
*Corresponding author. Tel.: 886-3-573-1667; fax: 886-3-571-5998.
E-mail address: pclo@cc.nctu.edu.tw (P.-C. Lo)

Signal Processing 79 (1999) 251}259

Real-time implementation of the moving FFT algorithm

Pei-Chen Lo*, Yu-Yun Lee

Department of Electrical and Control Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan, ROC

Received 11 February 1999; received in revised form 29 June 1999

Abstract

An integrated algorithm for analyzing the real-time, running Fourier spectra is presented. When applying to the
real-time analysis, the computational e$ciency and synchronization ability are highly improved by integrating the
recursive procedure with the real-time implementation strategy. Given the FFT (frame) size N"2r and moving size
M"2p, the algorithm implements the recursive procedure for updating the succeeding decomposed (into size N/M)
DFTs at the (r!p)th stage, and thereafter constructs the sr-FFT (split-radix fast-Fourier-transform) butter#y modules in
a real-time way. The recursive procedure highly reduces the number of complex arithmetic operations when the moving
size M is small. The real-time implementation scheme enables the running spectral analysis to better synchronize with the
data acquisition process. The computational complexity of the integrated algorithm is analyzed in detail, which shows
the dependence of the number of complex arithmetic operations on the ratio N/M. The experimental result tested on
Pentium 66 agrees with the analysis. (1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Es wird ein integrierter Algorithmus zur Echtzeit-Analyse eines laufenden Fourier-Spektrums praK sentiert. Bei der
Anwendung auf die Echtzeit-Analyse werden die rechnerische E$zienz und die SynchronisationsfaK higkeit durch
Integration der rekursiven Prozedur mit der Echtzeit-Implementierungsstrategie stark verbessert. FuK r eine gegebene
FFT- (Rahmen-) LaK nge N"2r und Schrittweite M"2p implementiert der Algorithmus die rekursive Prozedur zur
Aktualisierung der nachfolgenden zerlegten DFTs der LaK nge N/M in der (r!p)-ten Stufe und konstruiert danach die
sr-FFt (split-radix fast Fourier transform) Butter#y-Module in echtzeitkompatibler Weise. Bei kleiner Schrittweite
M bewirkt die rekursive Prozedur eine starke Reduktion der Anzahl komplexer arithmetischer Operationen. Das
Echtzeit-Implementierungsverfahren erlaubt eine bessere Synchronisation der laufenden Spektralanalyse mit dem
Datenerfassungsproze{. Eine detaillierte Analyse der rechnerischen KomplexitaK t des integrierten Algorithmus zeigt,
da{ die Anzahl der komplexen arithmetischen Operationen vom VerhaK ltnis N/M abhaK ngt. Das mit einem Pentium 66
erhaltene experimentielle Ergebnis bestaK tigt die Analyse. (1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous preH sentons un algorithme inteH greH pour l'analyse en temps reH el de spectres de Fourier glissants. Lors de
l'application de l'analyse en temps reH el, l'e$caciteH du calcul et la capaciteH de synchronisation sont grandement ameH lioreH es
en inteH grant la proceH dure reH cursive à la strateH gie d'implantation en temps reH el. Pour une taille N"2r de FFT (trame)

0165-1684/99/$ - see front matter (1999 Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 5 - 1 6 8 4 (9 9) 0 0 0 9 8 - 5

et un glissement M"2p, l'algorithme implante la proceH dure reH cursive de mise à jour des DFT suivantes deH composeH es (de
taille N/M) à la (r!p)ième eH tape, et construit ensuite les modules tampons des papillons de la sr-FFT (transformation de
Fourier rapide de type split-radix) en temps reH el. Cette proceH dure reH cursive reH duit grandement le nombre d'opeH rations
arithmeH tiques complexes lorsque la taille M du glissement est petite. Cette approche d'implantation en temps reH el permet
que l'analyse spectrale glissante soit mieux synchroniseH e avec le processus d'acquisition des donneH es. La complexiteH en
calcul de l'algorithme inteH greH est analyseH e en deH tail, et montre la deH pendance du nombre d'opeH rations arithmeH tiques
complexes vis-à-vis du rapport N/M. Les reH sultats expeH rimentaux obtenus sur un Pentium 66 sont en accord avec cette
analyse. (1999 Elsevier Science B.V. All rights reserved.

