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Abstract

A new algorithm is developed for computing any entry of the inverse of a 5-band Toeplitz matrix. After a linear-time
overhead, each entry can be computed in constant time. As an application of this algorithm, we present a way to compute
the generalized cross validated smoothing spline in linear time for the equally spaced data case. c© 1999 Elsevier Science
B.V. All rights reserved
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1. Introduction

A Toeplitz matrix is a matrix whose entries are constant along each diagonal. A band matrix is a matrix
whose nonzero entries are all fairly near the main diagonal. These two types of matrices arise in many
applications. The formal de�nitions (from Golub and Van Loan, 1989) of these two terms are given in the
following.

De�nition 1. The n × n matrix A = (aij) is Toeplitz if there exist scalars r−n+1; : : : ; r0; : : : ; rn−1 such that
aij = rj−i for all i and j.

De�nition 2. The n×n matrix A=(aij) is a band matrix with upper bandwidth q if aij=0 whenever j¿ i+q
and lower bandwidth p if aij = 0 whenever i¿ j + p.
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Because of the special structures of these two types of matrices, substantial economics can be realized in
many matrix computations, such as inversion or solving linear system Ax=b, where x and b are n×1 vector.
For more information, see Golub and Van Loan (1989) and Dongarra et al. (1979).
In this paper, we consider the problem of inverting a 5-band Toeplitz matrix, which is of the form




r0 r1 r2 0 · · · · ·
r1 r0 r1 r2 0 · · · ·
r2 r1 r0 r1 r2 0 · · ·
0 r2 r1 r0 r1 r2 0 · ·
· · · · · · · · ·
· · 0 r2 r1 r0 r1 r2 0

· · · 0 r2 r1 r0 r1 r2
· · · · 0 r2 r1 r0 r1
· · · · · 0 r2 r1 r0




: (1)

The most common way of inverting band matrices could be:
1. First perform triangular factorization of matrices, say, LU decomposition, Cholesky factorization, etc.
2. Solve iteratively the triangular systems. e.g., �rst solve Lyi=ei, for i=1; : : : ; n; where ei is the ith column

vector of the identity matrix; and then solve Uxi = yi, for i = 1; : : : ; n: Then xi is the ith column of A−1.
The triangular factorizations used in step 1 are e�cient and require only O(n) operations due to the

band structure the matrix A. Furthermore, the resulting triangular matrices are also banded and of the same
bandwidths as that of A. Solving each triangular system in step 2 takes also O(n) operations. Therefore, the
whole matrix inversion takes O(n2) operations.
For Toeplitz matrices, one of the nice properties of a symmetric positive-de�nite Toeplitz matrix is that its

complete inverse can be calculated in O(n2) operations (Golub and Van Loan, 1989, p. 188). We will not
explore how it is done further.
In this paper, we develop a new algorithm that can compute the inverse of the 5-band Toeplitz matrix (1)

in O(n2) operations. This feature is no better than — but at least as good as — the two above-mentioned
methods. However, one feature that the other two methods do not have is the ability that this new algorithm
can compute the inverse entry by entry. After a liner-time overhead has been performed, computing each
entry only requires constant time. This feature makes this algorithm valuable when there are only a small
number of the entries of the inverse needed. One application of this algorithm is demonstrated in this paper.
By applying this algorithm, we are able to develop a way to compute the generalized cross validated (GCV)
smoothing spline in linear time for the equally spaced data case.
This paper is organized as follows. In Section 2, we present the new algorithm. In Section 3, we review

smoothing splines and demonstrate how this algorithm is used in computing spline estimates. We conclude
the paper by a brief summary in Section 4.

2. The new algorithm

This algorithm is derived by brute force. Recall that the (j; i)th entry of A−1 can be computed as the
ratio of the cofactor of the element Aij (de�ned as the product of (−1)i+j and the determinant of the matrix
obtained from A by deleting the ith row and jth column) and the determinant of A. Utilizing the band pattern
of the matrix A, we are able to compute any entry of A−1 e�ciently by the following algorithm.
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Let Ak be the k × k symmetric 5-band matrix of the same form as A. Also de�ne Ã
k
to be the k × k

matrices obtained by removing the last row and the kth column of Ak+1. Let Ak(j) be the (k − 1)× (k − 1)
matrix obtained by removing the �rst row and the jth column of Ak . Denote �k , �̃k ; and �k;j the determinants

of matrices Ak , Ã
k
, and Ak(j), respectively. We also need to compute �k , the determinant of the k × k matrix

Fk(=Ak+1(k + 1)) obtained by deleting the �rst row and the last column of the matrix Ak+1.

