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A Reinforcement Neuro-Fuzzy
Combiner for Multiobjective Control

Chin-Teng Lin and I-Fang Chung

Abstract—This paper proposes aneuro-fuzzy combine(NFC) the explicit tradeoff knowledge and defines the degree of
with reinforcement learning capability for solving multiobjective compromise among usually competing control goals.
control problems. The proposed NFC can combine. existing low- At present, the design of a hierarchical fuzzy controller

level controllers in a hierarchical way to form a multiobjective o . . .
fuzzy controller. It is assumed that each low-level (fuzzy or for multiobjective control relies heavily on trial-and-error and

nonfuzzy) controller has been well designed to serve a particular €xpert knowledge [1], [2]. The existing supervised-learning-
objective. The role of the NFC is to fuse the: actions decided by based neuro-fuzzy controllers [5]-[9] are usually impractical

the n low-level controllers and determine a proper action aCting to use for mul“objecnve Control, since they requ|re prec|se

on the environment (plant) at each time step. Hence, the NFC yining qata covering all control objectives. For some real-
can combine low-level controllers and achieve multiple objectives

(goals) at once. The NFC acts like a switch that chooses a Ioroloerworld applications, precise training data are usually difficult
action from the actions of low-level controllers according to the and expensive, if not impossible, to obtain. This is even
feedback information from the environment. In fact, the NFC true for the multiobjective control problems, where different
is a soft switch it allows more than one low-level actions to gpjectives have different priorities and are correlated with

be active with different degrees through fuzzy combination at : ; : :
each time step. An NFC can be designed by the trial-and-error each other. The reinforcement learning techniques, which

approach if enougha priori knowledge is available, or it can be ©Nly require scalar evaluation (calleginforcement signal
obtained by supervised learning if precise input/output training Of the controller output from the environment, could solve
data are available. In the more practical cases when there is no this problem. However, most applications of control archi-
instructive teaching information available, the NFC can learn by  tactures based on reinforcement learning have focused on

itself using the proposed reinforcement learning scheme. Adopted _. . .
with reinforcement learning capability, the NFC can learn to single objective [11], [12]. In general reinforcement learn-

achieve desired multiobjectives simultaneously through the rough iNg environments, we need to solve both teucturaland
reinforcement feedback from the environment, which contains temporalcredit assignment problems. In the structural credit

only critic information such as “success (good)” or *failure assignment problem, we need to attribute network error to
(bad)” for each desired objective. Computer simulations have gittarent nodes or weights. Most supervised neural learning
been conducted to illustrate the performance and applicability . .
of the proposed architecture and learning scheme. algorlthms (e.g., the backpropagation rgle) [1_3] can be used to
solve this problem. In the temporal credit assignment problem,
we need to assign credit or blame to each step (control
output) individually in long sequences leading up to eventual
successes or failures. This problem results from the fact that
I. INTRODUCTION a reinforcement signal may only be available at a time long

N fuzzy logic control, the hierarchical fuzzy controllers ar@fter & sequence of actions has occurred; this signal may be
I usually considered for solving the control problems witf@used by a network output (action) several time steps before
complex requirements, multiple goals (objectives), or multip Py the whole sequence of actions with varying degrees of
tasks [1]. The application examples ranging from the ca@ontribution. Several reinforcement learning methods such as
pole balancing problem [2] to recuperative turboshaft engif@mporal difference [14], [15] and Q-learning methods [16] can
control [3] and aircraft engine control [4]. A hierarchicalPe used to solve the temporal credit assignment problem. When
fuzzy control scheme permits the decomposition of a Comp|ggnsider the reinforcement learning for multiobjective control,
problem into a set of simpler ones. Once these simplée encounter another problem—thritualcredit assignment
problems have been solved using low-level controllers, th&joblem. In this problem, we need to assign credit or blame to
can be combined through a high-level fuzzy controller to son@ach action individually among all the actions decided by the

the larger problem. The high-level fuzzy controller contain@w-level controllers that try to achieve the multiple control
objectives. This problem becomes severe when the multiple