Keywords: Running spectral analysis; Recursive procedure for updating DFT; Decimation-in-time split-radix fast-Fourier-transform
(DIT sr-FFT); Real-time implementation of sr-FFT; Local butter#y modules

1. Introduction

Running spectral analysis based on short-time
Fourier transform (STFT) is frequently used in the
long-term monitoring of the multi-channel EEG
(electroencephalograph) signals. The procedure in-
volves the evaluation of the DFTs (discrete Fourier
transforms) on successive overlapping segments.
Consider a 1-hour EEG recording with a sampling
rate of 200 Hz. To analyze the time-varying Fourier
spectra with a DFT (frame) size of 512 samples and
a moving size of 64 samples, it requires the evalu-
ation of a total of 11,243 512-point DFTs! In fact,
the circularly periodic property of the DFT enables
&inheritance' of the results evaluated on the preced-
ing frame.

Not long after the key contribution to digital
spectral analysis, the development of the FFT (fast
Fourier transform) by Cooley and Tukey [5], Hal-
berstein [9] proposed the idea of evaluating the
successive DFTs using the recursive computation.
Bongiovanni et al. presented the formulated pro-
cedures which allowed a moving size M to be any
integer power of 2; nonetheless, M is no greater
than the frame size [3]. Several algorithms for
e$cient computation of the moving-frame DFTs
have been developed thereafter [1,2,4,8,15,17].
Most of them discussed the methods for updating
the successive DFTs at a rate of one sample point
each time, that is, the moving size M"1. Many
practical applications do not require such a small
temporal resolution when computing the time-
varying Fourier spectra. Furthermore, these FFT
algorithms were implemented in the manner that
the algorithms started building the butter#y struc-

ture for the FFT computation only after all the
framed data points had been collected. The authors
previously presented a new algorithm (called the
&real-time FFT algorithm') which simultaneously
constructed the local butter#y structure while the
data acquisition proceeded [10]. The feasibility of
the real-time FFT algorithm is endorsed by the
modular property of the FFT butter#y structure.
As the development of the recursive moving FFT
algorithm aims at on-line real-time evaluation of
the running Fourier spectra, the authors propose
a new algorithm of which the recursive procedure is
implemented in the real-time manner.

2. Recursive procedure for updating the successive
DFT

2.1. Recursive procedure for M"1

Let X
i
[k] denote the ith N-point DFT of non-

stationary long-term sequence x[n] where N"2r.
For generalization, x[n] may be complex. Since the
running Fourier spectrum is updated at a rate of
one sample point each time, the X

i
[k] is given by

X
i
[k]"

N~1
+
n/0

x[i#n]=nk
N
, 0)k)N!1, (1)

where =
N
"e~+2n @N and i*0. The succeeding

DFT becomes

X
i`1

[k]"
N~1
+
n/0

x[i#1#n]=nk
N

"

N
+
n/1

x[i#n]=(n~1)k
N

252 P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259

Fig. 1. E!ect of moving frame on the arrangement of the input
data sequence in the FFT structure (N"16, M"4).

"=~k
N

N
+
n/1

x[i#n]=nk
N

"=~k
N

MX
i
[k]!x[i]#x[i#N]N. (2)

The above equation relates the DFT of each
current frame to that of the preceding frame
via a simple recursive formula. Note that the
(!x[i]#x[i#N]) only needs to be evaluated
once for computing the X

i`1
[k], 0)k)N!1.

Hence, the number of arithmetic operations is re-
duced to N#1 complex additions and N complex
multiplications for updating the DFT. The com-
putational complexity will be analyzed in detail in
Section 5 and in Appendix A.

2.2. Recursive procedure for M"2p, 0(p)r

Consider that the frame moves M sample points
each time where 1(M)N and M"2p, an inte-
ger power of 2. Alternatively speaking, when com-
puting the FFT of the succeeding frame, the "rst
M samples of the current frame leave the FFT
butter#y structure, and M new samples enter the
butter#y structure. To illustrate the &moving' e!ect
on the butter#y structure, Fig. 1 plots the arrange-
ment of the input data sequence given N"16
and M"4. The solid (dashed) frame encloses
those sample points taking part in evaluating X

i
[k]

(X
i`1

[k]). At the "rst stage, each butter#y sub-
structure (module) performs a 2-point DFT compu-
tation. The data points in the solid and dashed
frames are all di!erent. When proceeding to the
second stage, the current and succeeding
DFT computations share three data points. Appar-
ently, in each of the four blocks performing
the 4-point DFT computation, the updating
mechanism is the same as the case of M"1
where the frame moves one sample each time. The
above concept is formulated in the following deri-
vation.

