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Abstract

Vanishing points and vanishing lines are useful information in computer vision. In this study, an interesting dual
property of vanishing point is "rst introduced. Next, we point out that there also exists a dual property of vanishing line.
With the dual vanishing point and vanishing line properties, some 3D intersection inference can be made based on their
image lines. Two applications are given to illustrate the usage of the new results. The "rst one is to derive the 3D pose
determination of a circle using two parallel image lines. The second one uses six specially designed 3D lines to adjust the
cameras with respect to a "xture in a binocular vision system such that the resultant camera coordinate axes become
parallel. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Line segments are reliable feature [1]. The reasons are
that (1) lines are not easily a!ected by occlusion, (2) a line
can achieve subpixel accuracy, and (3) the feature corre-
spondence problem is easier and less ambiguous. Thus,
lines are often used in computer vision, pattern recogni-
tion, scene matching, and image understanding, etc. In
these "elds, determining the relationship between the 2D
image and the 3D object is a challenging task. One
important property used frequently is the vanishing
point. This property is about the perspective projection
of parallel lines in the 3D space [2}5]. Many researchers
used vanishing points in automatic manufacturing, ve-
hicle navigation [6,7], object recognition [8], object re-

construction [9], and camera calibration [10,11], etc.
According to the vanishing point property, perspective
projections of several parallel 3D object lines meet at
a vanishing point on the image plane [5] if the 3D lines
are not parallel to the image plane. In this study, we infer
the 3D information of parallel image lines. In this reverse
manner, the dual property of the vanishing point, called
the dual vanishing point property, is investigated and we
obtain several properties in perspective geometry. This
property shows that the corresponding 3D lines, which
are assumed to belong to an object plane, of the parallel
image lines generally intersect at a point. We refer to the
intersection point as the 3D inferred intersection point
(IIP). Moreover, the line de"ned by the 3D IIP and the
center of projection (COP) is parallel to the parallel
image lines.

Next, we examine the 3D IIPs on an object plane for
inferring the 3D line information from multiple groups of
parallel image lines. We point out that these IIPs will lie
on a common line. Since this phenomenon is like the
vanishing line property, we called it the dual vanishing
line property. Several related properties are also given in
this study.
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Fig. 1. The dual vanishing point property.

With the dual vanishing point and vanishing line prop-
erties, some 3D line properties can be found from their
corresponding image lines, namely, line parallelism or
line intersection properties. Although the observed 2D
image line properties are not adequate for the recovery of
the corresponding 3D line equation, yet the dual vanish-
ing point and line properties can be useful. We shall give
two applications of these dual properties. One is to dem-
onstrate the use of this new theory in the 3D pose
determination of a circle using a set of two parallel image
lines. In this application the pose parameters can be
solved directly without transferring the circle image (an
ellipse) into a circular shape as in the method by
Kanatani and Liu [12]. Thus it simpli"es the solving
process. In the second application, a novel camera calib-
ration method for a standard binocular vision system
using six 3D lines in a specially designed con"guration
is given. The organization of the paper is as follows.
Sections 2 and 3 present the dual properties. Section 4
addresses the various intersection con"gurations of 2D
image lines corresponding to two or more coplanar or
non-coplanar 3D lines. Sections 5 and 6 give two applica-
tions of the dual properties. Finally, Section 7 is the
conclusion.

2. The dual vanishing point property

In the following, we "rst study the dual vanishing point
property through geometric reasoning of parallel lines on
the image plane. Assume the corresponding 3D lines of
the parallel image lines belong to an object plane.

Theorem 1. If two parallel lines l
1

and l
2

on the image plane
are not parallel to a 3D object plane W and the COP (point
G) is not on plane W, then

(a) lines l
1

and l
2

lead to a 3D IIP (H) on plane W, that is,
their corresponding 3D lines ¸

1
and ¸

2
will intersect at

a point (H), when extended.
(b) line GH is parallel to l

1
and l

2
.

Proof. As depicted in Fig. 1, line l
1

and point G de"ne
a plane P

1
, and line l

2
and point G de"ne a plane P

2
.

Since l
1

and l
2

are parallel image lines and G is on both
planes P

1
and P

2
, planes P

1
and P

2
intersect at a line, say

¸
G
, that passes through point G.1
(a) To show lines ¸

1
and ¸

2
have an intersection point

(i.e., 3D IIP): Lines ¸
1

and ¸
2

are the intersection lines of
plane P

1
and plane W and of plane P

2
and plane W,

respectively. Since planes P
1
, P

2
, and W are not parallel,

they intersect at a point (H). Point H must be the intersec-
tion point between line ¸

G
and plane W. It is the intersec-

tion point between lines ¸
1

and ¸
2
, i.e., the IIP.

