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Abstract. We investigated the spatial distributions regarding the pathlength, the penetration
depth, and the lateral displacement of 200–2000 eV electrons elastically backscattered from
copper and silver. We calculated these distributions by the Monte Carlo method using elastic
scattering cross sections and inelastic inverse mean free paths for volume and surface
excitations. In our approach, we applied the partial wave expansion method and the finite
difference technique to calculate electron elastic cross sections by the
Hartree–Fock–Winger–Seitz scattering potential for solid atoms. We employed the extended
Drude dielectric function to estimate electron inelastic mean free paths inside the solid and
electron surface excitation parameters outside the solid. Our study was focused on the energy
dependence of the pathlength distribution, the maximum depth distribution and the radial
distribution. We found that both the radial displacement and the maximum depth of
backscattered electrons were on the order of a few angstroms. The maximum depth and the
pathlength distributions obeyed the exponential attenuation form. The ratio of the attenuation
lengths for the pathlength and the maximum depth distributions saturated to a value
somewhat greater than two. Considering the back and forth trajectories of backscattered
electrons, it revealed that most electrons were backscattered from the solid through a single
elastic scattering or a few elastic scatterings. As electron energy decreases, this ratio became
larger, indicating that the probability for smaller scattering angles increases.

1. Introduction

The elastic backscattering of electrons from solid surfaces
plays an important role in many applications [1–7] such as
elastic peak electron spectroscopy (EPES), Auger electron
spectroscopy (AES), scanning electron microscopy (SEM),
reflection electron energy loss spectroscopy (REELS) and
disappearance potential spectroscopy (DAPS), etc. In
the case of EPES, for instance, the intensity and angular
distributions of elastically backscattered electrons contain
information on electron elastic and inelastic interactions with
the solids. These distributions are usually characterized by
the elastic reflection coefficient and the angular distribution
function. Theories are available for the calculation of these
quantities by using the Monte Carlo method [8–12] or the
Boltzmann transport equation [13–15].

In this paper, we investigated the spatial distributions
in the pathlength, the maximum penetration depth and
the radial or lateral displacement of electrons elastically
backscattered from Cu and Ag. These distributions are
important for quantitative analyses of surface spectroscopic
data. For example, one may extract electron inelastic
cross sections from REELS data using the pathlength
distribution function [16, 17]. Calculations of this function

are available by the solution of the transport equation
in different approximations [13, 18–20]. In the so-called
P1-approximation, neither the elastic differential cross
section nor the surface boundary condition was explicitly
employed. In the transport approximation, however, the
elastic differential cross section was replaced by the isotropic
transport cross section. Since elastic interactions cause
angular deflections that alter electron pathlengths, the spatial
distributions of elastically backscattered electrons strongly
depend on the differential elastic scattering cross sections.
Hence, in this work we calculated the spatial distributions by
the Monte Carlo method, based on detailed elastic scattering
cross sections and inelastic mean free paths for volume
and surface excitations. In our approach, we applied the
partial wave expansion method [12] and the finite difference
technique [9] to calculate electron elastic scattering cross
sections using a Hartree–Fock–Winger–Seitz, solid-atom
potential [21]. The dielectric response function [22] was
employed to estimate electron inelastic mean free paths
inside the solid and surface excitation parameters [23, 24]
near the surface. Our study was focused on the energy
dependence of the pathlength distribution, the maximum
depth distribution and the radial distribution of electrons
elastically backscattered from Cu and Ag. We found that
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most electrons were backscattered from the solid through a
single elastic scattering or a few elastic scatterings. The radial
displacement of backscattered electrons from their impinging
point on the surface was quite short, on the order of a few
angstroms. Both the maximum depth and the pathlength
distributions obeyed the exponential attenuation form. For an
electron of energy greater than 500 eV in Ag, the attenuation
length for pathlength distribution was about 2.4 times the
attenuation length for maximum depth distribution. As the
electron energy decreases, the ratio of the attenuation lengths
between these two distributions became larger, indicating that
the probability for smaller scattering angles was increasing.