control objectives are complexly related and have different
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module. When presented with supervised training patterns
from multiple tasks, thg _expert modules compete with Qgch Environment
other to learn the training patterns, and this competition
is mediated by the gating module. The gating architecture
has been used to learn multiple tasks within the supervised
learning paradigm. Singh [18] extended the gating architecture
to a CQ €compositionalQ)-learning architecture that fits in
reinforcement learning environments. Similar architectures arevironment feedback
also studied in [19], [20]. In these architectures, only one
action is selected at each time step. Moreover, they focus
on the control problems with multiple discrete and sequential
tasks. Hence, they do not suit directly to the multiobjective
control problems considered in this paper, where we aim at  4gion 1
achieving multiple control objectives simultaneously. In [1],
Bonissone proposed the idea of using fuzzy gating module in Module Module teeeees Module
the gating architecture to design a hierarchical fuzzy controller. 1 2 n
The soft gating module allows more than one actions to be
active at any one time. However, no detailed design procedure
or learning scheme are proposed in [1]. ﬂ
In this paper, we adopt the concept of gating architecture
shown in Fig. 1 to solve the multiobjective control problems.
We propose aneuro-fuzzy combine(NFC) with reinforce- Fig. 1. Gating architecture.
ment learning capability to work as the gating module. The
NFC performs soft switching among the outputs (actioniz supervised learning scheme and a reinforcement learn-
of different low-level controllers. The soft switching allows P g

mg scheme for the NFC are then developed in Sections IV

more than one actions to be active with different degree . ; ;
anéj V, respectively. Convergence analysis of reinforcement

at each time step according to the environment states 09 ina is pronosed in Section V1. In Section VII. we aopl
feedback, which can be supervised- or reinforced-type. Tihe g IS prop § ' PPl

roposed NFC can combineexisting low-level controllers in . proposed architecture to the cart-pole balancing problem
prop . ng fow nd the crane control problem. Section VIII summarizes the
a hierarchical way to form a multiobjective fuzzy controller. | onclusions

is assumed that each low-level (fuzzy or nonfuzzy) controller
has been well designed to serve a particular objective. The
role of the NFC is to fuse the actions decided by the II. MULTIOBJECTIVE FUZZY CONTROL SYSTEM
low-level controllers and determine a proper action acting on This section introduces the structures and functions of the
the environment (plant) at each time step. Hence, the Nftoposed multiobjective fuzzy control system (MFCS) and
can combine low-level controllers and achieve multiobjectivess key component, neural fuzzy combiner (NFC). As shown
at once. The NFC results in smoother transitions betwegn Fig. 2, the structure of the MFCS is basically a gating
control actions. Moreover, it allows expert knowledge tarchitecture shown in Fig. 1, in which the soft switch is
be moved up into the gating module, so that the low-levedalized by the NFC in the MFCS. In the proposed MFCS,
controllers handle the dynamics, while the high-level NF&e use an NFC to combine low-level controllers, which are
deals with quasisteady state conditions, thus making the deséfgmoted as modules 1 to in Fig. 2. Each module receives
of low-level controllers easier. An NFC can be designed yn input vectorZ; from the environment, and produce a
the trial-and-error approach if enoughpriori knowledge is control signalf; fed into the NFC for further processing at
available, or it can be obtained by supervised learning déach time step, wherg is a sub-vector of the environment
precise input/output training data are available. In the moseate vectorl. It is assumed that each low-level (fuzzy
practical cases when no instructive teaching information @ nonfuzzy) controller has been well designed to serve a
available, the NFC can learn by itself using the proposed reiparticular objective of the required multiple objectives. Since
forcement learning scheme. This learning scheme is developedny techniques have been developed to design a controller
based on the proposed supervised learning scheme. Adogdted single objective control problem, these techniques can be
with reinforcement learning capability, the NFC can learn tapplied to design each low-level controller in the MFCS. These
achieve desired multiobjectives simultaneously through tiechniques include traditional control theorems such as PID
rough reinforcement feedback from the environment. The reentrol, fuzzy control [21], neuro-fuzzy control [5]-[10], etc.
inforcement feedback contains only critic information such a$otice that while achieving decomposition of a multiobjective
“success (good)” or “failure (bad)” for each desired objectiveask into a set of single-objective tasks may be difficult, or
The outline of this paper is as follows. In Section Il, weeven impossible, there are useful classes of tasks where such
introduce the structure of a multiobjective fuzzy control systeatecomposition is achievable. The technique proposed in this
along with the proposed neural fuzzy combiner (NFC). A hiepaper is applicable to the multiobjective control problems,
archical design method for the NFC is presented in Section NMhere the decomposition is achievable and the controller