(b) To show line GH is parallel to l
1
and l

2
: We already

know that GH and l
1

are on plane P
1

and that GH and

l
2
are on plane P

2
. Assume that GH is not parallel to lines

l
1

and l
2
, then GH intersects l

1
and l

2
at points E and F,

respectively. Since line GH intersects two lines l
1

and
l
2

on the image plane at two points, it must lie on the
image plane. This is a contradiction to the fact that point

G is not on the image plane. Thus, GH is parallel to lines

l
1

and l
2
. This also implies GH is parallel to the image

plane. h

Let the X and Y axes of the camera (X}>}Z) coordi-
nate system be parallel to the x and y axes of the image
(x}y) plane; the Z axis is the optical axis of the camera.
Also let point G and the origin of the image plane be at
(0, 0, 0) and (0, 0, f ), respectively. Given the equation of
plane W, conventionally one may estimate the 3D IIP for
image lines as follows. The backprojection planes de"ned
by the parallel image lines and the COP are calculated.
They intersect plane W at two object lines. The intersec-
tion point of the two object lines can then be computed.
Here based on Theorem 1, Lemma 1 gives a simpler
method.

Lemma 1. Let the equations of parallel image lines l
1

and
l
2

be px#qy#r
i
"0, i"1, 2, p2#q2O0, and the

object plane equation of W be AX#B>#CZ#D
"0, then the 3D IIP, H, on the plane W is at (!qD/
(qA!pB),pD/(qA!pB),0).

Proof. According to Theorem 1, the 3D IIP of the parallel
image lines is the intersection point of the plane W and

the line GH. Thus if both p and q are not equal to zero,
the 3D IIP (X

0
, >

0
, Z

0
) satis"es both equations

AX#B>#D"0 and X/q">/(!p) since Z"0. As
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a result, X
0
"!qD/(qA!pB), >

0
"pD/(qA!pB), and

Z
0
"0. On the other hand, if p is zero (q will not be zero

in such a case since p2#q2O0), GH will be the X-axis,
thus X

0
"!D/A,>

0
"0, and Z

0
"0. Similarly, if q is

zero, GH is the Y-axis, thus X
0
"0, >

0
"!D/B, and

Z
0
"0. If both A and B are equal to zero, plane

=(Z"!D/C) is parallel to the image plane, the 3D
corresponding lines are parallel and the IIP is at in"nity.
In summary,

X
0
"

!qD

qA!pB
, >

0
"

pD

qA!pB
and Z

0
"0.

This lemma also makes it easier to estimate the equa-
tions of 3D object lines. According to the equation
of parallel lines, the backprojection planes are
pX#q>#(r

i
/f)Z"0, where f is the e!ective focal

length of the camera. The direction cosines (N
Xi

, N
Yi
, N

Zi
)

of the 3D object lines can be determined as

(N
Xi

, N
Yi
, N

Zi
)"(A, B, C)](p, q, r

i
/f ), (1)

since (N
Xi

, N
Yi
, N

Zi
) is perpendicular to both the surface

normal vectors, (A, B, C) and (p, q, ri/f), of plane W and
the backprojection plane.

Therefore, the equation of the 3D object line is

X#qD/(qA!pB)

N
Xi

"

>!pD/(qA!pB)

N
Yi

"

Z

N
Zi

(2)

if N
Xi

, N
Yi
, and N

Zi
are all not zero.

If N
Xi
"0, X is equal to X

0
. The terms in Y and Z of

the line equation in Eq. (2) can be calculated. Similarly, if
N

Yi
"0, > is equal to >

0
, the terms in X and Z can also

be obtained. K

Lemma 2. Let lines ¸
1

and ¸
2

on a plane W intersect at

a point H. If line GH is parallel to the image plane, then the
images of ¸

1
and ¸

2
, denoted by l

1
and l

2
, are parallel to

each other and parallel to GH, too.

Proof. As illustrated in Fig. 1, line ¸
1

and point G de-
"ne a plane P

1
, and line ¸

2
and point G de"ne a plane P

2
.

The planes P
1

and P
2

intersect the image plane at
the image lines l

1
and l

2
. Since points G and H are

on both planes P
1

and P
2
, GH is the intersection of

planes P
1

and P
2
.

(a) First, we show that l
1

and l
2

are parallel to each
other: Assume l

1
and l

2
are not parallel to each other.