2. Theory

2.1. Stochastic interaction processes

Electrons impinging on a solid cause elastic and inelastic
interactions as they travel across the surface and inside
the solid. Elastic scatterings lead to angular deflections
that alter the directions of electron movements. Inelastic
interactions, on the other hand, are responsible for the
energy lost by electrons. Monte Carlo simulations of
elastically backscattered electrons trace electrons from their
impinging point on the surface to the emerging point by
recording electron trajectories. Each trajectory consists of a
linear pathlength between two successive elastic scatterings.
An inelastic interaction causing energy loss makes no
contribution to the elastically backscattered electrons. Since
the occurrence of elastic scatterings obeys the Poisson
stochastic process, the probability distribution function of
a pathlength,s, follows the exponential form [25]

P(s) = 1

λe
exp

(
− s
λe

)
. (1)

Here the elastic mean free path of electrons is determined by

λe = (Nσe)−1 (2)

whereN is the atomic density of the solid. The total elastic
cross section is calculated by

σe =
∫

dσe
d�

d� (3)

where dσe/d� is the differential elastic cross section and
d� = sinθ dθ dφ is the differential solid scattering angle.
Due to the cylindrical symmetry of the scattering, the elastic
scattering follows a uniform distribution about the azimuthal
angle,φ. The polar angle,θ , is determined by the probability
density function as

P(θ) = 2π sinθ

σe

dσe
d�

. (4)

The tracking of electrons continues until either they leave
the solid or their trajectory paths become so large that the
contribution to the elastically backscattered intensity can be
neglected. The contribution to the elastically backscattered
intensity from thej th electron trajectory is given by

1Ij =


e−Ps(αIj ) e−Ps(αRj ) e−sj /λi

for backscattered electrons within

pre-selected acceptance angles

0 otherwise

(5)

wheresj is the pathlength of thej th electron trajectory,Ps is
the probability of surface excitations as the electron crosses
the vacuum–solid interface,λi is the electron inelastic mean
free path, andαIj andαRj are, respectively, the incident and
reflected angles between the electron velocity and the surface
normal for incident and backscattered electrons. The factors
exp[−Ps(αIj )] and exp[−Ps(αRj )] are the probabilities
that incident and backscattered electrons travel across the
surface without surface excitations, respectively. The factor
exp(−sj /λi) is the probability that the electron travels a
pathlengthsj inside the solid without inelastic interactions.

2.2. Elastic and inelastic differential cross sections

The accuracy of Monte Carlo simulations depends on the
differential interaction cross sections. The input data in
the Monte Carlo simulations include differential elastic
cross sections, inelastic inverse mean free paths and surface
excitation probabilities. Previously we have developed
models [9–11, 23, 24] for the calculations of these quantities.
The differential elastic cross section is given in the partial
wave expansion method as

dσe
d�
= 1

8π

∣∣∣∣ ∞∑
`=0

(2` + 1)(e2iδ` − 1)P`(cosθ)

∣∣∣∣2 (6)

where δ` is the phase shift of thèth partial wave,P` is
the Lengendre polynomial of degree` and` is the orbital
angular momentum quantum number. For the determination
of phase shifts, the finite difference technique is applied
in the solution of the radial Schrödinger equation. Here
the Hartree–Fock–Wigner–Seitz scattering potential for solid
atoms is employed.

Considering a semi-infinite solid atz < 0, the
differential inelastic inverse mean free path depends on
whether the electron is moving from vacuum to solid,v→ s,
or from solid to vacuum,s → v. For normally incident and
escaping electrons of velocityv and energyE = v2/2, the
differential inelastic inverse mean free pathsµs→vi (E, ω, z)

andµv→si (E, ω, z) are given by [23, 24]

µs→vi (E, ω, z) = 1

π2v

∫
d2Q

v

ω2 + (vQ)2

×
{

2 Im

( −1

ε + 1

)
e−Q|z|

[
2 cos

(
ωz

v

)
− e−Q|z|

]
2(z)

+

[
2 Im

( −1

ε + 1

)
e−2Q|z| + Im

(−1

ε

)
(1− e−2Q|z|)

]
×2(−z)