Soft switch

action 2 action n

Input State
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Fig. 2. Basic structure of the MFCS.

for each single objective exists. The role of the NFC is to The function of the FCN is basically to find the (dynamic)
fuse then actions, f1, f2,- -+, fn, decided by the: low-level mapping between the control status sign&jsand low-level
controllers and determine a proper actignacting on the control actions’ weighting values;. Due to the powerful
environment (plant) according to control status signals at edelarning ability of neural fuzzy networks, we consider the use
time step. The remaining of this paper will focus on the desigif neuro-fuzzy techniques to realize the FCN in this paper.
of the NFC. The proposed FCN (see Fig. 3) has five layers with node and
As shown in Fig. 2, the proposed NFC is composed of twink numbering defined by the brackets on the right-hand side
elements, a fuzzy context network (FCN) and an integrati@f the figure. Layer-1 nodes are input nodes(t linguistic

unit. The FCN decides a set of weightsy, w2, -+, wn, node$ representing input linguistic variables. Layer-5 nodes
for the n low-level control actions according te control are output nodeso(itput linguistic nodesrepresenting output
status signal#;, £, - - -, £, (the “context’) at each time step. jinguistic variables. Layer-2 and layer-4 nodes #en nodes
The control status signals indicate the status of the contight act as membership functions representing the terms of the
objectives and are defined by respective input and output linguistic variables. Each layer-3
E,; = degree(distance of goal,), i=1,---,n (1) node is a rule node representing one fuzzy logic rule. Layer-3

h di b 4. Th Iin(és define the preconditions of the rule nodes, and layer-4
where any proper distance measure can be used. The co s define the consequents of the rule nodes. The links in

status signalE; defined in the above indicates the degreI%yers 2 and 5 are fully connected between linguistic nodes

that thesth control objective is achieved at the current tlm%nd their corresponding term nodes.

step. Such information can -be .obtgined by simply CheCk.ingThe FCN uses the technique obmplement codingrom
:Lp ;:gé%ig; ebaycThceor';tcr:c')\ll ° dbé?;:x;ér;d?ﬁ:réizr:gg g/c;g:;lr?lgsgzzy ART [22] to normalize the input/output training vectors.
of/ the low-level control actiory; to act on the environment. omplement coding is a normalization process that rescales

- i i i n e PRI i
With these weighting values, the integration unit will do th%ln Z_dlmer_15|or|1al vecltor m}i ’xd'_ (?1,372,& ) ;f")’, to 'ti
following linearly weighted summation to combine thdow- tr:%t imensional complement coding form f@, 1]°", z’, suc
level actions into a final actiofi as output to the environment: a
f_wlfl+w2f2+"'+wnfn (2) ‘1"/5(51755{7527557"'7571752)

w1+w2++wn :(51’1—51’52’1—52"f,n’]_—fn) (3)
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Fig. 3. Fuzzy context network.
where (Z1,%s2,---,%T,) = T = z/||z|| and z; is the com- That is

plement ofz,, i.e., T = 1 — Z;. As mentioned in [22],

complement coding helps avoid the problem of category f(Zi,T§) = (T, 7;) = (T4, 1 —T;) and a(f) = f. (4)

proliferation when using fuzzy ART for fuzzy clustering. It

also preserves training vector amplitude information. Note that due to the complement coding process, for each input
We shall next describe the functions of the nodeg;), in hodeé, there are two output values; andz; = 1 — ;.

each of the five layers of the FCN, whefé) is an integration Layer 2: Nodes in this layer are called input term nodes

function, anda(-) is an activation function. Assume that thefnd each represents a term of an Input Ilngu.|st|c variable, gnd
. . : . acts as a one-dimensional membership function. The following
dimension of the input spaceis and that of the output space . . . . i
i trapezoidal membership function [24] is used:
m.

