarized as follows:

• Self-organized learning phase
Step 0. Train the adaptive supervised L-BFGS learning
neural network model offline.
Step 1. Initialize parameter Rmin as constant 1025 and
00
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weight am for each decision variable, on a heuristic
basis or by trial and error.
Step 2. Calculate the degree of difference dij (i ≠ j)
among all instances in base V.
Step 3. Determine the parameter Rmax using correlation
analysis and set Rmax = t such that AcoCORREL(At, Bt,
t) = 0.8.
Step 4. Set the fuzzy membership function, m(dij) =
f(Rmin, Rmax, dij), defined in (2).
Step 5. Adjust the weight am for each decision variable
in input, using the self-adjustment approach.

• Analysis phase (after learning phase is completed)
Step 6. Present the new (unsolved) instance X to the
UFN reasoning model, and perform a similarity mea-
surement between X and instance Ui in the base U using
a single-layered, lateral-connected competing network.
Step 7. If more than one similar instance is found in
Step 6, generate the solution Xo for the new instance
using fuzzy synthesis approaches in (4) or (5), and go
to Step 9. Otherwise go to next step.
Step 8. Compute the solutions via the undertrained as-
sistant adaptive L-BFGS supervised learning model and
go to next step.
Step 9. Feedback the new instance into the base U.
Meanwhile, further learning in the assistant supervised
learning model is launched offline.

APPLICATIONS

Here the novel augmented IFN learning model is applied to
problems of engineering design. Two structural design exam-
ples are presented to verify the learning performance of the
augmented IFN learning model. The first example is a steel
beam design problem. The second is the preliminary design
of steel structure buildings. The two examples are also used
to train a conventional IFN learning model for comparison.

Steel Beam Design Problem

The problem is the design of the lightest W-section simply
supported steel beam with compact section, under LRFD Spec-
ification (Manual 1994). The problem was studied in our ear-
lier work (Hung and Jan 1999), with those results demonstrat-
ing that the conventional IFN learning model is superior to a
stand-alone supervised neural network with L-BFGS learning
algorithm when the number of training instances was large
enough. This work investigates only the learning performances
of the conventional IFN and the novel augmented IFN learning
models.

The LRFD design method, applied to the effect of lateral
torsional buckling for beam with compact section, is summa-
rized in the following steps:

1. Determine the factored moment Mu at midspan of a given
beam.

2. Select one potential member with plastic section modu-
lus Z so that the required nominal moment Mn = Zfy sat-
isfies 0.9Mn $ Mu, where fy is the specified yield strength
of the beam.

3. Estimate whether the lateral supports are close enough
to design the beam using plastic analysis or whether we
should use the fully plastic moment strength Mp without
plastic analysis, for a given unbraced length Lb. The
nominal moment Mn is then obtained according to the
following formulas with different conditions:
JO
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a. If L < L , then M = Mb p n p

b. If L < L < L , then Mp b r n

= C [M 2 (M 2 M )((L 2 L /L 2 L ))] # Mb p p r b r r p p

c. If L > L , then Mb r n

2p pE
= M = C C I 1 EI GJcr b Î w y yS DL Lb b

where Mp = plastic moment strength; Lp and Lr = limited
laterally unbraced length for full plastic bending capacity
and for inelastic lateral-torsional buckling, respectively;
Cb = moment gradient coefficient; Mr = limited buckling
moment; E = elasticity modulus of steel; Cw = warping
constant; Iy = moment of inertia about the minor axis;
G = shear modulus of elasticity of steel; and J = torsional
constant.

4. Finally, confirm whether or not the section of selected
member satisfies the requirements of flexural design
strength, 0.9Mn $ Mu, and shear design strength, 0.9Vn

$ Vu, where Vn is the nominal shear strength.

The above steps are repeated until a satisfactory lightest mem-
ber is obtained. Eight hundred instances, created according to
the aforementioned design process, are used in the present ex-
ample to train and verify the conventional and augmented IFN
learning models. Of these, 600 are used as training instances
and the remaining two hundred (200) are used as verification
instances. Seven decision variables are used as inputs in order
to determine the plastic modulus Z of a lightest W-section steel
beam with compact section. The seven decision variables are
the yielding strength of steel fy, factored maximum bending
moment Mu, the live load wl, the factored maximum shear
force Vu, the span of the beam L, the moment gradient coef-
ficient Cb, and the unbraced length Lb. Notably, the first de-
cision variable, fy, was not used in the earlier work (Hung and
Jan 1999), as the yielding strength of steel was identical for
each instance.