Since l
1

and l
2

are on the image plane, they intersect at
a point k. Therefore, point k belongs to both planes

P
1
and P

2
and is, thus, on line GH. This is a contradiction

to the fact that GH is parallel to and not on the image
plane. So l

1
and l

2
are parallel to each other.

(b) Next, we show that l
1

and l
2

are parallel to

GH: Because l
1

and GH are on plane P
1
, if l

1
is not

parallel to GH, GH intersects l
1

and, therefore, the image

plane. This is a contradiction to that GH is parallel to
and not on the image plane. Thus l

1
must be parallel to

GH. Similarly, it can be shown that l
2

is parallel to

GH. h

In the following, it is easy to see that the dual property
is still valid in the cases of multiple parallel lines.

Lemma 3. Let g"Ml
i
D 1)i)nN be a set of n parallel

lines in the image plane. If the object plane W is not parallel
to any line in g, then

(a) all the 3D corresponding lines for lines in g on plane
W meet at a point H.

(b) line GH is parallel to all lines in g and the image plane
as well.

Proof. By Theorem 1, any two parallel lines l
i
and l

j
in

g have a 3D IIP H
k
. In addition, line GH

k
is parallel to

lines l
i
and l

j
and H

k
is on plane W. All 3D IIP H

k
must be

identical since all GH
k
is parallel to lines in g and passes

the COP. Thus Lemma 3 is valid. h

Thus the 3D IIP can be estimated. Multiple parallel
image lines have the same 3D IIP H on a 3D plane W,
AX#B>#CZ#D"0. Similar to Lemma 1, the 3D
IIP is at (!qD/(qA!pB), pD/(qA!pB), 0).

Lemma 4. Let a set of 3D concurrent lines
G"M¸

i
D 1)i)nN intersect at a common point H and

g"Ml
i
D 1)i)nN be the set of their corresponding image

lines. If line GH is parallel to the image plane, then lines in
g are parallel to each other.

Proof. Since GH is parallel to the image plane, by Lemma
2, we can obtain that l

1
in g is parallel to l

2
, l

2
is parallel

to l
3
, and l

n~1
is parallel to l

n
and so on. Therefore,

l
1
, l

2
,2, and l

n
in g are parallel to each other. h

3. The dual vanishing line property

In this section, the behavior of the 3D IIPs is investi-
gated. The 3D IIPs are shown to be collinear. This
property is corresponding to the vanishing line property
[5].

Lemma 5 (The dual vanishing line property). The 3D IIPs
on a 3D object plane W for all groups of parallel image
lines are collinear. Besides, the collinear line is parallel to
the image plane and lies on the plane of Z"0.

Proof. Let g
1
, g

2
,2, and g

n
be n groups of parallel image

lines. Also let H
i
be the 3D IIP for group g

i
(if g

i
is parallel
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Fig. 2. The dual vanishing line property.

Fig. 3. Line L de"ned by the convergent points is parallel to the
vanishing line.

Fig. 4. Line H
p
H

q
is parallel to the image plane.

to plane W, the 3D IIP is at the in"nity). According to

Lemma 3, GH
i
is parallel to lines in g

i
(so also parallel to

the image plane) and H
i
is on the plane W. Thus, all 3D

IIPs H
i
on plane W form a line L parallel to the image

plane (see Fig. 2). The Z coordinate of all IIPs H
i
is 0.

Therefore, line L is on the X}> plane. h

To express Lemma 5 in an algebraic form, let there
exist n groups of parallel lines g

i
, i"1,2, n on the image

plane. The equations of parallel lines in group g
i

are
p
i
x#q

i
y#r

ij
"0, i"1,2, n, and j"1,2, m

i
, where

m
i
is the number of lines in group g

i
. All 3D object line for

group g
i

on a plane W, expressed by AX#B>#
CZ#D"0, has a 3D IIP H

i
(Lemma 3). All IIP H

i
form

line L on X}> plane whose equation is

¸"G A
X

>BKAX#B>#D"0H for Z"0.

Lemma 6. The collinear line L dexned by all 3D IIPs in the
dual vanishing line property is parallel to the vanishing line
for a plane W on the image plane.

Proof. The equation of the vanishing line for all planes
AX#B>#CZ#D

i
"0 is Ax#By#Cf"0 [5].

Thus, the collinear line L of the 3D IIPs,
AX#B>#D"0, for Z"0 is parallel to the vanishing
line (see Fig. 3). h

We have investigated the IIPs on a unique object
plane. What happens if the object planes are di!erent for
di!erent image parallel lines. According to Lemmas
3 and 5, the following lemma is in order.