Algorithm (Computing any entry of the inverse of An).
1. Recursively compute {�k ; k = 1; 2; : : : ; n} and {�̃k ; k = 1; 2; : : : ; n− 1} as follows:

�k = r0�k−1 − r1�̃k−1 + r2r1�̃k−2 − r0r22�k−3 + r42�k−4;
�̃k = r1�k−1 − r1r2�k−2 + r22 �̃k−2

with initial conditions
�−3 = �−2 = �−1 = 0; �0 = 1;

�̃−1 = �̃0 = 0:

2. Recursively compute {�k ; k = 1; 2; : : : ; n− 1} by
�k = r1�k−1 − r2r0�k−2 + r22r1�k−3 − r42�k−4

with initial conditions �−3 = �−2 = �−1 = 0; �0 = 1:
3. To compute (j; i)th entry of (An)−1 for j¿i, we �rst compute the cofactor of the element Anij, CofA

n
ij,

as

Cof Anii = �i−1�n−i − r22�i−2�n−i−1 for 16i6n;

Cof Anij = (−1)i+j{�i−1�n−i+1; j−i+1 − r2�̃i−1�n−i; j−i + r32�i−2�n−i−1; j−i−1} for 16i¡ j6n;

where �k;j = �j−1�k−j − r2�j−2�̃k−j + r32�j−3�k−j−1 for 16j6k6n:
4. Then (An)−1ji = (Cof A

n
ij)=�n.

We remark that the correctness of this algorithm was veri�ed by a computer program.
The complexity of this algorithm is easily seen to be O(n) in steps 1 and 2, and computing one entry in

step 3 is O(1). Therefore, if we want to get the inverse of A, the best we can do from this algorithm is
O(n2); since the inverse of a band matrix is in general a full matrix. However, in some applications, we may
need only some entries of A−1: In Section 3, we will give an example that only a multiple of n entries of
A−1 are needed in the computation.

3. An application

In this section, we give an example that can utilize the nice feature of the algorithm mentioned in Section 2
to achieve computational e�ciency. We show that the smoothing spline estimate, when the smoothing pa-
rameter is chosen by the generalized cross validation method (described below), can be computed in O(n)
operations for equally spaced data.

3.1. Smoothing splines

Given noisy data {yi ; i = 1; 2; : : : ; n} observed from an unknown function g at {ti ; i = 1; 2; : : : ; n} in the
interval [0,1], we consider the following nonparametric regression model:

yi = g(ti) + �i for i = 1; 2; : : : ; n;

where �′is are uncorrelated errors with mean zero and common variance �
2:
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The smoothing spline estimate g� is the minimizer of the following variational problem:

min
f∈H

1
n

n∑
i= 1

(yi − f(ti))2 + �
∫ 1

0
(f(m)(t))2 dt; (2)

where H is the Sobolev space Wm
2 ={f|f(�) are absolutely continuous for �=1; 2; : : : ; m−1 and f(m) ∈L2[0; 1]}.

The smoothing parameter � controls the trade-o� between “closeness” to the data as measured by the �rst term
and “roughness” of the solution measured by the second term. The estimate g� of g can be shown (Wahba,
1990) to be

g� =
n∑
i= 1

ci�i +
m∑
j= 1

dj�j ;

where the c′is and d
′
js are real numbers, and

�i(t) =
∫ 1

0

(t − u)m−1+ (ti − u)m−1+

((m− 1)!)2 du for i = 1; 2; : : : ; n;

�j(t) =
t j−1

(j − 1)! for j = 1; 2; : : : ; m (3)

with (x)+ = max(x; 0).
Let � be the n×n matrix with (i; j)th entry �j(ti) and T be the n×m matrix with (i; j)th entry �j(ti): Note

that the polynomial basis {�j} are in the null space of the smoothing penalty functional J (f)=
∫ 1
0 (f

(m)(t))2 dt.
Letting c=(c1; c2; : : : ; cn)t ; d=(d1; d2; : : : ; dm)t, and y=(y1; y2; : : : ; yn)t, (2) then can be shown to be equivalent
to

min
c; d

1
n
‖y− (�c + Td)‖2 + �ct�c;

which is equivalent to solving the following linear system of equations:

(�+ n�I)c = y− Td;
T tc = 0:

(4)

Let M = �+ n�I: Then the solution of (4) can be expressed explicitly by

d = (T tM−1T )−1T tM−1y;

c =M−1(I − T (T tM−1T )−1T tM−1y):
(5)

Further, it can be shown that the solution is unique provided that T is of full column rank. See, for example,
Wahba (1990).
Denote +� = (g�(t1); g�(t2); : : : ; g�(tn))t : From (5), it can be easily shown that +� is a linear estimate since

it can be expressed by

+� = A(�)y;
where the in
uence matrix (or “hat matrix”)