}
(7)

and

µv→si (E, ω, z) = 1

π2v

∫
d2Q

v

ω2 + (vQ)2

×
{

2 Im

( −1

ε + 1

)
e−2Q|z|2(z) +

{
2 Im

( −1

ε + 1

)
e−Q|z|

×
[
2 cos

(
ωz

v

)
− e−Q|z|

]
+ Im

(−1

ε

)
×
[
1 + e−2Q|z| − 2e−Q|z| cos

(
ωz

v

)]}
2(−z)

}
(8)
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where2 is the step function,ω is the energy transfer,
Eq = ( EQ, qz) is the momentum transfer, the upper and lower
limits of integration areQ+ = [q2

+ − (ω/v)2]1/2 andQ− =
[q2
− − (ω/v)2]1/2 andq± =

√
2E ±√2(E − ω). Note that

those terms involving Im[−1/(ε + 1)] are the contributions
from surface excitations; whereas those containing Im(−1/ε)
are from volume excitations.

The corresponding inelastic inverse mean free paths of
electrons are given by

µs→vi (E, z) =
∫ E

0
µs→vi (E, ω, z)dω (9)

and

µv→si (E, z) =
∫ E

0
µv→si (E, ω, z)dω. (10)

Equations (9) and (10) indicate that the inelastic inverse
mean free path depends on the depth,z, of electron inside
the solid. When an electron travels near the surface inside
the solid, surface excitations dominate the contribution to
the inelastic inverse mean free path. On the other hand,
volume excitations dominate this contribution as an electron
moves deep inside the solid. The total, surface and volume,
inelastic inverse mean free paths are, however, roughly depth
independent due to the approximate compensation of volume
and surface excitations. As an electron travels outside the
solid, but near the surface, the inelastic inverse mean free
path is completely contributed to by surface excitations. To
characterize the probability of surface excitations outside the
solid, it is general to use the surface excitation parameter
defined by [24]

P s→vs (E) =
∫ ∞

0
dz
∫ E

0
µs→v(E, ω, z)dω (11)

for an electron moving from solid to vacuum and

P v→ss (E) =
∫ ∞

0
dz
∫ E

0
µv→s(E, ω, z)dω (12)

for electron moving from vacuum to solid. Note that
the dependence of the surface excitation parameter on the
incident and escaping electrons follows the approximate
relations

P s→vs (E) or P v→ss (E) = aE−b (13)

where a and b are fitting parameters. For the surface
excitation parameters of obliquely incident and escaping
electrons, one may multiply the surface excitation parameters
of normally incident and escaping electrons by(cosα)−1,
whereα is the angle between the electron velocity and the
surface normal.

3. Results and discussion

The Monte Carlo algorithm described above was applied for
the simulation of electrons with energies between 200 and
2000 eV elastically backscattered from Cu and Ag. Figure 1
illustrates this simulation by showing the total pathlength
R, the maximum depthz and the radial displacementr
of simulated electrons. The total pathlength is the sum

Figure 1. A schematic diagram for electrons elastically
backscattered from solid surfaces. The radial displacement,r, the
maximum depth,z, and the total pathlength,R = R1 +R2 +R3,
are displayed.

Figure 2. A plot of the differential elastic cross sections (in
atomic units) as a function of the scattering angle for electrons of
various energies in Ag. The elastic scattering potential was
derived from a Hartree–Fock–Wigner–Seitz electron density
distribution [21] for solid atoms.

Figure 3. A plot of the inelastic inverse mean free paths for an
800 eV electron normally incident into (vacuum to solid) and
escaping from (solid to vacuum) Cu. The inelastic inverse mean
free path extends to more than 10 Å outside the solid (z > 0) due
to surface excitations. Both surface and volume excitations
contribute to the inelastic inverse mean free path inside the solid
(z < 0).

of all of the individual pathlengths inside the solid, i.e.
R = R1+R2+R3+· · ·. Figure 2 shows the differential elastic
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Figure 4. A comparison of the spatially non-varying electron
inelastic mean free paths in Cu and Ag as a function of the electron
energy calculated in the present work (full curves) and by Tanuma
et al [26] (broken curves). The calculations of Tanumaet al
applied the Lindhard dielectric function for free-electron gases.
Our calculations made use of a modified Drude dielectric function
[22] that allowed band structures of the energy loss function.