The parameters Rmin and wi are set as constant 1025 and one,
respectively. The weights am, however, are initialized as [1, 9,
1, 1, 1, 1, 1] for the seven decision variables. Of these, the
second weight, a2, for decision variable, factored maximum
bending moment Mu, is set based on the finding investigated
in the earlier work (Hung and Jan 1999). Using these param-
eters and weights, the augmented IFN learning model is
trained in four different cases with different numbers of train-
ing instances in base V. The number of training instances is
increased from 100 to 400 with an increment of 100. After
performing the correlation analysis in four different bases of
V, the accumulative correlation coefficients can be computed
with respect to any specified value t. With the value of Aco
CORREL(At, Bt, t) equal to 0.8, the values of t(=Rmax) for four
different cases are obtained. Those values are 0.044, 0.034,
0.033, and 0.030, respectively, for 100, 200, 300, and 400
training instances in base V, and are displayed in Fig. 4. In-
terestingly, according to this figure, the greater the number of
instances in bases V implies a higher correlation among these
instances. Restated, the value of Rmax decreases with an in-
crease of the number of training instances. After the value of
Rmax is determined, the self-adjustment approach is launched
to search the appropriate weights am for each decision variable
in the input.

After self-adjustment is achieved, a set of weights am is
obtained, e.g., the weights am are adjusted to values [1.42,
6.93, 1.02, 1.01, 1.01, 1.51, 0.73] for the case of V with 400
training instances. Note that the first, second, and sixth weights
(a1, a2, and a6) are changed by more than the other weights.
These adjustments illustrate that the first and sixth decision
URNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 2000 / 19
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FIG. 4. Accumulative Correlation Curve for Steel Beam De-
sign Example

TABLE 1. Results of Steel Beam Design Problem

Number of training
instances in U(V)

(1)

Average Error (Rmax) for 200
Verification Instances

Conventional IFN
learning model

(2)

Augmented IFN
learning model

(3)

100 (100) 9.33% (0.040) 8.31% (0.044)
200 (200) 8.31% (0.040) 5.50% (0.034)
300 (300) 5.57% (0.040) 4.47% (0.033)
400 (400) 4.92% (0.040) 3.82% (0.030)
600 (400) 4.47% (0.040) 3.47% (0.030)

FIG. 5. Comparison of Computed and Desired Outputs for
Verification Instances: Steel Beam Design Example

variables, fy and Cb, are more important than we would be led
to believe by a process of trial and error. However, the weight
a2 for the second decision variable, Mu, is adjusted from 9 to
6.93. The occurrence reveals that the factored moment, Mu, is
the most important decision variable in the input, as compared
with other decision variables. Then, the 200 verification in-
stances are used to verify the learning performance of the con-
ventional and augmented IFN learning models. The verifica-
tion in the augmented IFN is based on the newly adjusted
weights am with the appropriate Rmax. The working parameters
and weights used in the conventional IFN, however, are se-
lected by trial and error. Fig. 5 compares the computed and
desired outputs of the 200 verification instances for the aug-
mented and conventional IFN learning models. The correlation
coefficients for the computed and desired outputs are 0.997
and 0.992 for the augmented and conventional IFN learning
model, respectively. Table 1 summarizes the computing results
20 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 200
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for the 200 verification instances. According to this table, the
learning performance is improved as the number of training
instances increases for the augmented and conventional IFN
learning models. This same table reveals that the average er-
rors for verification instances are 3.47% and 4.47% for the
augmented and conventional IFN learning models, respec-
tively. In sum, the learning performance of the augmented IFN
learning model is much better than that of the conventional
IFN learning model in this example.

Based on the newly adjusted weights am, correlation anal-
ysis is next performed for the case of 400 instance bases in V
again. According to those results, the accumulative correlation
coefficients are higher for any specified value t than those ob-
tained from the initial set of weights. For example, the accu-
mulative correlation coefficient is from 0.8 to 0.9 at the value
t equal to 0.03 (Fig. 4).