Layer 1: Each node in this layer is called an input linguistic 2
node and corresponds to one input linguistic variable. Layef- %ij n
1 nodes just transmit input signals to the next layer directly. a(f) = f (5)

1
)= [1—g(=) — ol 7)) — gy — 2, 4)] and
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whereug) andvg) are, respectively, the left-flat and right-flathyperbox of thejth term of thesth output linguistic variable
points of the trapezoidal membership function of ghie input ¥;, then the following functions can be used to simulate the
term node of theith input linguistic node;zg) is the input center of areadefuzzification method
to the jth input term node from theth input linguistic node 5 5 (3 5 (3

J J

1, ifsy>1 f
g(s,7) = {8% if 0<sy< 1. (6) alf) = 3.0 (10)
0, ifsy<o. - Kl

The parametet is the sensitivity parameter that regulates the .
fuzziness of the trapezoidal membership function. Wherez§°) is the input to theth output linguistic node from its

Layer 3: Nodes in this layer are called rule nodes and eagth term node, and,, = (u;’ +v.;’)/2 denotes the center
represents one fuzzy logic rule. Each layer-3 noderhput  value of the output membership function of thin term of
term nodes fed into it, one for each input linguistic node. Thite sth output linguistic variable.
links in layer 3 are used to perform precondition matching of
fuzzy logic rules. Hence the rule nodes perform the following .

) H IERARCHICAL DESIGN METHOD
operation:

FOR THE NEURAL Fuzzy COMBINER
n

(3) _(3) 3N (3) _ The proposed FCN maintains the spirit of human-like think-
[ 2" 2Py =3 m” ad aD=f () ing and reasoning as in fuzzy logic systems. Hence, if neces-
sary and available, experts’ knowledge can be easily incorpo-
where z§3> is the ith input to a node in layer 3 and therated into the structure of the FCN. In this section, we shall
summation is over the inputs of this node. take use of this property and propose a hierarchical design
Layer 4: The nodes in this layer are called output terrmethod for the FCN.
nodes; each has two operating mod#éswn—uptransmission  The proposed hierarchical FCN design method is based on
and up—downtransmission modes (see Fig. 3). In down-uthe hierarchical fuzzy controller design approach proposed in
transmission mode, the links in layer 4 perform the fuzzy O] for the controller design problem with multiple goals. In
operation on fired (activated) rule nodes that have the sathés approach, it is assumed that priorities can be assigned
consequent among the goals. Le¥ = {g1, 92, -, 9.} be a set of: goals
f(z§4) 254) @) 2 max(z§4) 254) @) and thgt f[he system should achieve and maintain. Assume that the
’ v ’ v priorities of the goals can be ordered@sgs,- - -, g,- AS an
a(f)=f (8) example, in the simple problem of balancing a pole on the
4) - . . palm of a hand and also moving the pole to a predetermined
wherezf ' is the ith input to a node in layer 4 and is the location, we can set the goal of keeping the pole balanced

number of inputs to this node from the rule nodes in Iay%rac the first priority, and the goal of moving to the desired

3. In up-down transrr_uss_lon T”Ode: the nodes in th|s layer a[8tation as the second priority. Furthermore, assumingahat
the up-down transm!ssmn links in layer 5 function exactl}/s the input linguistic variable related to achieving ggalwe
the same as those n Iaygr .2: ea_ch layer-4 node represeis derive the control rules recursively by the following steps.
a term of an output linguistic variable and acts as a one-Step 1: Acquire the rule seR; of appropriate control rules

dm(;ensmnal fmembe;shlpt futntl:_tlon._ '?‘ set gf O;'t?_m term directly related to the highest priority goal. These rules are in
nodes, one for each output linguistic node, definesnan . . general form of

dimensional hyperbox (membership function) in the output
space. IF 77 is A;, THEN 2z is C;.

Layer 5: Each node in this layer is called a output linguistic
node and corresponds to one output linguistic variable. ThereStep 2: Subsequently form the rule sét;, for : = 2 to
are two kinds of nodes in layer 5. The first kind of nod&. The format of the rules in these rule sets is similar to the
performs up-down transmission for training data (desirédnes in the previous step except that they include aspects of
outputs) to feed into the network, acting exactly like the inp@pPproximately achieving the previous goal, i.e., ‘4F1 is

=1

linguistic nodes. For this kind of node, we have approximately achieved AND; is A;, THEN z is C;.”
The above design concept can be applied to design the FCN
@) =@ 7)) = @i, 1 —7;) and in our MFCS. The fundamental concept of the hierarchical
alf)=f (9) FCN design method is to let the FCN switshftly to the low-