Considering a moving size of M"2p (0(p)r),
the ith N-point DFT (i*0) is

X
i
[k]"

N~1
+
n/0

x[iM#n]=nk
N
, 0)k)N!1. (3)

Let n equal mM#1, Eq. (3) becomes

X
i
[k]"

M~1
+
l/0

N@M~1
+

m/0

x[iM#mM#l]=(mM`l)k
N

"

M~1
+
l/0

=lk
NC

N@M~1
+

m/0

x[M(i#m)#l]=mk
N@MD

"

M~1
+
l/0

=lk
N
G

i,l
[k], (4)

where the G
i,l

[k] is an (N/M)-point DFT. Note that
the (N/M)-point DFT is performed at the (r!p)th
stage of the butter#y structure where M blocks are
arranged according to the index l, from top down-
wards, in the bit-reversed order. Observing the
example in Fig. 1, the four blocks at the second
stage are G

i,0
[k], G

i,2
[k], G

i,l
[k] and G

i,3
[k] from

the top. Similarly, the succeeding DFT can be ex-
pressed as

X
i`1

[k]"
N~1
+
n/0

x[iM#M#n]=nk
N

P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259 253

Fig. 2. The block diagram of an N-point DIT sr-FFT structure
(N"2r).

"

M~1
+
l/0

N@M~1
+

m/0

x[iM#M#mM#l]=(mM l̀)k
N

"

M~1
+
l/0

=lk
NC

N@M~1
+

m/0

x[M(i#1#m)#l]=mk
N@MD

"

M~1
+
l/0

=lk
N
G

i`1,l
[k]. (5)

In comparison with G
i,l

[k] in Eq. (4), the G
i`1,l

[k]
is the DFT of the data set from which x[Mi#l]
moves out and x[Mi#N#l] moves in. Therefore
the recursive procedure shown in Eq. (2) is imple-
mented in each (N/M)-point local butter#y module
at the (r!p)th stage as follows:

G
i`1,l

[k]"
N@M~1

+
m/0

x[M(i#1#m)#l]=mk
N@M

"

N@M
+

m/1

x[M(i#m)#l]=(m~1)k
N@M

"=~k
N@MG

(N@M)~1
+

m/0

x[M(i#m)#l]=mk
N@M

!x(Mi#l]#x[Mi#N#l]H
"=~k

N@M
MG

i,l
[k]!x[Mi#l]

#x[Mi#N#l]N,

0)k)N/M!1. (6)

3. Real-time implementation of the split-radix FFT

This section brie#y describes the real-time imple-
mentation of the sr-FFT algorithm [10]. The
sr-FFT algorithm derived by Duhamel and Holl-
mann [6,7] has a simple structure and an explicit
theoretical basis. It is a mixture of the radix-2 and
radix-4 FFTs. Hence, the algorithm has the advant-
age of better computational e$ciency of the radix-4
FFT, but yet it does not require the FFT size to be
an integer power of 4. Considering the N-point
DIT sr-FFT with N"2r, the basic idea is to de-
compose any local ¸-point (¸)N) DFT block
G[k] into one ¸/2-point DFT G

2n
[k] and two

¸/4-point DFTs G
4n`1

[k] and G
4n`3

[k] with the
twiddle factors. The implementing procedures were
discussed in detail in [6,7,10]. In this part of paper,

