
PHYSICAL REVIEW B 1 DECEMBER 1999-IVOLUME 60, NUMBER 21
Excitation of rotation collective modes in a vortex lattice of clean type-II superconductors
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In a superclean limit the Magnus force on Abrikosov vortices is stronger than friction. Due to this, nondis-
sipative force vortex segments rotate around pinning centers. Waves of such rotations under certain conditions
are only weakly damped~not overdamped as is usually the case! and lead to resonances in the ac response.
~The excitation of such waves by applied ac field near the surface is considered. Surface impedance, ac
resistivity, and magnetic permeability are calculated using elasticity theory of the vortex lattice.
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I. INTRODUCTION

Abrikosov vortex dynamics in type-II superconducto
under magnetic field is usually thought to be overdamp
Due to large vortex viscosity the displacement waves in v
tex lattice do not propagate. In high-Tc superconductors the
situation under certain conditions might be different. T
dissipation during the vortex motion is at least to large ext
due to excitation of quasiparticles inside the vortex core.
small temperatures this process is frozen and instead of u
Bardeen-Stephen friction forcehv one has only a nondissi

pative Magnus forceh8ẑ3v perpendicular to the vortex ve
locity, wherez is the direction of external magnetic field. A
evidence to the increasing role of the Magnus force is
famous Hall anomaly.1 In a series of direct experiments2 it
was shown that in YBCO single crystals at low temperatu
the Hall angle tan(uH)[h8/h diverges asT21 and clearly
exceeds 1 below 4 K reaching 2.5 at 3 K. This regime w
termed by authors of Ref. 2 ‘‘superclean limit.’’ Theore
cally such a behavior was predicted in Ref. 3 . In such a
superclean regime vortex dynamics might be nonov
damped and, for example, displacement waves in the vo
lattice can propagate. This type of phenomenon was u
recently4 to explain the magnetoabsorption in BSCCO,5 al-
though alternative explanations based on the Josep
plasma oscillations exist.6

In this paper we consider dynamics of vortices in ‘‘sup
clean’’ superconductors under applied ac field. Linear
sponse to applied field~microwave impedance, low fre
quency complex resistivity, and permeability! and local field
profiles are calculated. We find that in the superclean li
the system is not overdamped and point out to several r
nance effects. Excitation of the nonoverdamped waves
applied ac field modify in an essential way the theory of
linear response developed by Brandt7 and Coffey and Clem.8

The basic physics of the vortex response in the superc
limit is very simple. Let us first consider the very small i
ductions caseB/F0,l2, wherel is the magnetic penetra
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tion depth andF0[hc/2e. In this case we can neglect ex
ponentially small interactions between vortices and cons
single vortex dynamics. Assuming that the vortex is pinn
~Fig. 1! we describe it by equation of motion for displac
mentu:

mü1hu̇1h8z3u̇1au50. ~1!

FIG. 1. ~a! Positions and displacements of vortices caused
external Lorentz force.~b! Displacement of a vortex segment und
influence of ac field in the superclean limit.~c! Displacement of a
vortex segment under influence of ac field in the conventional ov
damped case.
14 907 ©1999 The American Physical Society
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Here a is the Labousch parameter describing restor
pinning force in thex-y plane. As was noted many times9

the Magnus force is mathematically identical to ‘‘Lorentz
force on a charged particle whenF0 is considered as a
‘‘charge.’’ When the friction coefficienth and the dynamica
vortex massm ~Ref. 10! are small one obtains~clockwise
and counterclockwise! circular motion around the pinning
centers@see Fig. 1~b!# with frequency

vM[
a

h8
. ~2!

The order of magnitude is the same as the depinning
quencyVdepin5a/h which is of order 10-100 GHz.13 The
friction causes damping of the rotations@see Fig. 1~c!#. To
excite this mode resonantly one can apply the external L
entz force due to ac current in a directiony perpendicular to
the dc magnetic field and parallel to the samples surface,
Fig. 1~a!. We assumeFext(r ,t)5 x̂Fext(x)eivt, namely, that
the force is independent ofy and z. In this case there is no
variations in thez direction and the problem becomes tw
dimensional. Whenv approachesvM one obtains resonanc
in the amplitude of vortex vibrations.