Figure 5. A projection view of the Monte Carlo simulation results
for 400 eV electrons elastically backscattered from Cu at normal
incidence. The abscissa and ordinate are, respectively, the radial
displacement and the penetration depth of the backscattered
electrons.

cross sections calculated using the partial wave expansion
method and the finite difference technique as a function of
scattering angle for electrons of 200, 800 and 1500 eV in Ag.
Note that the elastic scattering potential was derived from
a Hartree–Fock–Wigner–Seitz electron density distribution.
The fluctuation of the curves in this figure is due to the
screening of the nuclear charge by shell-wise electrons in
the solid atom. Based on the extended Drude-type dielectric
function [22], we calculated electron inelastic mean free paths
using equations (7)–(10). Figure 3 shows the inelastic inverse
mean free path for an 800 eV electron normally incident into
or escaping from Cu. It is seen that the inelastic inverse mean
free path extends to a region more than 10 Å outside the

Figure 6. The differential (left ordinate) and the accumulated
(right ordinate) distributions for the radial displacement of 800 and
1500 eV electrons elastically backscattered from Ag at normal
incidence.

solid due to surface excitations. Inside the solid the surface
effect is, however, compensated by volume excitations, in
that the inelastic (surface and volume) mean free path quickly
saturates within a few angstroms from the surface. Therefore,
a spatially non-varying electron inelastic mean free path holds
approximately true inside the solid. Figure 4 is a comparison
of such a spatially non-varying electron inelastic mean free
path in Cu and Ag as a function of the electron energy
calculated presently (full curves) and by Tanumaet al [26]
(broken curves). The calculations of Tanumaet al applied
the Lindhard dielectric function for free-electron gases with
experimental optical data. Our calculations made use of an
extended Drude dielectric function that allowed the band
structures of the energy loss function. The present results
show that electron inelastic mean free path in Ag is a little
larger than that in Cu for electron energies greater than
1000 eV. Although this circumstance is consistent with the
calculations of the electron gas statistical model [27], it is
reversed from those given by Tanumaet al. The difference
between the results of the present work and Tanumaet al for
both Cu and Ag is not excessive in view of the uncertainties
in the different dielectric functions and optical data used
in these two approaches. The surface excitation parameter
determined using (11) and (12) was given in Kweiet al [24].

The Monte Carlo simulation of elastically backscattered
electrons provides the possibility for an insight view of
electron trajectories inside the solid. From this view, the
radial distance, maximum depth and pathlength distributions
can be investigated. Figure 5 is a projection view of
Monte Carlo results on the trajectories of 400 eV electrons
elastically backscattered from Cu at normal incidence. One
sees that most backscattered electrons interact with the solid
through a single elastic scattering. The radial distribution
functions plotted in figure 6 are for 800 and 1500 eV electrons
backscattered from Ag at normal incidence. It shows that
most electrons are backscattered from the surface with small
radial displacement from the incident beam. It also shows that
the distribution at a small radial displacement is enhanced
as the electron energy decreases. The accumulated radial
distribution function plotted in this figure (using the right-
hand side ordinate scale) indicates that nearly 95% of the
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Figure 7. The maximum depth distributions for 400, 800 and
1500 eV electrons elastically backscattered from Cu and Ag at
normal incidence. A semi-logarithmic plot is made to indicate the
exponential dependence of the distribution on the maximum
penetration depth.

Figure 8. A semi-logarithmic plot of the pathlength (upper
abscissa) distributions for 400, 800 and 1500 eV electrons
elastically backscattered from Cu at normal incidence. For
comparison, corresponding maximum depth (lower abscissa)
distributions are also plotted. Note that the scale for the pathlength
is twice that for the maximum depth to account for the back and
forth trajectories of backscattered electrons.

800 eV electrons are backscattered with radial displacement
less than 10 Å.