_ . , . _ level controller that tries to achieve a high-priority goal. When
wherey; is theith element of the normalized desired outpyj high-priority goal is achieveapproximatelythe FCN then

vector. _Note that complement coding IS also performed Litch softly to the low-level controller that can achieve the
the desired output vectors. The second kind of node perfor al with next high priority. Take the aforementioned pole-

down-up transmission for decision signal output. These no eﬁancing problem as an example. Assume thatand
and the layer-5 down-up transmission links attached to the the control status signals for t.he first control gg)ﬁI:Q

ifi () )
act as a defuzzifier. If,;;” and v;;’ are the corners of the “balancing the pole,” and the second gaal—= “moving the
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TABLE | The structure-learning step consists of three learning pro-
BxaMPLE RULE TABLES FOR THE FCN. (a) RuLE cesses: input fuzzy clustering process, output fuzzy clustering
TABLE FOR w1 AND (B) RULE TABLE FOR process, and mapping process. The first two processes are
N };1 P N 1;1 b performed simultaneously on both sides of the network, and
NILTTS T NTSTT TS are described below.
E, 72 LML E, Z[SI™M 5] Input Fuzzy Clustering ProcesaiVe use the fuzzy ART fast
PL|{STL PISTL S learning algorithm [22], [23] to find the input membership

function parametermg) andvi(f). This is equivalent to finding
proper input space fuzzy clustering or, more precisely, to
pole to a predetermined location,” respectively. Suppose tHatming proper fuzzy hyperboxes in the input space. Initially,
module 1 is a well-designed controller for achieving ggal for each complement coded input vecidisee (3)], the values
and module 2 is a well-designed controller for achieving go@f choice functions7;, are computed by

g2. Then the fuzzy rule table for the FCN could be designed

as in Table I. In the FCN, the inputs are the control status T;(z)
signals E, F», and the output are the weighting values of

the low-level controllers (modules 1 and 2¥;,w-. In this where ‘A” is the minimum operator performed for the
design, the term set fdE; and E, is {N (negative),Z (zero), pairwise elements of two vectorgsy > 0 is a constant,
P (positive)}, and the term set fow; andw, is {S (small), N is the current number of rule nodes, and; is the
M (medium),L (large)}. In this example, we assume that the&eomplement weight vectorwhich is defined byw; =

@ (b)

/
ANw;
:|$ wj|a j:1a2a"'aN (ll)
a + |wj|

goal g; is approximatelyachieved ifE; approaches zero, i.e.,[(ug’l — @) w1 - U;@)’...’(u%)’l _ Uffj))]’
E, = Z. where [( (2) (2)) e (2) (2)) e (2) (2))] is the
U’lj 7U1j 9 9 U,“ 7Uij 9 ) U’njvvnj

From the rule tables, we observe that module 1 (the f'r\?/teight vector of layer-2 links associated with rule nogle

:cpw-levell co_ntroller) Y:’.'" bed a_ctlvated (Z"eqxl :h L) When_the The choice function value indicates the similarity between the
irst goalg, is not achieved (i.e.f # Z). At the same time, input vectorz’ and the complement weight vectar;. We

module 2 (the second low-level controller) is_ supp_ressed _(i'ﬁmn need to find the complement weight vector closesf to
wgy = S). We also observe that module 2 is activated ("eT'his is equivalent to finding a hyperbox (category) thAt

wy = L) only vyhen the first gogl is achieved (iS@“L =2). could belong to. The chosen category is indexed/bwhere
At the same time, module 1 is suppressed (iw&., = S5).

One special case occurs when both goals are achieved, i.e., Ty=max{T;: j=1,---,N}. (12)
E, = E; = Z. In this case, the FCN will give the two
low-level controllers equal weights (i.eq; = w, = M). Resonanceccurs when the match value of the chosen cate-
gory meets the vigilance criterion
IV. SUPERVISED LEARNING OF THE NFC |z’ Aw,| (13)
The hierarchical design method for the NFC proposed in the l=/|

last section is straightforward but it relies heavily on exper,
knowledge and the precise analysis of controlled problem.
this section, we present an on-line two-step learning sche
for the proposed NFC (more precisely, the FCN). For an o
line incoming training pattern, the following two steps ar
performed in this learning scheme. First, a structure learni
scheme is used to decide proper fuzzy partitions and to fi
the presence of rules. Second, a supervised learning sch
is used to optimally adjust the membership functions for t
desired outputs. In this learning method, only the trainir\ga
data need to be provided from the outside world. The us
don’t need to provide the initial fuzzy partitions, membershi
functions and fuzzy logic rules.