The system of coupled charged oscillators in magn
field has been considered in various contexts in phys
e.g., in connection with ‘‘magnetophonons’’ in Wigner la
tice formed out of electron gas.11 This is very similar to the
situation of interacting fluxons in the superclean limit f
fieldsHc1!H!Hc2 . In this case the repulsion between vo
tices leading to formation of vortex lattice is logarithmi
The eigenfrequences6vM become bands~the positive fre-
quency is not necessarily the same as the negative w
shear is present in the lattice, see below!. This medium can
be effectively described using the elasticity theory in h
monic approximation. The complex dispersion relation
these waves for arbitrary values ofh,h8,a, and B within
London approximation are presented in Sec. II. These mo
lead to number of experimentally accessible effects. In S
III we discuss the linear response to ac current flowing at
surface layer of the single crystal in direction perpendicu
to that of magnetic field. We calculate the penetration de
lac and related to it microwave impedanceZ(v), low fre-
quency complex resistivity, and magnetic permeabil
Compared to standard results7,8 we obtain additional large
contribution to ac response near the resonant frequency
to excitation of weakly damped waves. In Sec. IV the mo
g
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fications due to anisotropy~important for applications to
high-Tc materials! are made. In Sec. V we conclude by di
cussing possible destruction of vortex lattice by excitation
such wave and the corresponding shift of the melting line

II. DISPERSION RELATION FOR WAVES
IN VORTEX LATTICE

Neglecting vortex mass in Eq.~1! for single vortex dy-
namics one obtains the following periodic solution:ui(t)
5eiV6tui , where

V65a
ih6h8

h21h82
. ~3!

Contribution of interactions between vortices to the vort
dynamics can be taken into account within the harmonic
proximation

hu̇i~Ra!1h8e i j u̇ j~Ra!1aui~Ra!

1(
b

F i j ~Ra2Rb!uj~Rb!50. ~4!

Here F i j is the dynamical matrix andRa are locations of
vortices usually arranged in the lattice ande i j is the totally
antisymmetric tensor. Since we are using elasticity theory
detailed nature of the vortex matter is not very important
long as correct elastic modulii are used and most of the c
siderations are valid in vortex liquid or glass. We will co
sider only external forces homogeneous iny andz directions,
therefore the only nonzero component of momentum iskx
[k. When external force is absent displacement vector
frequencyV satisfies

S ~ iVh1a!1c11~k!k2 iVh8

2 iVh8 ~ iVh1a!1c66~k!k2D S ux~k!

uy~k!
D

[Ai j uj50, ~5!

wherec11 andc66 are~possibly dispersive! elastic moduli of
the vortex matter. In the London limit12

c11~k!5
B2

4p

1

11l2k2
[

c11

11l2k2
, c665

BF0

4~4pl!2
. ~6!

The eigenfrequences Eq.~3! now become branches:
V6~k!5
ih@2a1k2c̄#

2~h21h82!
6

A2h2@2a1k2c̄#214~h21h82!@a21ak2c̄1k4c11~k!c66#

2~h21h82!
, ~7!
wherec̄[c11(k)1c66. In the superclean limith50 one has

V6~k!56
Aa21ak2c̄1k4c11~k!c66

h8
. ~8!
The condition that there is a nonzero real part ofV6(k)
~waves! is

tan2uH.
k4~c11~k!2c66!

2

4~a21ak2c̄1k4c11c66!
. ~9!
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Assuming that moduli have no dispersion, namely,kl,
,1 one obtains the following condition:

k4@4c11c66 tan2uH2~c112c66!
2#1k2@4a tan2uHc̄#

14a2 tan2uH.0. ~10!

