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Excitation of rotation collective modes in a vortex lattice of clean type-Il superconductors
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In a superclean limit the Magnus force on Abrikosov vortices is stronger than friction. Due to this, nondis-
sipative force vortex segments rotate around pinning centers. Waves of such rotations under certain conditions
are only weakly dampechot overdamped as is usually the caaad lead to resonances in the ac response.
(The excitation of such waves by applied ac field near the surface is considered. Surface impedance, ac
resistivity, and magnetic permeability are calculated using elasticity theory of the vortex lattice.
[S0163-182609)00442-7

[. INTRODUCTION tion depth andby=hc/2e. In this case we can neglect ex-
ponentially small interactions between vortices and consider
Abrikosov vortex dynamics in type-ll superconductors single vortex dynamics. Assuming that the vortex is pinned
under magnetic field is usually thought to be overdamped(Fig. 1) we describe it by equation of motion for displace-
Due to large vortex viscosity the displacement waves in vormentu:
tex lattice do not propagate. In high- superconductors the
situation under certain conditions might be different. The
dissipation during the vortex motion is at least to large extent
due to excitation of quasiparticles inside the vortex core. At z
small temperatures this process is frozen and instead of usual
Bardeen-Stephen friction forcev one has only a nondissi-

pative Magnus force;’ zx v perpendicular to the vortex ve-
locity, wherez is the direction of external magnetic field. As
evidence to the increasing role of the Magnus force is the
famous Hall anomaly.In a series of direct experimeftit 0| Tee
was shown that in YBCO single crystals at low temperatures
the Hall angle tard,)= 7'/ 7 diverges asT ! and clearly
exceeds 1 below 4 K reaching 2.5 at 3 K. This regime was
termed by authors of Ref. 2 “superclean limit.” Theoreti-
cally such a behavior was predicted in R8f. In such a
superclean regime vortex dynamics might be nonover-
damped and, for example, displacement waves in the vortex
lattice can propagate. This type of phenomenon was used
recently to explain the magnetoabsorption in BSCEal-
though alternative explanations based on the Josephson
plasma oscillations exist.

In this paper we consider dynamics of vortices in “super-
clean” superconductors under applied ac field. Linear re-
sponse to applied fieldmicrowave impedance, low fre-
qguency complex resistivity, and permeabilignd local field
profiles are calculated. We find that in the superclean limit
the system is not overdamped and point out to several reso-
nance effects. Excitation of the nonoverdamped waves by
applied ac field modify in an essential way the theory of the k|G, 1. () Positions and displacements of vortices caused by
linear response developed by Brahaihd Coffey and Clerfl.  external Lorentz force(b) Displacement of a vortex segment under

The basic physics of the vortex response in the supercleagfiuence of ac field in the superclean limit) Displacement of a
limit is very simple. Let us first consider the very small in- vortex segment under influence of ac field in the conventional over-
ductions casd/d®,<\?, where\ is the magnetic penetra- damped case.
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Here « is the Labousch parameter describing restoringfications due to anisotropyimportant for applications to
pinning force in thex-y plane. As was noted many tintes high-T. material$ are made. In Sec. V we conclude by dis-
the Magnus force is mathematically identical to “Lorentz” cussing possible destruction of vortex lattice by excitation of
force on a charged particle wheh, is considered as a such wave and the corresponding shift of the melting line.
“charge.” When the friction coefficieny and the dynamical
vortex massm (Ref. 10 are small one obtain&lockwise Il. DISPERSION RELATION FOR WAVES
and counterclockwigecircular motion around the pinning IN VORTEX LATTICE

centerg see Fig. 1b)] with frequenc
1 g | a Y Neglecting vortex mass in Eql) for single vortex dy-

a namics one obtains the following periodic solutiom{t)
oy=—. (2) =€y, where
n
The order of magnitude is the same as the depinning fre- Q.=a e 3

quency Qgepi= @/ 7 Which is of order 10-100 G&*® The ”+n'?

friction causes damping of the rotatiofsee Fig. 1c)]. To o . ) )
excite this mode resonantly one can apply the external LorContribution of interactions between vortices to the vortex
entz force due to ac current in a directipperpendicular to dynamics can be taken into account within the harmonic ap-

the dc magnetic field and parallel to the samples surface, sdgoximation
Fig. 1(a). We assumeFq(r,t) =XFeq(X)€' !, namely, that

the force is independent gfandz In this case there is no

variations in thez direction and the problem becomes two
dimensional. Whem approaches»,, one obtains resonance +§b: ®;;(R*~R)u;(R)=0. 4)

in the amplitude of vortex vibrations.