Lemma 7. Let g
p
"Ml

pi
D 1)i)nN and g

q
"Ml

qi
D 1)

i)mN be two groups of parallel image lines. Let the 3D
IIP on a backprojected object plane =

p
for g

p
be point

H
p
. Also let the 3D IIP on a distinct object plane =

q
for

g
q

be point H
q
. Then line H

p
H

q
is parallel to the image

plane (Fig. 4).

Example. Fig. 5(a) displays the image of a vase. Let
l
pi

and l
qi
, for i"1, 2, be two sets of parallel lines in the

image. Let coplanar lines ¸p
1

and ¸p
2

be the 3D tangent
lines corresponding to l

p1
and l

p2
, respectively. Also let

coplanar lines ¸q
1

and ¸q
2

be the 3D tangent lines
corresponding to l

q1
and l

q2
, respectively. Since the radii

of the circles in space de"ned by the two sets of tangent
points P

i
and Q

i
are di!erent, the two sets of tangent lines

¸p
i

and ¸q
i
, i"1, 2, are not coplanar. However, by

Lemma 7, we can gain that the line de"ned by the two 3D
IIPs of the 3D object lines ¸p

i
and ¸q

i
is parallel to the

image plane (Fig. 5(b)).

Lemma 8. The 3D IIPs on diwerent object planes for
diwerent groups of parallel image lines lie on a common
plane V. The plane V is parallel to the image plane. In
addition, it passes through the COP.

Proof. According to Lemma 7 and its proof, any two
groups of parallel image lines have 3D IIPs H

i
and H

j
on
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Fig. 5. (a) The image of a vase and parallel tangent lines;
(b) The 3D convergent points.

Fig. 6. (a) Coplanar non-parallel line segments intersect at a point when extended. (b) Three types of images for (a).

a plane V de"ned by GH
i

and GH
j
. Thus, plane V is

parallel to the image plane (see Fig. 4) and also passes

point G (the COP) since GH
i
and GH

j
are parallel to the

image plane, respectively. h

According to Lemma 8, the equation of plane V is
Z"0.

Up to now, the dual properties of the vanishing point
and vanishing line have been established. In the following
sections, a general model for the 3D intersection infer-
ence from image lines is illustrated and two applications
of the dual properties are given.

4. A general model for the 3D line intersection inference
from their image lines

In this section, we examine the properties between the
3D lines and their corresponding image lines. First, If 3D
lines are parallel, then their image lines generally inter-
sect at a vanishing point on the image plane. If the 3D
lines are not parallel, then their image lines may or may
not intersect at an intersection point. Furthermore, the
intersection point (or the extrapolated one) on the image

plane may or may not correspond to the real 3D intersec-
tion point (if there is one). A general model for the 3D line
inference from their image lines will be given, no matter
whether the 3D lines are parallel or non-parallel. In the
following, we start with the projections of the 3D cop-
lanar, but non-parallel lines, then the projections 3D of
non-coplanar lines.

4.1. Projections of 3D coplanar lines

Let AB and CD be two 3D coplanar, but non-parallel
line segments on a plane. It will be pointed out that
unless the image lines of the 3D coplanar lines intersect at
an internal point, the extended intersection point of the
image lines may not be the projection of the true intersec-
tion point of the 3D coplanar lines. As shown in Fig. 6,
point E is closer to point B (or D) than point A (or C). Let

line segments ab and cd be the projections of AB and

CD. There are three di!erent projection types for the

images of AB and CD.

Type C1 (True intersection). If the intersection point, e, of

the extended line segments ab and cd is the projection of the
true intersection point E, then the image lines are said to be
of Type C1.

In this case, point e is closer to point b (or d) than point
a (or c).

Type C2 (Parallel case). If line ab is parallel to line

cd, and therefore, the true intersection point E has no
corresponding image point, then the image lines are said to
be of Type C2.

This case implies that the projected lines of two inter-
secting lines are parallel. According to Lemma 2, this is

the case if line GE is parallel to the image plane.

Type C3 (False intersection). If the intersection point k of

the two extended line segments ab and cd is not correspond-
ing to the true intersection point, then the image lines are
said to be of Type C3.
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Fig. 7. The projection geometry of Type 3.

Fig. 8. (a) Common projection ray for non-coplanar lines.
(b) Projections of non-coplanar lines in Case 2.