the authors emphasize the real-time implementa-
tion procedure "rstly presented in [10]. Develop-
ment of the &real-time FFT' algorithm was origin-
ally inspired by the input/output pruning scheme
for FFT computation [11}14,16]. The algorithm is
particularly important when dealing with the on-
line running spectral analysis for the multi-channel
EEG signals which are sampled at a low rate
(200 Hz). Ability in synchronizing with the data
acquisition process is highly improved with the
real-time implementation algorithm. The main idea
is to "nish building as many butter#y modules as
possible with the data points on hand. To on-line
construct the local butter#y modules, the algorithm
must determine how much work it can accomplish
upon receipt of a data point x[n]. Fig. 2 displays
the block diagram of an N-point DIT-sr-FFT
structure (N"2r). The shaded block are the &DFT
blocks' which actually perform decomposed (into
smaller size) DFT computation. The blank blocks
are the &non-DFT blocks' which perform the multi-
plication by twiddle factors. In [10], the authors
proposed the strategies of identifying those local
butter#y modules ready to be constructed.
Consider an N-point DFT where N"2r. The
array indexes are expressed in binary form:
x[020]&x[121], with the "rst bit representing
the least signi"cant bit. Let nbit

1
denote the num-

ber of consecutive bit &1' counted from the leftmost
(most signi"cant) bit position. If nbit

1
equals 0 (i.e.,

254 P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259

Fig. 3. The recursive procedure implemented at the (r!p)th
stage.

Fig. 4. From the results of recursive operation, the algorithm prepares for transition to the sr-FFT structure by transforming two
N/M-point DFT blocks at the (r!p)th stage into (a) one 2N/M-point non-DFT block, and (b) one 2N/M-point DFT block at the
(r!p#1)th stage.

the most signi"cant bit is &0'), the algorithm still
slugs at the "rst stage since the "rst butter#y mod-
ule can be built only when x[10020] (x[N/2]) is
collected. For a nonzero nbit

1
, the algorithm is able

to build the butter#y modules from the "rst stage
up to the (nbit

1
)th stage. In addition, the sequence

of local butter#y modules being built is (non-
DFTP DFTP2PDFT block' for an even
nbit

1
, which is (DFTPnon-DFTP2PDFT

block' for an odd nbit
1
. Alternatively speaking,

the algorithm starts building a DFT (non-DFT)
block at the "rst stage if the nbit

1
is odd (even).

Then alternating between the non-DFT and DFT
block, the construction of butter#y module al-
ways ends at a DFT block when reaching the
(nbit

1
)th stage. As an illustration, consider that

x[1110..0] (nbit
1
"3) is received. The algorithm is

capable of building the local butter#y modules up to
the third (nbit

3
) stage. The sequence of butter#y mod-

ules being built is (DFTPnon-DFTPDFT'

from the "rst stage to the third stage.

4. Real-time implementation of the recursively
moving FFT

Integrated with the recursive procedures for
moving FFT computation, the real-time implemen-
tation procedure is carried out from the

(r!p#1)th stage to the last stage given that the
moving size M"2p and frame size N"2r. At the
beginning (r!p) stages, the algorithm need not
perform any butter#y structural construction,
which is totally replaced by the recursive procedure
for updating the (N/M)-point DFTs (Fig. 3). At the
(r!p#1)th stage, the algorithm prepares for
transition to the sr-FFT structure. If a block at the
(r!p#1)th stage belongs to a non-DFT block, its
descending DFT blocks at the (r!p)th stage are
turned into non-DFT blocks by the corresponding
twiddle factors (Fig. 4(a)); whereas the DFT blocks
at the (r!p#1)th stage are constructed using the
conventionals radix-2 FFT algorithm (Fig. 4(b)).

P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259 255

Fig. 5. The block diagram of the integrated algorithm.

Fig. 5 illustrates the block diagram that inte-
grates the recursive procedure with the real-time
implementation of sr-FFT. As x[Mi#N#l],
l"0,2, M, is collected, the recursive procedure
automatically updates the (N/M)-point DFT
G

i`1,l
[k] by using Eq. (6). From the array index of

current frame, x
i`1

[n]"x[i(M#1)#n], n"
0,2, N!1, the algorithm counts the nbit

1
of

n"N#l!M. The value of nbit
1

directs the con-
struction of butter#y modules up to the (nbit

1
)th

stage. In addition, nbit
1

enables the algorithm to
determine the block attribute (DFT or non-DFT)
when preparing for a transition to the sr-FFT
structure (Fig. 5). Then the algorithm will construct
as many butter#y modules as possible in the real-
time manner. The algorithm fully utilizes the time
span of the long sampling period and accordingly
provides a tool to better synchronize with on-line
data acquisition process.