The system of coupled charged oscillators in magnetitere ®;; is the dynamical matrix an®&k® are locations of
field has been considered in various contexts in physicsyortices usually arranged in the lattice aggd is the totally
e.g., in connection with “magnetophonons” in Wigner lat- antisymmetric tensor. Since we are using elasticity theory the
tice formed out of electron gds$.This is very similar to the  detailed nature of the vortex matter is not very important as
situation of interacting fluxons in the superclean limit for long as correct elastic modulii are used and most of the con-
fieldsH ; <H<H¢,. In this case the repulsion between vor- siderations are valid in vortex liquid or glass. We will con-
tices leading to formation of vortex lattice is logarithmic. sider only external forces homogeneouy indz directions,
The eigenfrequences wy become bandgthe positive fre-  therefore the only nonzero component of momenturk,is
quency is not necessarily the same as the negative wheak. When external force is absent displacement vector for
shear is present in the lattice, see belowhis medium can frequency() satisfies
be effectively described using the elasticity theory in har-

Ui (R + 7' &;u;(R?) + au;(R?)

monic approximation. The complex dispersion relation for [ (iQn+ @)+ cqy(k)k? iQn' Uy (K)
these waves for arbitrary values &f, »',a, and B within —iQy (1Q 7+ @)+ ceg kK2 | uy (k)
London approximation are presented in Sec. Il. These modes y

lead to number of experimentally accessible effects. In Sec. =A;;u;=0, (5)

[Il we discuss the linear response to ac current flowing at the h d ibly di Veelast duli of
surface layer of the single crystal in direction perpendiculaty;’] €recy; andCes arle(p;]ossLl yd |sp|)'(r=,‘]:¥stlv)ee astic moduli o
to that of magnetic field. We calculate the penetration deptfin€ Vortex matter. In the London i

N ac and related to it microwave impedanzéw), low fre- 5 ®
guency complex resistivity, and magnetic permeability.cll(k): B_ 1 _ C11 o B®, . ©)
Compared to standard restlfswe obtain additional large 47 11022 14022 % 4(4mn)2

contribution to ac response near the resonant frequency due
to excitation of weakly damped waves. In Sec. IV the modi- The eigenfrequences E@) now become branches:

_inf2a+Ki] V= [ 2a+KZC2+ 4( 72+ 7' D) a®+ akZc+ Kicqy(K) Cegl

Q. (k)= * @
2(7*+7'?) 2(7°+7'?)
|
wherec=c,(k) + Cg. In the superclean limiy=0 one has The condition that there is a nonzero real partbf (k)
(waves is
2 2o+ k4 k*(c11(K) — Cgp)?
Qi(k):i\/a + ket k(K Cos. ® (ar?o,> (c11(k) —Cgp) ©

7]’ 4(a2+ ak2C+ k4C11066)
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Assuming that moduli have no dispersion, namekty,<
<1 one obtains the following condition:

k*[4c,1Cestart Oy — (C11— Cee) 2]+ kY 4a tarf6,c]

+4a?tart6,>0. (10)

It is obviously satisfied for allk if tan#,>(1/2)(cy;
—Cge)/VC11Cee When this inequality does not hold only
modes with

2atanfy[tanfy(Ci1+ Cee) +(Cr1— Cep)/COSOH]
k?< =k
m

(C11— Cop)?—4tarf OC11Cep
(11

have a nonzero real part @ . (k). For B>H., one has
€113 Cgg and the conditions Eq$10) and(11) simplify into
tanfy >3 \ci/cee=\INk(B/Hy) and k?<2atandy(l
+5in 64)/c11 cOSO =K.

A stronger condition that R&/ImQ=1">1 can be sat-
isfied only when the superconductor is sufficiently “clean:”

tang,>T . (12

Moreover it will be satisfied for alk in the “superclean”
limit:

2 VC11Ce6
JTZ+1 Ci1tCes

cosfy< (13

This condition is very restrictive. More relevant case is when

only some of the modek<<k,,(I') have the imaginary part
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ary conditions using the “bulk concept” methods of Ref. 7
which allows to refer the problem to an equivalent problem
in whole space.

The external force is

Bhye .
— —[X|/\ pl 0t
Fed(x,)= 7€ "7e', (16)
Bh,c
Fed k)= ————. 17)
extk.) 2m(1+\2k?) (

The displacement in momentum space is obtained from
Eq. (5) with external force

BhyJ (ion+ a)+C66k2]
2m(1+N\°k?)D(k, w)

U (k,w)= , (18

iBhcon'
2m(1+NK3)D(K, @)

uy(K, @)= (19

whereD (k,w) is the determinant of matril:

D(k,w)=[ion+a+cy (KK ][ion+a+ C66k2]—w27]('2.
20

A. Small shear modulus approximation

Very often bothcgg andk are “small.” If cggk? is small
compared to ¢ n+ «) one readily reexpresses the result in
the form

smaller than the real part. The maximal momentum for a

given rationI” is

2alA 2alA

k()= =
m(1) C11—Cee— A(C11+Cee)  C1a(1—A)

(14

where A?=1—(I'?+ 1)co€ 6 [always positive due to Eq.
(12)].