Type C3 is di$cult to visualize without the aid of
the above lemmas. Consider the case where point E is lo-
cated behind the X}> plane (i.e., the plane at Z "0), as
shown in Fig. 7. Assume there exists a point H, on the

X}> plane, in-between AE and CE such that line GH is
parallel to the image plane. Let points R and S be the in-

tersection points of lines AH, CH with the image plane,

respectively. Since GH is parallel to the image plane, by

Lemma 2, we know that the projection lines, aR and cS,

of lines AH and CH are parallel.

Let line MN be the intersection line between plane
ABCD and the image plane, and let points M and N be

the respective intersection points of lines AB, CD with the

image plane. Since point H is located between lines AB

and CD, points R and S must be located between points

M and N. Line aR is parallel to line cS, so ab (or aM) and

cd (or cN) must be non-parallel lines and intersect at
a point k. Point k is closer to point a (and c) rather than

point b (and d). However, AB and CD will not have
a second intersection except point E. Therefore, point
k cannot be the correct projection of the true intersection
point E. Note that in this case, the closeness between the
3D spatial points (e.g. between B and D) is just opposite
to the relation between their corresponding 2D image
points.

Let the X}>}Z coordinate system be de"ned as before.
Now, based on the above dual properties, a general
perspective projection model for 3D coplanar lines can
be summarized as follows: (1) If the intersection point
E is located in front of the X}> plane (i.e., the Z coordi-
nate of point E is positive), the line projections is of Type
C1. (2) If point E is on the X}> plane, then the line
projection is of Type C2. (3) A Type C3 case occurs if
point E is located behind the X}> plane (i.e., the Z coor-
dinate of point E is negative).

4.2. Projections of 3D non-coplanar lines

The projections of non-coplanar lines are seldom dis-
cussed. Using the properties and projection types men-
tioned above, we can formulate this problem as follows.

Let ¸
1

and ¸
2

be two non-coplanar lines. They must
be neither parallel nor intersecting. Let point G (the
COP) and ¸

1
de"ne plane=

1
, and point G and ¸

2
de"ne

plane =
2

(see Fig. 8(a)). Since lines ¸
1

and ¸
2

are not
parallel, there are two general cases of ¸

1
and ¸

2
with

respect to the intersection line between planes =
1

and
=

2
. In case 1 both lines ¸

1
and ¸

2
are not parallel to the

intersection line; assume ¸
1

intersects plane=
2

at point
A and line ¸

2
intersects plane=

1
at point B, as shown in

Fig. 8(a). In case 2 only one of the lines ¸
1

and ¸
2

is not
parallel to the intersection line; assume arbitrarily line
¸
2

intersects plane=
1

at point B, as shown in Fig. 8(b).
In Case 1, since points G, A, and B belong to both

planes=
1
and=

2
(i.e., on the intersection line of the two

planes), the projections of points A and B will be identical.

The backprojection rays GA and GB are collinear, so it is
referred to as the common backprojection ray for points
A and B on lines ¸

1
and ¸

2
, respectively. There also exists

a line ¸
1
' on plane =

1
which is parallel to line ¸

1
and

intersects ¸
2

at point B (see Fig. 8(a)). The projections of
¸
1

and ¸
2

are the same as the projections of coplanar
lines ¸

1
' and ¸

2
. Using the common backprojection ray,

we can convert the projections of non-coplanar lines to
the projections of non-parallel lines on the same plane as
mentioned in the above subsection. According to the
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Fig. 9. The canonical image of a circle.

three projection types described in Section 4.1, the pro-

jections of ¸
1

(or ¸
1
) and ¸

2
are parallel if line GB is

parallel to the image plane. On the other hand, the
projections of ¸

1
and ¸

2
may have an intersection point

that is either a real intersection or a false intersection. If
point B is in front of the plane <(Z"0), the image of the
object lines is of Type C1. If point B is behind the plane
<(Z"0), the image is of Type C2.

Case 2 is similar to Case 1. Let ¸
1
' be a line on plane

=
1

and pass through point B (see Fig. 8(b)). Since ¸
1
' is

coplanar with ¸
1
, the possible projections of lines ¸

1
and

¸
2

are the same as the projections of lines ¸
1
' and ¸

2
. As

a result, Case 2 can be converted to the projections of
coplanar lines. There are three types of projections de-
pending on the position of point B.

Up to now, a general model for the perspective projec-
tions of arbitrary lines (coplanar or non-coplanar) has
been established. Based on the above results, the geometric
reasoning of the 3D lines in an image can be done next.