Figure 7 shows the distribution of the maximum
penetration depth for elastically backscattered electrons of
400, 800 and 1500 eV in Cu and Ag at normal incidence.
The straight lines in this semi-logarithmic plot reveal that the
maximum depth distribution obeys an exponential form, i.e.

f (z) ∝ exp(−z/LD) (14)

Figure 9. The attenuation length for the pathlength distribution,
LR, the attenuation length for the maximum depth distribution,
LD, and their ratio,LR/LD, of electrons elastically backscattered
from Ag. The full curves are the results of the present calculations.
The broken curve is the attenuation length for the pathlength
distribution calculated using (16) of the P1-approximation.

whereLD is the attenuation length for the maximum depth
distribution. Note that this length increases with increasing
electron energy.

The pathlength distribution functions calculated for the
400, 800 and 1500 eV electrons elastically backscattered
from Cu at normal incidence are plotted in figure 8. It is
seen that this function also follows an exponential form, i.e.

f (R) ∝ exp(−R/LR) (15)

where LR is the attenuation length for the pathlength
distribution. To explore the relationship between pathlength
and maximum depth, we plot in this figure the corresponding
maximum depth distribution. Note that the scale for the
pathlength (upper abscissa) is twice that for the maximum
depth (lower abscissa) to account for the back and forth
trajectories of the backscattered electrons. If the electrons
were backscattered through a single elastic scattering with
180◦ scattering angle thenR = 2z. For a single elastic
scattering with other scattering angles thenR > 2z. For
electrons backscattered through multiple elastic scatterings,
R − 2z further increases and spreads out. Since the
pathlength distribution is a composite distribution in both
radial displacement and maximum depth, it is evident from
figure 8 that the pathlength distribution is broader than the
maximum depth distribution. The pathlength and maximum
depth distributions become even broader as the electron
energy increases, indicating that multiple scatterings are
more probable.

Figure 9 shows a plot of the energy dependence of
the attenuation lengths for the pathlength distribution,LR,
and for the maximum depth distribution,LD, of electrons
elastically backscattered from Ag. Both attenuation lengths
increase linearly with electron energy. These attenuation
lengths can be determined either from the slopes of the
straight lines in figure 8 or from Monte Carlo calculations of
the mean pathlength or mean maximum depth. We found that
the attenuation lengths determined by both methods agree
with each other quite well. Also shown in this figure is the
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ratio of the attenuation length for the pathlength distribution
to that for the maximum depth distribution. This ratio seems
relatively energy independent for an electron energy greater
than∼500 eV. As the electron energy decreases, this ratio
becomes larger, indicating that the probability for smaller
scattering angles is increasing.

Previously, Tofterup [13] made use of the Boltzmann
equation and the P1-approximation to derive the pathlength
distribution for electrons in REELS. They found that this
distribution was approximately∝ e−R/L, whereL ≈ 2λt
is the characteristic length andλt is the transport elastic
mean free path. According to the Poisson stochastic process,
the pathlength distribution of elastically backscattered
electrons is therefore∝ exp(−R/λi) exp(−R/L). Thus the
attenuation length for the pathlength distribution is given by

LR = 2λtλi
2λt + λi

. (16)

As an example, figure 9 shows a comparison of the
attenuation length for the pathlength distribution in
Ag determined from the slope of this distribution in
semi-logarithmic plot (full curves) and calculated from
equation (16) (broken curve). Good agreement is observed.

4. Conclusion

In this work, we investigated the spatial distributions
for the pathlength, the penetration depth and the radial
displacement of electrons with energies between 200 and
2000 eV elastically backscattered from copper and silver.
Monte Carlo simulations were performed using electron
elastic and inelastic interaction cross sections from model
calculations. We found that the radial displacement and
the maximum depth of backscattered electrons were of the
order of a few angstroms. The maximum depth and the
pathlength distributions obeyed the exponential attenuation
formula. The characteristic attenuation lengths depended on
the material and electron energy. The ratio of the attenuation
length for the pathlength distribution to that for the maximum
depth distribution approached a value somewhat greater than
two. This revealed that most electrons were backscattered
from the solid through a single elastic scattering or multiple
elastic scatterings.

Although experimental data on the spatial distributions
are not available, we compared [9, 10] our results of Monte
Carlo simulations on the reflection coefficient and the angular
distribution function of elastically backscattered electrons

with experimental data. The close agreement between
our results and experimental data indicated the validity of
present models and the accuracy of the spatial distributions
of elastically backscattered electrons.
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