5. Evaluation of computational complexity

To analyze the computational complexity of the
real-time moving FFT algorithm, the authors com-
pute the numbers of complex arithmetic operations
required by the recursive procedure (up to the
(r!p)th stage) and the real-time sr-FFT imple-
mentation (from the (r!p#1)th to the rth stage).
Let N

3%#634
(MUL

#
) and N

3%#634
(ADD

#
) denote the

number of complex multiplications and complex
additions, respectively, required by the recursive
operation. At the (r!p)th stage, M blocks of
(N/M)-point DFTs are evaluated by recursive
procedure. Note that the (!x(Mi#l)#

x[Mi#N#l]) in Eq. (6) only needs to be evalu-
ated once when computing the G

i`1,l
[k],

0)k)N/M!1. According to Eq. (6), each block
requires 1#N/M complex additions and N/M
complex multiplications. Thus N

3%#634
(MUL

#
)"N

and N
3%#634

(ADD
#
)"M#N. At the (r!p#1)th

stage, the algorithm actually prepares for
a transition to the sr-FFT structure (Fig. 4). The
number of complex additions and complex multi-
plications are denoted by N

r~p`1
(ADD

#
) and

N
r~p`1

(MUL
#
), respectively. The real-time sr-FFT

implementation (from the (r!p#2)th to the rth
stage) requires N

43-FFT
(MUL

#
) complex multiplica-

tions and N
43-FFT

(ADD
#
) complex additions. De-

tailed derivation of these numbers is presented in
Appendix A. To summarize, the total number of
complex multiplications N

505!-
(MUL

#
) is (Eq. (A.7))

N
505!-

(MUL
#
)"A

p

3
#

13

9 BN#

5N

9M
(!1)p, (7)

and the total number of complex additions
N

505!-
(ADD

#
) is (Eq. (A.8))

N
505!-

(ADD
#
)"M#(p#1)N. (8)

Table 1 lists the N
505!-

(ADD
#
) and N

505!-
(MUL

#
)

for di!erent moving sizes and frame sizes. The
shaded rows displays the numbers of complex mul-
tiplications and additions without implementing
the recursive procedure. In that case, the algorithm
simply constructs the sr-FFT structure using the
real-time implementation method. Note that the
real-time FFT algorithm [10] has about the same
order of computational complexity as the normal

256 P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259

Table 1
Comparison of the number of complex arithmetic operations for di!erent moving sizes (M) and frame sizes (N)

@Not
recursive

M"4
p"2

M"8
p"3

M"16
p"4

M"32
p"5

M"64
p"6

M"128
p"7

M"256
p"8

N"256 N
505!-

(ADD
#
) 2134 772 1032 1296 1568 1856 2176

N
505!-

(MUL
#
) 626 576 608 720 792 884 966

N"512 N
505!-

(ADD
#
) 4778 1540 2056 2576 3104 3648 4224 4864

N
505!-

(MUL
#
) 1422 1152 1216 1440 1584 1768 1932 2106

N"1024 N
505!-

(ADD
#
) 10582 3076 4104 5136 6176 7232 8320 9472

N
505!-

(MUL
#
) 3186 2304 2432 2880 3168 3536 3864 4212

@: The algorithm simply constructs the sr-FFT structure using the real-time implementation method [10] without implementing the
recursive procedure.

Table 2
The t

-!45
is the computer time spent on constructing the residuary butter#y modules upon receipt of the last data point x[511]. The

t
505!-

is the total time required by the integrated algorithm to compute one 512-point FFT for di!erent moving sizes
(M"2p, p"0,1,2,9). The algorithm is run on Pentium 66

p"9
M"512

p"8
M"256

p"7
M"128

p"6
M"64

p"5
M"32

p"4
M"16

p"3
M"8

p"2
M"4

p"1
M"2

p"0
M"1

t
-!45

(ms) 0.45 0.45 0.45 0.47 0.46 0.46 0.48 0.47 0.49 0.49
t
505!-

(ms) 3.30 2.80 2.42 2.08 1.92 1.54 1.37 1.04 0.88 0.49

sr-FFt algorithm. However, it provides better syn-
chronization ability with the real data acquisition
process. In comparison with the numbers listed in
the shaded rows for each given N, the integrated
approach does not advantage the computational
e$ciency as the moving size M increases (the right
side of the bold-faced lines, Table 1). Considering
the example of N"512 and M*64, one would
rather apply the real-time FFT algorithm without
implementing the recursive procedure. The experi-
mental results listed in Table 2 corroborates the
above analysis. Note that the real-time FFT algo-
rithm without implementing the recursive proced-
ure spends 2.01 ms on computing the 512-point
sr-FFT on Pentium 66. While integrated with the
recursive procedure, it results in poorer computa-
tional e$ciency (t

505!-
*2.08 ms) when M*64.