4.3. 3D line intersection inference

For presentation convenience, we consider only the
case of two image lines. The case of multiple image lines
can be obtained in a similar manner. Also, assume the 3D
objects producing the image lines are lines. The case in
which an image line is projected from a curve or multiple
lines is out of the scope of this study.

4.3.1. The case of parallel image lines
If the image lines are parallel, there are three possible

combinations of the corresponding 3D object lines:

1. The 3D lines are parallel (this is the case when the 3D
object plane is parallel to the image lines);

2. The 3D lines have a 3D IIP (this is true if the object
plane is not parallel to the image lines);

3. The 3D lines are neither parallel nor intersecting (this is
the case when the corresponding 3D lines of the image
line do not belong to the same plane, as discussed in
Section 4.2).

4.3.2. The case of non-parallel image lines
If the image lines are not parallel, they must have either

an apparent intersection point p (i.e., the two image lines
intersect at an internal point) or an extrapolated intersec-
tion point p (i.e., the two image lines intersect after they
are extended). The 3D line intersection properties for
such non-parallel image lines can be inferred as follows.

(1) For the case of an apparent intersection point p, there
are two situations of the 3D lines:

(a) The 3D lines are coplanar and intersect,
(b) The 3D lines are non-coplanar (this is the case

when one object line is occluded by another ob-
ject line).

(2) For the case of an extrapolated intersection point p,
there are three situations for the 3D lines.

(a) The 3D lines are coplanar and parallel. Point p is
the vanishing point;

(b) The 3D lines are coplanar and intersect if extended
(this is the case when the image is of Type C1 or
of Type C3);

(c) The 3D lines are non-coplanar, as discussed in
Section 4.2.

5. The 3D pose parameters of a circle using a set of two
parallel image lines

In this section, we show the use of the dual property in
determining the 3D pose parameters of a circle. Due to
the perspective distortion, this problem is not easy as it
appears. Kanatani and Liu [12] used a matrix trans-
formation technique to convert a circle image into
a regular type with the ellipse center at the image center
and the major and minor axes on the horizontal and
vertical axes of the image plane, respectively. This regular
type image is then converted again into a circular one by
applying another transformation. Therefore, the pose
parameters associated with the "nal circular image can
be estimated by using matrix trace properties. Finally,
Kanatani and Liu used inverse transformations to obtain
the original pose parameters of the circle.

Here, the solution process can be simpli"ed. It resolves
the 3D pose parameters directly from the typical type of
circle images without the extra transformation into a cir-
cular one and without the usage of the matrix trans-
formation. In this method, the surface orientation of the
circle is a geometric solution with a clear geometric
interpretation.

Fig. 9 depicts the typical type of circle image (an

ellipse). The major axis pq of the ellipse is on the x-axis of

the image plane and the minor axis bc is on the y-axis. It
is readily shown that the tangent lines l

1
and l

2
to the

endpoints of the major axis pq is parallel to each other
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Fig. 10. (a) The perspective projection of the canonical image. (b) The images of the circle on the >}Z plane.

and parallel to the y-axis, too. We will establish
the relations between the parallel tangent lines and
their corresponding 3D lines by the dual property.
Here we show how to solve the orientation of the circle.
The position center of the circle can then be obtained
easily.

According to the dual vanishing point property,
the corresponding 3D lines of the parallel tangent lines
l
1

and l
2

will have a 3D IIP H as shown in Fig. 10(a).
De"ne the camera (X}>}Z) coordinate system and
the image (x}y) coordinate system as above. Since the
circle image is symmetrical around the y-axis, the circle
is symmetrical around the >}Z plane and points P
and Q are symmetrical around the >}Z plane.
Therefore, the surface normal n of the circle with respect
to the X}>}Z coordinate system can be expressed
as

n"(0, sin h,!cos h),

where h is the angle between vector n and the camera
optical axis (the Z-axis), and 03)h)903.

Let PQ and BC be the 3D corresponding chords of pq

and bc, and points M and m be the center points of PQ

and pq, respectively. Also let u be the angle between HM

and HP (or HQ). Lines GM (the camera optical axis) and

HM will be perpendicular to and bisect PQ since they are
on the >}Z plane.

After applying the dual property of the vanishing
point, as shown in Fig. 10(a) and (b), we can set up four

equations, i.e., Eqs. (3)}(6), in four unknowns h, u,

DPQD, and DGMD as follows. Correspondingly, h can be
solved.