It is obviously satisfied for allk if tanuH.(1/2)(c11

2c66)/Ac11c66. When this inequality does not hold onl
modes with

k2,
2a tanuH@ tanuH~c111c66!1~c112c66!/cosuH#

~c112c66!
224tan2uHc11c66

[km
2

~11!

have a nonzero real part ofV6(k). For B@Hc1 one has
c11@c66 and the conditions Eqs.~10! and ~11! simplify into
tanuH. 1

2 Ac11/c665Aln k(B/Hc1) and k2,2a tanuH(1
1sinuH)/c11cosuH[km

2 .
A stronger condition that ReV/Im V5G.1 can be sat-

isfied only when the superconductor is sufficiently ‘‘clean

tanuH.G. ~12!

Moreover it will be satisfied for allk in the ‘‘superclean’’
limit:

cosuH,
2

AG211

Ac11c66

c111c66
. ~13!

This condition is very restrictive. More relevant case is wh
only some of the modesk,km(G) have the imaginary par
smaller than the real part. The maximal momentum fo
given rationG is

km
2 ~G![

2aD

c112c662D~c111c66!
.

2aD

c11~12D!
~14!

whereD2[12(G211)cos2 uH @always positive due to Eq
~12!#.

Polarization of the waves@which follows from Eq.~5!# is
the following:

uy~k!

ux~k!
52tan21 uH1 i

a1c11k
2

V6~k!h8
. ~15!

The fact that the ratio is imaginary means that vortices m
on elliptic trajectories.

III. LINEAR RESPONSE UNDER APPLIED ac FIELD

In this section we consider the pinned vortex system
sponse to surface ac current caused by alternating
hace

ivt in direction parallel to dc fieldH and to the surface
of the superconducting half space, see Fig. 1~a!. The linear
response for such geometry for the caseh850 was consid-
ered by Brandt7 and Coffey and Clem8 also taking into ac-
count pinning, viscosity and creep. Since we are interes
mostly in the low temperature regime flux creep can be
glected while the Magnus force term is important~creep can
be taken into account in a similar manner as in~Refs. 7,8!.
When one performs similar calculation forh8.0 new reso-
nant phenomena are readily seen. We impose proper bo
n

a

e

-
ld

d
-

d-

ary conditions using the ‘‘bulk concept’’ methods of Ref.
which allows to refer the problem to an equivalent proble
in whole space.

The external force is

Fext~x,t !5
Bhac

4pl
e2uxu/leivt, ~16!

Fext~k,v!5
Bhac

2p~11l2k2!
. ~17!

The displacement in momentum space is obtained fr
Eq. ~5! with external force

ux~k,v!5
Bhac@~ ivh1a!1c66k

2#

2p~11l2k2!D~k,v!
, ~18!

uy~k,v!5
iBhacvh8

2p~11l2k2!D~k,v!
, ~19!

whereD(k,v) is the determinant of matrixA:

D~k,v!5@ ivh1a1c11~k!k2#@ ivh1a1c66k
2#2v2h82.

~20!

A. Small shear modulus approximation

Very often bothc66 andk are ‘‘small.’’ If c66k
2 is small

compared to (vh1a) one readily reexpresses the result
the form

ux~k,v!5
Bhac

2pa~v!@11k2
„c11/a~v!1l2

…#

5
2haclC

2 ~v!

B@11k2lac
2 ~v!#

, ~21!

uy~k,v!5
ivh8

ivh1a
ux~k,v!, ~22!

where a(v)[ ivh1a2v2h82/( ivh1a) and modified
Campbell penetration depthlC

2 (v):

lC
2 ~v![

c11

a~v!
5

B2~ ivh1a!

4p@~ ivh1a!22v2h82#

5
B2~ iv1tanuHvM !

4ph@~ iv1tanuHvM !22v2 tan2uH#

52
B2~ iv1tanuHvM !cos2 uH

4ph@v2V1~0!#@v2V1~0!#
. ~23!

The frequency dependent complex ac penetration depth
introduced:

lac
2 ~v![l21lC

2 ~v!. ~24!