Table 2 also shows the synchronization ability of
real-time implementation. When M"128, the in-
tegrated algorithm takes 0.45 ms (t

-!45
) to build the

residuary butter#y modules upon receipt of the last
data point. Yet the conventional whole-block algo-
rithm takes 2.42 ms after all the 512 data points
have been collected. The e$cacy of real-time imple-
mentation is more evident when applying to the
multi-channel running spectral analyisis. Accord-
ing to Table 2, the total time required to analyze the
running spectrum of a long-time EEG record (o!-
line) is simply t

505!-
](number of frames). As ad-

dressed in the beginning, a total of 11,243 512-point
DFTs need to be evaluated in a one-hour EEG
record (M"64). The conventional sr-FFT algo-
rithm takes 27.21 s to analyze the whole record,
whereas the real-time, moving FFT algorithm pro-
posed takes 23.39 s. When M"8 is used for a bet-
ter temporal resolution, the computational time is
217.65 s (conventional) and 123.22 s (proposed),
respectively. A signi"cant improvement on com-
putational e$ciency is achieved for a small moving
size.

P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259 257

6. Conclusion

This paper presents a new approach for comput-
ing the real-time, running Fourier spectra. By integ-
rating the recursive procedure with the real-time
implementation strategy presented in [10], we are
able to achieve better computational e$ciency and
synchronization ability. The real-time FFT algo-
rithm without implementing the recursive proced-
ure takes e!ect when the moving size is large
(N/M(16). On the other hand (N/M*16), the
recursive procedure plays a key role in reducing the
number of complex arithmetic operations.

Appendix A

We follow the approach developed in [10] for
computing the number of complex multiplications
and complex additions required to construct the
butter#y modules from the (r!p#1)th to the rth
stage. The total numbers of complex multiplica-
tions and complex additions at the (r!j)th stage
are

N
r~j

(MUL
#
)"2r~1)C

2

3
#

1

3A!
1

2B
j

D,
0)j)p!1, (A.1)

N
r~j

(ADD
#
)"(3) 2r~1))C

2

3
#

1

3A!
1

2B
j

D,
0)j)p!1. (A.2)

Note that, at the (r!p#1)th stage, the algo-
rithm actually prepares for a transition to the sr-
FFT structure (Fig. 4). According to Fig. 4(a), it
requires 2N/M"2r~p`1 complex multiplications
to transform two (N/M)-point DFT blocks at the
(r!p)th stage into one (2N/M)-point non-DFT
block. While constructing the (2N/M)-point
DFT block from two DFT blocks at the preceding
stage, 2N/M"2r~p`1 complex additions and
N/M"2r~p complex multiplications are per-
formed. The sr-FFT structure at the (r!p#1)th
stage consists of 2p~1[2

3
#1

3
(!1

2
)p~1] DFT

blocks and 2p~1[1
3
!1

3
(!1

2
)p~1] non-DFT blocks

[10]. Hence the number of complex arithmetic
operations performed at the (r!p#1)th stage is

N
r~p`1

(MUL
#
)

"2r~p2p~1[2
3
#1

3
(!1

2
)p~1]

#2r~p`12p~1[1
3
!1

3
(!1

2
)p~1]

"

2

3
N#

N

3M
(!1)p, 1)p)r!1, (A.3)

N
r~p`1

(ADD
#
)"2r~p`12p~1[2

3
#1

3
(!1

2
)p~1]

"

2

3
N!

2N

3M
(!1)p,

1)p)r!1, (A.4)

To construct the butter#y modules from the
(r!p#2)th to the rth stage, the number of com-
plex multiplications N

43vFFT
(MUL

#
) is

N
43vFFT

(MUL
#
)"

p~2
+
j/0

N
r~j

(MUL
#
)

"2r~1
p~2
+
j/0
C
2

3
#

1

3A!
1

2B
j

D
"

p

3
N!

2

9
N#

2N

9M
(!1)p, (A.5)

and the number of complex additions
N

43vFFT
(ADD

#
) is

N
43vFFT

(ADD
#
)"

p~2
+
j/0

N
r~j

(ADD
#
)

"(3]2r~1)
p~2
+
j/0
C
2

3
#

1

3A!
1

2B
j

D
"pN!