DpqD
f
"

DPQD

DGMD
for * Gpq is similar to *GPQ, (3)

where f is the e!ective focal length.

tan u"

DPMD

DHMD
"

DPQD/2

DGMD/sinh
"

DpqDsinh
2f

(4)

and

R cos u"DPQD/2 where R is the given circle radius. (5)

In addition, from the similar triangles *Gmb and *GM@B,
we attain

DbmD

DBM@D
"

DGmD

DGM@D
, or

DbmD
R(1#sin u)cos h

"

f

DGMD#R(1#sin u)sin h
, (6)

since DBM@D"DBMDcos h and DBMD"R(1#sin u). From
Eq. (4),

sin u"DpqDsin h/J4f2#DpqD2sin2 h (7)

and

cos u"2f / J4f2#DpqD2sin2 h (8)
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Fig. 11. Calibration setup in a stereo vision system. Fig. 12. An image of the six lines.

Also, from Eq. (3),

DGMD"
f DPQD

DpqD
"

2f R cos u

DpqD
"

2fR

DpqD

2f

J4f2#DpqD2sin2h

(9)

Eq. (6) can be rewritten as fR(1#sin u)cos h"
DbmD(DGMD#R(1#sin u)sin h). It can then be expressed
in terms of h by applying Eqs. (7)}(9).

R(1#sin u) ( fcos h!DbmDsin h)"DbmD
2f R cos u

DpqD
.

After some rearrangement,

DpqD2( f 2#DbmD2)sin2 h"f2(DpqD2!4DbmD2).

Thus,

sin h"$

f

DpqDS
DpqD2!4DbmD2

f2#DbmD2
.

Therefore, h and the orientation of the circle can be
obtained by using the dual property. Besides, the surface
orientation n of the circle is a function of the lengths of

the major and the minor axes, i.e., DpqD and DbcD("2DbmD).
Once n bar is obtained, the position of the center of the
circle can also be derived easily.

6. The camera setup in a binocular vision system using six
specially designed 3D lines

Here the new theory is applied to set up two cameras
on a "xture (e.g., or on a robot head). The two cameras
will be adjusted such that (1) the relationship between the
cameras and the "xture meets a special geometry (for
instance, both the camera optical axes are perpendicular
to a special plane) and (2) the epipolar line for any spatial
point can be located readily in the two images.

We demonstrate new a simple vision-based method to
achieve the above two goals. In Fig. 11, two cameras are
to be set up on a "xture such that both the camera optical
axes are perpendicular to a special plane (the ;}< plane
to be de"ned next). Let the three axes of the "xture
coordinate system be the ;, <, and W axes with the
origin at point O

F
. Let ¸

a
, ¸

b
, ¸

c
, ¸

d
be four coplanar

lines on the ;}= plane and coplanar lines ¸
e
and ¸

f
on

the <}= plane. Furthermore, there are three non-
collinear points H

1
, H

2
, and H

3
on the;}< plane where

points H
1

and H
2

are on the U-axis and H
3

is on the
V-axis. Let lines ¸

a
and ¸

b
intersect at point H

1
; lines

¸
c
and ¸

d
intersect at H

2
; and lines ¸

e
and ¸

f
intersect at

H
3
, respectively. Besides, ¸

a
is parallel to ¸

c
and ¸

b
is

parallel to ¸
d
. Also assume only lines ¸

b
and ¸

c
intersect

at point P in front of the ;}< plane. Assume both
cameras are located above the ;}= plane and to the
right of the <}= plane. The cameras are so arranged
that lines ¸

a
, ¸

b
, ¸

c
, ¸

d
, ¸

e
, and ¸

f
are all visible. The

images of ¸
a
, ¸

b
, ¸

c
, and ¸

d
are denoted by l

ak
, l

bk
, l

ck
, and

l
dk

on image plane I
k
, for k"1 or 2, respectively. Lines

l
ak

and l
ck

de"ne a vanishing point v
1k

and lines l
bk

and
l
dk

de"ne another vanishing point v
2k

. Let the camera
coordinate systems of the two cameras be de"ned as
before, i.e., X

k
}>

k
}Z

k
coordinate systems, k"1, 2. Ini-

tially, the X
k
, >

k
, and Z

k
axes are roughly in the;, < and

W directions and the COPs of both cameras are located
behind the ;}< plane. (The plane Z

k
"0 contains the

COP and is parallel to the image plane I
k
.)