A(�) = �M−1(I − T (T tM−1T )−1T tM−1) + T (T tM−1T )−1T tM−1:
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3.2. Special structure of �

Shiau (1998) showed that the matrix � can be transformed into a symmetric (2m − 1)-band matrix. To
describe the transformation, we �rst de�ne an (n − m) × n matrix � that can transform the vector + =
(g(t1); g(t2); : : : ; g(tn))t to an (n − m)-vector corresponding to the second divided di�erence of g. Here we
adopt the de�nition and the notation used in de Boor (1978).
Denote the mth divided di�erence of a function g at points ti ; ti+1; : : : ; ti+m by [ti ; : : : ; ti+m]g. Assume that

t′i s are all distinct and ti ¡ tj for i¡ j. We remark that the problem of repeated observations can be resolved
by averaging repeated observations and assigning appropriate weights to data points. Let � be the (n−m)×n
with (i; j)th entry

(�)ij =




i+m∏
k = i; k 6=j

(tj − tk)−1 for i6j6i + m;

0 otherwise:

(6)

Note that � is an upper triangular matrix of upper bandwidth q= m. Then

�




g(t1)

g(t2)

·
·

g(tn)



=




[t1; : : : ; t1+m]g

[t2; : : : ; t2+m]g

·
·

[tn−m; : : : ; tn]g



:

For example, letting m= 2, n= 5; and ti = i=5, we have, from (6),

�=
52

2



1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1


 :

Having de�ned �; we now quote a proposition given in Shiau (1998).

Proposition 1 (Shiau, 1998). ���t is a symmetric (2m− 1)-band matrix.

3.3. Generalized cross validation

It is also well known that the choice of the smoothing parameter is crucial to spline estimates as well as
to that in any smoothing techniques. There are many ways of choosing �. One of the most popular ones is
the GCV method proposed by Craven and Wahba (1979). They proposed to estimate � by the minimizer of
the following GCV function:

V (�) =
n‖(I − A(�))y‖2
(tr(I − A(�)))2 : (7)

The GCV method has been proven to provide a nice estimate of � theoretically and numerically. For the
theoretical results on the e�ciency of GCV estimate of �, see Craven and Wahba (1979), Speckman (1982),
and Li (1985, 1986).
Numerous algorithms are available for computing smoothing splines. Reinsch’s algorithm (Reinsch, 1967)

is an O(n) algorithm for computing the spline estimate g� for �xed �. The di�culty of computing the GCV
function de�ned in (7) lies on the computation of the trace in the denominator.
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Utreras (1980) proposed an approximation to the trace of A(�) in the case of equally spaced data. This
approximation requires O(n) operations for its calculation, so the GCV function can be computed cheaply.
Utreras (1981) considered the case of not necessarily equally spaced data and obtained an approximation
that has an initial overhead of �nding the lowest n eigenvalues of a 2n × 2n band matrix of bandwidth
5 (for m = 2) that requires O(n2) operations. Based on the special structure of cubic splines, Silverman
(1984) modi�ed Utreras’ approximation and developed a linear-time procedure called “Asymptotic Generalized
Cross-Validation” to obtain the smoothing parameter. Girard (1989) and Hutchinson (1989) proposed Monte
Carlo approximations for the trace of I−A(�). More recently, this Monte Carlo approach has been popularized
by Wahba and her collaborators. In this approach, the GCV function (7) is replaced by a randomized GCV
function de�ned by

ran V (�) =
n‖(I − A(�))y‖2
(�t(I − A(�))�)2 ;

where �, an n× 1 random vector, is normally distributed with mean 0 and covariance matrix I . See Wahba
et al. (1995) and Gong et al. (1998) for some successful examples using this randomized GCV method. Note
that these fast algorithms involve some kind of approximation. They either truncate some smaller eigenvalues,
or approximate the trace of A(�); or both.
Based on Reinsch’s algorithm, Hutchinson and de Hoog (1985) developed a linear time procedure to

compute the GCV smoothing spline in the general, not necessarily equally spaced or uniformly weighted
case. They provided a method for computing the trace of A(�); which requires just order m2n operations.
O’Sullivan (1985) proposed a simple algorithm to compute the trace of A(�); which requires O(n) operations
after an overhead of performing a Cholesky decomposition of a band matrix. Hutchinson and de Hoog (1985)
and O’Sullivan (1985) appeared to be the �rst to provide “exact” linear time algorithms for computing GCV
smoothing splines. We note that their approach, although completely di�erent from ours, is actually based on
a very similar structure.
We develop another linear time algorithm in the next subsection with no intention to compete with the

above mentioned algorithms, but simply as an illustrative example on potential usefulness of the algorithm
proposed in Section 2. We believe there are many other potential applications.