Polarization of the wavesvhich follows from Eq.(5)] is
the following:

c

Of+Cllk2
Q. (k)7

y(K)
ux(k)

=—tan ! Oy +i (15

ko) = Bhye
(k)= 2ma(w)[1+Kk?(Cpy/ a(w)+2?)]
Zhac)\é(w)
= - > ° 21
B[1+k2\2(w)] =
iwn'
uy(k,w)= iw77+auX(k'w)’ (22

where a(0)= iwn+a—w?y'?(iop+a) and modified
Campbell penetration depv{%(w):

The fact that the ratio is imaginary means that vortices move

on elliptic trajectories.

IIl. LINEAR RESPONSE UNDER APPLIED ac FIELD

In this section we consider the pinned vortex system re-
sponse to surface ac current caused by alternating field

hace'®! in direction parallel to dc fieldH and to the surface
of the superconducting half space, see Fi@).1The linear
response for such geometry for the cage=0 was consid-

C11 _ BZ(Iw77+a)
a(w) Ar[(iwn+a)’—w?ny'?]

Ne(w)=

Bz(iw-l-tanﬂHwM)
4yl (iw+tanbywy)’— v’ tarf oy ]

o B2(i w+tanfywy )cos 6y
 Argle—Q.(0)][e-Q,(0)]

(23

ered by Brandtand Coffey and Clefhalso taking into ac-  The frequency dependent complex ac penetration depth was
count pinning, viscosity and creep. Since we are interesteghiroduced:

mostly in the low temperature regime flux creep can be ne-

glected while the Magnus force term is importéoiteep can
be taken into account in a similar manner agRefs. 7,8.
When one performs similar calculation fgf >0 new reso-

N2 @)=N2+ N2 (w). (24)

As is in the usual cadé 5’ =0 this quantity determines both

nant phenomena are readily seen. We impose proper bounthe surface impedance
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FIG. 3. Comparison of the exact expression for real part of
surface impedanc@ccounting for the effect of shear modulug)
with an approximate one given by much simpler Eg6) for
coséy=0.3,B=10H;.

/% A=b—a—iwcCosby,
FIG. 2. Frequency dependance of the surface impedéaecd B= E[4w2—4a2—8iwa cosfy
and imaginary parsfor cos#,=0.1,0.3,0.6,1. Magnetic induction 2
B=10Hc. +(atiocosy)(4b+1)],

i — 2 2 H
Zs(w)=4—zlw)\ac(a)). (25) C=—4(w°—a*—2iwa cosby)
¢ rg(q)=(g/4— a—iwcoshy)exp(igx). (28
and the ac resistivity p,dw)=E(X)/I(X)=(4mil
c2)w>\§c(w). These two quantities exhibit resonance in the
clean limit. In Fig. 2 real and imaginary parts of surface
impedance for various values of c@s andb=B/H ;=10

Here we use “natural” units. Unit of length i&, unit of
magnetic field isH.;:b=B/H.;. Similarly the electric field
part caused by the vortex displacements is

are shown. Whel?c4g is not negligible but still small com- 2 re(—1)
pared toa one can correct perturbatively the expression for E/(X,w)= b > £ 5
Nac: [1+ki(w)][1+ki(w)]
212 re(ky)
Cee0” 77 +
A= : 26 2 2 VK2
“ationlationtaty? 20 [+ k(o) ko) = ki)

The dependence of the resonance peak ogarO (the melt- n re(ka) (29)
ing of the vortex latticeon cgg is quite regular. [1+K5(w)][K3(w)—Ki(w)] '

where now the residua are
B. General case

When thecggk? term in Eqs.(18)—(20) is not small one ®(q/4—a—iwcoshy) .

.66 gs.(18)~( ). o re(q)= exp(igx). (30
can, following Ref. 7, calculate ac electric and magnetic field q
components caused by vortex displacements. One obtains

following expression for this part of the ac magnetic field:

t?’%is should be superimposed with the Meissner field part.
Generally the microwave impedance is given by

By (X, )= 2 re(—1) )= 47E(x=0) a1

ST (14K ) 1+ K ()] ()= CB(x=0) 31
re(ky) As an example we compare the exact expression for the real

+ 5 5 21 5 part with the approximate one given by E®5) in Fig. 3

[1+ki(w)][ki(w)—ki(w)] (for b=10,c086,=0.3). Generally resonance becomes
sharper for larger shear moduli.

re(kz) 27) Similar resonance effects can be seen also in the fre-
[1+K3(0)][K3(w)—K2(w)]] quency dependences of ac resistivity and magnetic perme-

ability of a slab of thicknesd. The complex ac resistivity is
where polesk; (zeroes of determinantand corresponding
residuar; are Pad ®)|x=0=E1(x=0)/I(x=0), (32