Preliminary Design of Steel Structural Buildings

In the complete design of a structure, the preliminary design
stage is mainly a creative, experiential process that involves
the choice of structure type, selection of the material, and de-
termination of the sections of beams and columns in the struc-
ture. An experienced engineer is likely to carry out this stage
more quickly than does an inexperienced one. The basic con-
figuration of the structure at this stage should satisfy the spec-
ified design code, such as LRFD for steel structures. To satisfy
the prescribed constrains and achieve minimum expenditure
for materials and construction, this stage becomes a looped
optimization decision-making process. Hence, a good initial
development of the basic form, with sections of beams and
columns satisfying the aforementioned constraints, will reduce
the number of redesign cycles. After a basic structure is de-
termined, the structural analysis stage involves analyzing the
initial guessed structure and computing the service loads on
the members. Also, the maximum lateral drift of the structure
and the drifts between floors are computed if lateral loads are
considered. The present example involves a complete design
structure that satisfies the conditions that the service loads
should not exceed the strength of the members; the drifts
should be within the prescribed limits, and the structure should
be economical in material (e.g., minimum weight), construc-
tion, and overall cost. In this example, the augmented IFN
learning model is trained to learn how to implement the pre-
liminary design of buildings satisfying the conditions of utility,
safety, and economy in only one design cycle. For simplicity,
only regular buildings with a rectangular layout—such as
most factory buildings—are considered herein. Also, the
beams in every floor have the same sectional dimensions, as
do the columns.

In this example, 416 instances are used. They are randomly
divided into 380 training instances and 36 verification in-
stances. Seven decision variables are used as inputs to deter-
mine the sections of beams and columns of a building that
satisfies the given specifications. The seven decision variables
and their limits are described as follows:

1. Number of stories = [9, 10, 11, 12, 13, 14, 15]
2. Bay length in long-span direction (X direction) = 9 to 12

m
3. Bay length in short-span direction (Y direction) = 6 to 9

m
4. Number of bays in both directions = [3, 4, 5]
5. Seismic zone coefficient = [0.18, 0.23, 0.28, 0.33]
6. Live load (kgw/m2) = 200 to 350
7. Wall load (kgw/m) = [100, 200]

Other corresponding decision variables used in the stage of
preliminary design are assumed to be constant. In practice, the
0
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FIG. 6. Accumulative Correlation Curves for Example of Pre-
liminary Design of Steel Structural Buildings

sections of beams and columns of a building are classified into
certain groups for convenience in construction, instead of sep-
arate consideration being given to each element. Here, a build-
ing with three groups of steel elements in both beams and
columns is considered. The three groups are upper, medium,
and lower. For a building with N stories, these three groups
are defined as upper group: floors from 2N/3 to N; medium
group: floors from N/3 to 2N/3; and lower group: floors from
one to N/3. An instance contains seven decision variable inputs
and six data items as outputs.

The parameters Rmin and wi are set as constant 1025 and one,
respectively. The weights am, however, are initialized as [1, 1,
1, 1, 1, 1, 1] for the seven decision variables. Using these
parameters and weights, correlation analysis in the augmented
IFN learning model is performed first to determine the work-
ing parameter Rmax. Fig. 6 displays the result of correlation
analysis. With the value of AcoCORREL(At, Bt, t) equal to 0.8,
the values of t(=Rmax) are obtained. They are 0.12 for beams
and 0.178 for columns, respectively.

After the fuzzy membership function is defined, the self-
adjustment approach is launched to obtain the adequate
weights am for each decision variable in the input. The weights
am for each decision variable are updated from [1, 1, 1, 1, 1,
1, 1] to [1.471, 1.369, 0.416, 0.008, 1.104, 0.825, 0.513] for
beams and to [1.106, 0.997, 0.542, 0.009, 1.232, 0.999, 0.997]
for columns. Interestingly, the weights of the fourth decision
variable in beams and columns are both self-adjusted close to
zero. This observation indicates that this decision variable
(number of bays in both directions) is insignificant in the input.
Consequently, this decision variable can be neglected. The 36
verification instances are used to verify the learning perfor-
mance of the augmented and conventional IFN learning mod-
els, respectively. Notably, the augmented IFN is verified on
the basis of the newly adjusted weights am with the adequate
Rmax. The working parameters and weights used in the con-
ventional IFN, however, are selected on a trial-and-error basis.
Fig. 7 depicts the correlation between the computed and de-
sired outputs of beams for the 36 verification instances for the
augmented as well as conventional IFN learning models. Sim-
ilarly, Fig. 8 displays the correlation between the computed
and desired outputs for columns for the thirty-six verification
instances using the two IFN learning models. Table 2 sum-
marizes the learning results for thirty-six verification instances.
According to this table, the average percentage errors for
beams and columns are 13.81 and 9.36 for the conventional
IFN learning model. However, these errors are reduced to 6.17
and 6.1 for beams and columns, respectively, for the aug-
mented IFN learning model. The augmented IFN learning
model significantly improves in terms of learning. This ex-
JO