Fig. 12 shows an image of the three line pairs. The
correspondences between l

ak
, l

bk
, l

ck
, l

dk
, l

ek
, l

fk
and ¸

a
, ¸

b
,

¸
c
, ¸

d
, ¸

e
, ¸

f
can be easily found using the image of

the sole intersection point P and the line adjacency rela-
tion. After the line correspondences are found, we at-
tempt to accomplish the goal set at the outset, namely to
arrange plane Z

k
"0, k"1, 2, to coincide with the ;}<

plane which contains points H
1
, H

2
, and H

3
. We can

design a procedure for the camera arrangement based
on Lemma 5 (or Lemma 8). Basically, if the plane Z

1
"0

(or Z
2
"0) is moved toward the ;}< plane such
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that it contains H
1

(or H
2
), the resultant image lines

l
a
and l

b
(or l

c
and l

d
) will become parallel to each other. If

image lines l
a
and l

b
(or l

c
and l

d
) are not parallel, it implies

that point H
1
(or H

2
) is either in front of the plane Z

k
"0

or behind the plane. If H
1

(or H
2
) is in the front, the two

image lines will converge downward in the image; other-
wise, the two image lines will converge upward. To be
more precise, the image plane adjustment is carried out in
the following way. First, the plane Z

1
"0 is translated

along the W direction such that image lines l
a

and
l
b
become parallel. By Theorem 1, H

1
is located on plane

Z
1
"0. Next, to make image lines l

c
and l

d
parallel,

camera 1 is rotated around an axis passing through
H

1
and parallel to the V-axis. The rotation is made such

that the resultant image lines l
c
and l

d
become more and

more parallel. In this way plane Z
1
"0 can be adjusted

gradually to contain both points H
1

and H
2
. Finally, if

the image lines l
e

and l
f

are not parallel, the camera is
rotated around an axis passing through H

1
and H

2
. The

rotation is intended to make l
e
and l

f
parallel. Note that

during the above camera adjustment process, the actual
process may not be perfect, so the camera adjustment
done at a latter stage may damage the result obtained at
an early stage, However, the damage can be generally
kept small. The process can be repeated to bring the
plane Z

1
"0 to a "nal position such that it contains

H
1
, H

2
, and H

3
. Similarly, the plane Z

2
"0 can be also

made to contain H
1
, H

2
, and H

3
. By doing so, both, the

resultant planes Z
1
"0 and Z

2
"0 become parallel.

Next, we will make the X
k

and >
k

axes, k"1, 2, be
parallel to the respective U and V axes as follows. Since
the vanishing line passing v

1k
and v

2k
, k"1, 2, is parallel

to the U-axis (Lemma 6), so the two vanishing lines are
parallel. In each image adjust the X

k
axis to be parallel to

its vanishing line. At this moment, the three axes of each
camera coordinate system are parallel to the three axes of
the "xture coordinate system. If the focal lengths are the
same (this is generally the case in a stereo vision system),
the two image planes become coplanar.

We can "nd the 3D position of the two COPs as
follows. By Theorem 1, line G

k
H

1
(or G

k
H

2
) is parallel to

lines l
ak

and l
bk

(or l
ck

and l
dk
,), for k"1 or 2. Since the

axes of the camera and the "xture coordinate systems are
parallel and the coordinates of point H

i
are known, the

position of the COP (G
k
) in the ;}<}= coordinate

system can then be calculated by intersecting two lines of
G

k
H

1
and G

k
H

2
, for k"1, 2.

Finally, either camera can be translated along the
V direction to make the V coordinate of the COP G

1
equal to that of the COP G

2
. As a consequence, the

baseline of the stereo vision becomes the common X-axis.
In this "nal parallel stereo vision system the epipolar line
for a point in raw i of one image will be in the ith raw of
the other image. Thus this method directly achieves the
goals by using the theory about the projections of six
spatial lines with the given special con"guration.

7. Conclusion

First, we study the dual vanishing point property.
Theorem 1 shows that (1) the 3D corresponding lines
of two parallel lines has an IIP (inferred intersection
point), and (2) the line de"ned by the COP and the
IIP is parallel to the image plane. Then the analysis is
successfully extended to multiple groups of parallel im-
age lines. Next, the 3D IIPs on a plane for any parallel
image lines are shown to be collinear. This is named the
dual vanishing line property. Some related properties are
then given.

Based on the derived properties, we study three
possible projection types (Types C1}C3) of coplanar
lines in 3D space. We then give a general model for
the 3D line intersection inference from their image
lines. Finally, we give two applications of the usage of
the new results. One is to determine the 3D pose
parameters of a circle using two parallel image
lines and the other is to set up the cameras in a
standard binocular vision system using six special 3D
lines.
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