5 where the current density on the surface J§x=0)
BxJB"-AC =(c/4m)(l9x)B1(X)|x—o. The magnetic permeability is

ki o=
12 A ' calculated from
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pn=(B1(x)/hy, (33 7=Lmno, n,=0"1n,. (39)
where(- - -) denoted average over the sample. As far as Labusch parameter is conserned we assume that
vortex pinning is mainly provided by pointlike pins sepa-

IV. EFFECT OF ANISOTROPY rated by distances of ordérin ab plane. Thus the anisot-

The ac experiments are rarely carried out on relativelyfOPy Of the Labusch parameter, , is determined by the
isotropic lowT, materials such as Nb. Usually one would anisotropy of the vortex line tensid®, , for d|splacerqu?7ts
like to study highly anisotropic materials such as high- ©f @ vortex along thec axis and along theb plane.”
superconductors. The results of the previous Secs. Il and Iffomponents of Labusch parameters become
can be easily extended to the case of anisotropic three- 1
dimencional(3D) superconductor. We will consider the case ax=lag, ay=I""aq, (35
of the uniaxial anisotropic superconducisuch as YBCQ
with the ¢ axis perpendicular to the sample surface and vor
tices parallel to eithea or b directions considered equivalent

for simplicity, see Fig. (a). The anisotropy is characterized (nondispersive part the shear moduluggs for displace-

by the coefﬁme_ntfE ym./mg,,>1. In this case one _should ments along the axis is significantly reducetf:'8-2°
account for anisotropy of the parameters characterizing vor-

tex matter elasticity, pinning force, and viscousity for vortex

displacements along and perpendicular to the sample surface [ :i (O):B;{)O
c c .

(oury andx directions, respectively 3% 6ar2\2r3

Various properties of the mixed state in anisotropic super-

conductors were extensively studied in a number of works The off diagonal components of viscousity tensgy,

(see e.g., reviews 12,15 and references thgrewr our pur-  should obey the Onsager principle, thus since it is a phenom-

poses we make use the appropriate expressions for convegnological parameter at the present time, we write as before

ing scalar quantities appearing in the isotropic case into gen-

whereay=P,/L2. Changes in elastic properties of the vor-
tex lattices due to anisotropy are as follows. While the com-
pression modulus;; remains unchanged in the smillimit

(36)

erally tensorial quantities. Using the anisotropy coefficient My=—Nyx=71"- (37
we relate them to an equivalent isotropic supercondu@bor
which all the quantities will be marked with subscript “R” After these modifications the matri;; in Eq. (5) takes

Different vortex viscousities along theandy axes ar&'6 the form

. C11 .
T(iQne+ ag) + = K2 iQn
(1 Q et )+ Cy k2 iy (1070+ a0)+ 1

) | - (39)
ij —-iQy (lﬂﬂy+ay)+c‘6|6k —-iQy 1 iQ 7o+ ap+— c K
r Ir?

From Eq.(38) one can see that eigenfrequiencies deterchanged comparatively to equivalent isotropic supercon-
mined by the condition dé;; =0 are still described by Eq. ductor (although the polarization of the displacement wave
(7) with simple replacements;;—¢,/T" and Cgg— Cgg/T"2. changeg
This means that elasticity now plays a lesser role in govern-
ing the vortex oscillations compared to the pinning and vis-
cousity’s role which has been enhanced. Moreover the role
of shear as compared to pompression becomes negligible and V. DISCUSSION
the approximation made in Sec. IlIA becomes better. Expres-
sion (23) for the Campbell penetration depth derived in Sec. In this paper we determined conditions under which a
[lIA after replacement,;—c4,/I" becomes nonoverdamped “rotation’(around pinning centersvaves

exist in clean type-ll superconductors. There are clear indi-
cations that these conditions can be met in untwinned YBCO
(399  single crystalg. It is even possible that these conditions can
be met in some loviF, materials such as superclean Nb.
Excitation of such waves by applied ac field near the surface
where a(w) corresponds to isotropic superconductor. Theis considered. The simplest realistic geometry is the super-
reduction in the Campbell penetration depth leads to correeonducting half space with the dc magnetic field creating
sponding modifications in the ac penetration depth Eq.  vortices parallel to the surface. We considered the direction
(24) in turn influencing the surface impedance and the aof the surface ac field parallel to the dc magnetic field. In this
resistivity. The position of the resonace peak however is unease linear response characteristics such as surface imped-

Ci1

A=
¢ I'ap(w)
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ance, ac resistivity and magnetic permeability were calcumelting line on theB-T phase diagram shifts to lower values
lated using the elasticity theory of the vortex lattice. Theof the magnetic field.
most pronounced effect of the rotation waves is resonance at
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