J. Comput. Civ. En
FIG. 7. Comparison of Computed and Desired Outputs
(Beams) for Verification Instances: Preliminary Design of Steel
Structural Buildings

FIG. 8. Comparison of Computed and Desired Outputs (Col-
umns) for Verification Instances: Preliminary Design of Steel
Structural Buildings

TABLE 2. Results of Preliminary Structural Design Problem

Error
(%)
(1)

NUMBER OF ITEMS IN OUTPUT FOR
VERIFICATION INSTANCES

Conventional IFN
Learning Model

Beam
(2)

Column
(3)

Augmented IFN
Learning Model

Beam
(4)

Column
(5)

0 ; 5 12 43 52 51
5 ; 10 29 29 39 31

10 ; 15 21 22 13 20
15 ; 20 29 10 3 6

>20 17 4 1 0
Average error for 36 ver-

ification instances 13.81% 9.36% 6.10% 6.17%

Note: Each instance has six items, three beams, and columns, in out-
put.

ample also illustrates that the augmented IFN learning model
yields a substantially better learning performance than that of
the conventional IFN learning model.

CONCLUDING REMARKS

This work presents an augmented IFN learning model by
integrating two newly developed approaches into a conven-
tional IFN learning model. These approached are a correlation
analysis in statistics and self-adjustment in mathematical op-
URNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 2000 / 21
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timization, which collaboratively enhance the learning capa-
bility of the conventional IFN. The first approach, correlation
analysis in statistics, assists users in determining the appro-
priate working parameter used in the fuzzy membership func-
tion. The second approach, self-adjustment in mathematical
optimization, obtains appropriate weights, systematically, for
each decision variable in the input of training instance. The
augmented IFN learning model proposed herein is applied to
engineering design problems. Two structural design problems
were addressed to assess the learning performance of the aug-
mented IFN learning model. Based on the results of this work,
we can conclude the following:

1. The problem of arbitrary trial-and-error selection of the
working parameter (Rmax) in fuzzy membership function,
encountered in the conventional IFN learning model, is
avoided in the newly developed augmented IFN learning
model. Instead of arbitrary Rmax, the appropriate value of
Rmax is determined using correlation analysis in statistics.
Thus, the new learning model provides a more solid sys-
temic foundation for IFN learning than the conventional
IFN learning model.

2. In the conventional IFN learning model, the weights am,
denoting the importance of the mth decision variable in
the input, are set on a trial-and-error basis. For compli-
cated problems, the appropriate weights are difficult to
obtain because of a lack of the relevant heuristic knowl-
edge. In due course, the value is commonly initialized
as one for most of the examples. This problem is avoided
by the newly developed learning model. Instead of an
assumed constant, the appropriate weights are deter-
mined through the self-adjustment approach in mathe-
matical optimization. Therefore, the augmented IFN
learning model provides a more solid mathematical foun-
dation for neural network learning.

3. For each training instance, decision variables in the input
are generally selected subjectively by users. As a result,
some trivial decision variables may be adopted in the
input for some complicated examples. Based on the self-
adjustment approach, the importance of a decision vari-
able in an input can be derived systematically. Therefore,
insignificant or redundant decision variables in the input
can be neglected.

4. The results illustrate that the value of the appropriate Rmax

gradually falls with an increase in the number of in-
stances. Consequently, not only is the learning perfor-
mance for training instances enhanced, but also the per-
formance for verification instances is improved. Notably,
a small value of Rmax indicates that a strict similarity
measurement is utilized in the UFN reasoning model and
the possibility that no similar instances can be derived
for any new instance also increases.
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