As is in the usual case7,8 h850 this quantity determines bot
the surface impedance
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Zs~v!5
4p i

c2
vlac~v!. ~25!

and the ac resistivity rac(v)[E(x)/J(x)5(4p i /
c2)vlac

2 (v). These two quantities exhibit resonance in t
clean limit. In Fig. 2 real and imaginary parts of surfa
impedance for various values of cosuH and b[B/Hc1510
are shown. Whenk2c66 is not negligible but still small com-
pared toa one can correct perturbatively the expression
lac:

Dlac
2 5

c66v
2h82

~a1 ivh!@~a1 ivh!22v2h82#
. ~26!

The dependence of the resonance peak nearc6650 ~the melt-
ing of the vortex lattice! on c66 is quite regular.

B. General case

When thec66k
2 term in Eqs.~18!–~20! is not small one

can, following Ref. 7, calculate ac electric and magnetic fi
components caused by vortex displacements. One obtain
following expression for this part of the ac magnetic field

B1~x,v!5
2

b H r B~21!

@11k1
2~v!#@11k1

2~v!#

1
r B~k1!

@11k1
2~v!#@k1

2~v!2k1
2~v!#

1
r B~k2!

@11k2
2~v!#@k1

2~v!2k1
2~v!#

J , ~27!

where poleski ~zeroes of determinant! and corresponding
residuar i are

k1,25
B6AB22AC

A
,

FIG. 2. Frequency dependance of the surface impedance~real
and imaginary parts! for cosuH50.1,0.3,0.6,1. Magnetic induction
B510 Hc1.
r

d
the

A[b2a2 iv cosuH ,

B[
1

2
@4v224a228iva cosuH

1~a1 iv cosuH!~4b11!#,

C[24~v22a222iva cosuH!

r B~q![~q/42a2 iv cosuH!exp~ iqx!. ~28!

Here we use ‘‘natural’’ units. Unit of length isl, unit of
magnetic field isHc1 :b[B/Hc1. Similarly the electric field
part caused by the vortex displacements is

E1~x,v!5
2

b H r E~21!

@11k1
2~v!#@11k1

2~v!#

1
r E~k1!

@11k1
2~v!#@k1

2~v!2k1
2~v!#

1
r E~k2!

@11k2
2~v!#@k1

2~v!2k1
2~v!#

J , ~29!

where now the residua are

r E~q![
v~q/42a2 iv cosuH!

q
exp~ iqx!. ~30!

This should be superimposed with the Meissner field p
Generally the microwave impedance is given by

Z~v!5
4pE1~x50!

cB1~x50!
. ~31!

As an example we compare the exact expression for the
part with the approximate one given by Eq.~25! in Fig. 3
~for b510,cosuH50.3). Generally resonance becom
sharper for larger shear moduli.

Similar resonance effects can be seen also in the
quency dependences of ac resistivity and magnetic per
ability of a slab of thicknessd. The complex ac resistivity is

rac~v!ux505E1~x50!/J~x50!, ~32!

where the current density on the surface isJ(x50)
5(c/4p)(]/]x)B1(x)ux50. The magnetic permeability is
calculated from

FIG. 3. Comparison of the exact expression for real part
surface impedance~accounting for the effect of shear modulusc66)
with an approximate one given by much simpler Eq.~26! for
cosuH50.3, B510 Hc1.
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m5^B1~x!/hac&, ~33!

where^•••& denoted average over the sample.

IV. EFFECT OF ANISOTROPY

The ac experiments are rarely carried out on relativ
isotropic low-Tc materials such as Nb. Usually one wou
like to study highly anisotropic materials such as high-Tc
superconductors. The results of the previous Secs. II an
can be easily extended to the case of anisotropic th
dimencional~3D! superconductor. We will consider the ca
of the uniaxial anisotropic superconductor~such as YBCO!
with the c axis perpendicular to the sample surface and v
tices parallel to eithera or b directions considered equivalen
for simplicity, see Fig. 1~a!. The anisotropy is characterize
by the coefficientG[Amc /mab.1. In this case one shoul
account for anisotropy of the parameters characterizing
tex matter elasticity, pinning force, and viscousity for vort
displacements along and perpendicular to the sample su
~our y andx directions, respectively!.