3.4. E�cient algorithms for smoothing splines

Let p(t) be any polynomial of degree less than or equal to m − 1 and p = (p(t1); p(t2); : : : ; p(tn))t : One
well-known property of the divided di�erence is that �p= 0. Thus, �T = 0; by the de�nition of T and (3).
Since �T = 0 and T tc = 0; by the assumption that T is of rank m, we can express c uniquely as �t
, for

some (n − m)-vector 
. Multiplying both sides of the �rst equation in (4) by � and plugging c by �t
; the
system of equations (4) can be simpli�ed into

�(�+ n�I)�t
 = �y; (8)

since �T = 0: Let W = ���t + n���t . Then (8) becomes

W 
 = �y: (9)

First note that �y can be computed in O(n) operations by the band structure of �. Further, by Proposition 1
and the fact that ��t is a (2m + 1)-band matrix, W is a symmetric (2m + 1)-band matrix. Thus, 
 can be
solved in linear time by the method similar to the one described in Section 1 for band matrices. The solution
of (4) becomes

c = �t
;

d = (T tT )−1T t(y− �c):
(10)



J.-J. Horng Shiau / Statistics & Probability Letters 45 (1999) 317–324 323

Then it is easy to see that c can be computed in linear time since �t is a (m+ 1)-band matrix. However, if
d is computed by (10), then it needs O(n2) operations since computing �c takes O(n2) operations. Instead,
by (4), we can consider solving the following the system of equations:

Td = y− �c − n�c: (11)

At the �rst glance, it seems that the computation will take O(n2) operations since it also involves computing
�c: Fortunately, by noting that d , the unknown vector to solve, has only m entries, and there are n equations
in system (11), it is found that we only need m equations, say, the �rst m equations, to solve for d . Then,
we only need the �rst m rows of �c; and each row takes O(n) operations to compute. In this way, d can be
obtained in linear time.
Now, for computing the GCV function V (�); observe that, by (4) and (9), we have

(I − A(�))y= y− �c − Td = n�c = n��t
=n��tW−1�y:

Thus, I − A(�) and V (�) can be simpli�ed, respectively, into
I − A(�) = n��tW−1�

and

V (�) =
n‖c‖2

(tr(�tW−1�))2
:

For equally spaced data, W has the same pattern as that of the An matrix described in the previous section.
Since tr(�tW−1�)= tr(W−1��t), we actually only need to compute the central (2m+1) bands of W−1 since
only the central (2m+ 1) bands of ��t are nonzero. Thus, V (�) can be computed in O(n) operations.
For unequally spaced data, the matrix W , which is banded, but unfortunately is not a Toeplitz matrix. Note

that it is still true that only the central (2m + 1) bands of W−1 are needed in this case. Hutchinson and de
Hoog (1985) provided a linear-time algorithm for computing the central (2m + 1) bands of the inverse of
band matrices like W: Therefore, by using their algorithm to compute the central (2m+1) bands of W−1, we
can still have a linear-time algorithm for unequally spaced data. However, this is not an application of the
algorithm described in Section 2.
For the partial spline models discussed in Chapter 6 of Wahba (1990), this algorithm can be generalized

with some modi�cations since the di�erence between the ordinary smoothing spline and the partial spline is the
matrix T . The modi�cations are needed because we no longer have the property that �T =0; since in partial
splines the T matrix has extra columns for the parametric component in the partial spline model that cannot
be annihilated by the divided di�erence matrix �. For some cases that �T is sparse, the same e�ciency can
be obtained. Shiau (1998) discussed in details how this can be done for computing GCV smoothing splines
for estimating functions with discontinuities, a problem can be modeled by a partial spline model. In this
particular model, the augmented columns of T are piecewise polynomials of degree less than m, hence �T is
very sparse. However, the W matrix is not a Toeplitz matrix; it has a few irregular entries. So the algorithms
developed in this paper for the ordinary smoothing splines cannot be directly applied to that application. With
some modi�cations, Shiau (1998) provided a linear-time algorithm for equally spaced data and a quadratic
time algorithm for unequally spaced data for computing GCV spline solutions to this particular problem.

4. Summary

In this paper, we have developed a new algorithm that can compute the inverse of a 5-band Toeplitz matrix.
This algorithm has a new feature that other e�cient algorithms do not have – it can compute individual entries
of the inverse e�ciently. After a linear-time overhead has been performed, each entry of the inverse can be
computed in constant time. Therefore, this algorithm may provide computational e�ciency when the number
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of the entries of the inverse needed is small compared to n2. This may happen when some of the matrices
or vectors in the matrix computation are sparse. We have demonstrated in the paper that the GCV smoothing
spline computation is one example of such instances.
Five-band Toeplitz matrices arise in many applications. It is very likely that this new algorithm will �nd

itself useful in many other applications.
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