2

3
N#

2N

3M
(!1)p. (A.6)

Finally, the total number of complex multiplica-
tions N

505!-
(MUL

#
) is

N
505!-

(MUL
#
)"N

3%#634
(MUL

#
)#N

r~p`1
(MUL

#
)

#N
43-FFT

(MUL
#
)

"A
p

3
#

13

9 BN#

5N

9M
(!1)p, (A.7)

and the total number of complex additions
N

505!-
(ADD

#
) is

258 P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259

N
505!-

(ADD
#
)"N

3%#634
(ADD

#
)#N

r~p`1
(ADD

#
)

#N
43-FFT

(ADD
#
)

"M#(p#1)N. (A.8)

References

[1] M.G. Amin, A new approach to recursive Fourier trans-
form, Proc. IEEE 75 (11) (November 1987) 1537}1538.

[2] J.L. Aravena, Recursive moving window DFT algorithm,
IEEE Trans. Comput. 39 (1) (January 1990) 145}148.

[3] G. Bongiovanni, P. Corsini, G. Frosini, Procedures for
computing the discrete Fourier transform on staggered
blocks, IEEE Trans. Acoust. Speech Signal Process.
ASSP-24 (2) (April 1976) 132}137.

[4] W. Chen, N. Kehtamavaz, T. W. Spencer, An e$cient
recursive algorithm for time-varying Fourier transform,
IEEE Trans. Signal Process. 41 (7) (July 1993) 2488}2490.

[5] J.W. Cooley, J.W. Tukey, An algorithm for machine com-
putation of complex Fourier series, Math. Comput. 19
(April 1965) 297}301.

[6] P. Duhamel, Implementation of &split-radix' FFT algo-
rithms for complex real and real-symmetric data, IEEE
Trans. Acoust. Speech Signal Process. ASSP-34 (April
1986) 285}295.

[7] P. Duhamel, H. Hollmann, Split radix FFT algorithm,
Electron. Lett. 20 (1) (January 1984) 14}16.

[8] B.G. Goldberg, A continuous recursive DFT analyzer
} The discrete coherent memory "lter, IEEE Trans.
Acoust. Speech Signal Process. ASSP-28 (6) (December
1980) 760}762.

[9] J.H. Halberstein, Recursive, complex Fourier analysis for
real-time applications, Proc. IEEE (Lett.) 54 (June 1966)
903.

[10] P.-C. Lo, Y.-Y. Lee, Real-time implementation of the
split-radix FFT } An algorithm to e$ciently construct
local butter#y modules, Signal Processing 71 (1998)
291}299.

[11] J.D. Markel, FFT pruning, IEEE Trans. Audio Elec-
troacoust. AU-19 (4) (December 1971) 305}311.

[12] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Pro-
cessing, Prentice-Hall, Englewood Cli!s, NJ, 1989, Chap-
ter 9.

[13] D.E. Paneras, R. Mani, S.H. Nawab, STFT computation
using pruned FFT algorithms, IEEE Signal Process. Lett.
1 (4) (April 1994) 61}63.

[14] C. Roche, A split-radix partial input/output fast Fourier
transform algorithm, IEEE Trans. Signal Process. 40 (5)
(May 1992) 1273}1276.

[15] B.G. Sherlock, D.M. Manro, Moving discrete Fourier
transform, IEE Proc.-F 139 (4) (August 1992) 279}282.

[16] H.V. Sorensen, C.S. Burrus, E$cient computation of the
DFT with only a subset of input or output points, IEEE
Trans. Signal Process. 41 (3) (March 1993) 1184}1200.

[17] M. Unser, Recursion in short-time signal analysis, Signal
Processing 5 (1983) 229}240.

P.-C. Lo, Y.-Y. Lee / Signal Processing 79 (1999) 251}259 259