Various properties of the mixed state in anisotropic sup
conductors were extensively studied in a number of wo
~see e.g., reviews 12,15 and references therein!. For our pur-
poses we make use the appropriate expressions for con
ing scalar quantities appearing in the isotropic case into g
erally tensorial quantities. Using the anisotropy coefficienG
we relate them to an equivalent isotropic superconductor~for
which all the quantities will be marked with subscript ‘‘0’’!.
Different vortex viscousities along thex andy axes are15,16
te
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hx5Gh0 , hy5G21h0 . ~34!

As far as Labusch parameter is conserned we assume
vortex pinning is mainly provided by pointlike pins sep
rated by distances of orderL in ab plane. Thus the anisot
ropy of the Labusch parameterax,y is determined by the
anisotropy of the vortex line tensionPx,y for displacements
of a vortex along thec axis and along theab plane.12,17

Components of Labusch parameters become

ax5Ga0 , ay5G21a0 , ~35!

wherea05P0 /L2. Changes in elastic properties of the vo
tex lattices due to anisotropy are as follows. While the co
pression modulusc11 remains unchanged in the smallk limit
~nondispersive part!, the shear modulusc66 for displace-
ments along they axis is significantly reduced.15,18–20

c66
uu 5

1

G3
c66

(0)5
BF0

64p2l2G3
. ~36!

The off diagonal components of viscousity tensorhxy
should obey the Onsager principle, thus since it is a phen
enological parameter at the present time, we write as be

hxy52hyx5h8. ~37!

After these modifications the matrixAi j in Eq. ~5! takes
the form
Ai j 5S ~ iVhx1ax!1c11k
2 iVh8

2 iVh8 ~ iVhy1ay!1c66
uu k2D 5S G~ iVh01a0!1

c11

G
k2 iVh8

2 iVh8
1

G S iVh01a01
1

G2
c66

(0)k2D D . ~38!
on-
ve

a

di-
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an
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er-
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ped-
From Eq.~38! one can see that eigenfrequiencies de
mined by the condition detAi j 50 are still described by Eq
~7! with simple replacementsc11→c11/G andc66→c66/G2.
This means that elasticity now plays a lesser role in gove
ing the vortex oscillations compared to the pinning and v
cousity’s role which has been enhanced. Moreover the
of shear as compared to compression becomes negligible
the approximation made in Sec. IIIA becomes better. Exp
sion ~23! for the Campbell penetration depth derived in S
IIIA after replacementc11→c11/G becomes

lC
2 5

c11

Ga0~v!
, ~39!

wherea0(v) corresponds to isotropic superconductor. T
reduction in the Campbell penetration depth leads to co
sponding modifications in the ac penetration depthlac Eq.
~24! in turn influencing the surface impedance and the
resistivity. The position of the resonace peak however is
r-

-
-
le
nd
s-
.

e
e-

c
-

changed comparatively to equivalent isotropic superc
ductor ~although the polarization of the displacement wa
changes!.

V. DISCUSSION

In this paper we determined conditions under which
nonoverdamped ‘‘rotation’’~around pinning centers! waves
exist in clean type-II superconductors. There are clear in
cations that these conditions can be met in untwinned YB
single crystals.2 It is even possible that these conditions c
be met in some low-Tc materials such as superclean Nb14

Excitation of such waves by applied ac field near the surf
is considered. The simplest realistic geometry is the sup
conducting half space with the dc magnetic field creat
vortices parallel to the surface. We considered the direc
of the surface ac field parallel to the dc magnetic field. In t
case linear response characteristics such as surface im
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ance, ac resistivity and magnetic permeability were cal
lated using the elasticity theory of the vortex lattice. T
most pronounced effect of the rotation waves is resonanc
characteristic frequency of orderVs5a/h8. It is comparable
or larger than the depinning frequencyVdepin5a/h which is
of order 102100 GHz.13

In the region of resonance amplitude of vortex displa
ments become quite large and nonlinear effects might s
up. Qualitatively one expects the following. Vortex lattic
can be at least locally destroyed. Therefore Larkin doma
will be smaller leading to increase in critical current and t
-

at

-
w

s

melting line on theB-T phase diagram shifts to lower value
of the magnetic field.
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