here p € [0,1] is a vigilance parameter. If the vigilance
Piterion is not met, we samismatch resedccurs. In this case,
t& choice function valuff’y is set to zero for the duration of
the input presentation to prevent persistent selection of the
ame category during search (we call this action “disabling
. A new index J is then chosen using (12). The search
cess continues until the chosérsatisfies (13). If no such
>ME found, then a new input hyperbox is created by adding a
t ofn new input term nodes, one for each input linguistic
riable, and setting up links between the newly added input
Eim nodes and the input linguistic nodes. The complement
R/eight vectors on these new layer-2 links are simply given as
the current input vectorg’. These newly added input term
nodes and links define a new hyperbox, and thus a new
category, in the input space. We denote this newly added
The structure-learning task can be stated as: Given ingwperbox as.J.
training data at time, z;(¢),¢ = 1,---,n and desired output  Output Fuzzy Clustering Proces§he output fuzzy clus-
value y;(t),i = 1,---,m, we need proper fuzzy partitions,tering process is exactly the same as the input fuzzy clustering
membership functions, and fuzzy logic rules. At this stagprocess except that it is performed between layers 4 and 5
the network works in a two-sided manner; that is, the nodegich are working in the up-down transmission mode. Of
and links in layer 4 are in the up-down transmission modmurse, the training pattern used now is the desired output
so training input and output data are fed in the network frorector after complement coding = (7,7°). We denote the
both sides. chosen or newly added output hyperbox &y This hyperbox

A. Structure-Learning Step
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is defined by the complement weight vector in layeuf: = is
[(Ugj'), 1- Ugj'))v T (UE;), 1- Ui(;))v T (U%, 1- Ur(;l)z)] oF

The above two fuzzy clustering processes produce a chosen w(t+1) =w(t) +n{ —5 - (16)
input hyperbox indexed ag and a chosen output hyperbox of OE da of

indexed asK. If the chosen input hyperboX is not newly 9w~ 9a 9 Ow a7)

added, then there is a rule nodg,that corresponds to it. If

the input hyperbox/ is a newly added one, then a new rulgvherer is the learning rate. To show the learning rules, we

node (indexed ag) in layer 3 is added, and connected to thderive the rules layer by layer using the hyperbox member-

input term nodes that constitute it. ship functions with corners;;’s andv;;’s as the adjustable
Mapping Process:After the two hyperboxes in the inputparameters for these computations. For clarity, we consider

and output spaces are chosen in the input and output futlg single-output case.

clustering processes, the next step is to perform the mapping-ayer 5: Using (10), (16), and (17), the updating rules of

process which decides the connections between layer-3 &hel corners of hyperbox membership functienandv;, are

layer-4 nodes. This is equivalent to deciding the consequedgyived as

of fuzzy logic rules. This mapping process is described by P2

the following algorithm, wherein connecting rule nodeto vilt +1) =wil®) +nly(?) - y(t)]z Z 5 (18)
output hyperboxk’ we means connecting the rule nodeto o ’
the output term nodes that constitutes the hyperkoin the wi(t + 1) =u;(t) + ny(t) — 9()] —= (19)
output space. 2 Z i
Step 1: IF rule node’ is a newly added node The error to be propagated to the preceding layer is
THEN connect rule nodd to output . OF
hyperboxX. =g = y(t) — 9(t). (20)

Step 2: ELSE IF rule nodé€ is not connected to output
hyperbox K originally
THEN disableJ and perform Input Fuzzy
Clustering Process to find the next qualifiéd
(i.e., the next rule node that satisfies (12)

Layer 4: In the down-up transmission mode, there is no
parameter to be adjusted in this layer. Only the error signal
(6}) needs to be computed and propagated. According to (10),
the error signals} is derived as

and (13)]. ) Y. —
Go to Step 1. 54 = 6 mi ) 22 iy (21)
Step 3: ELSE no structure change is necessary. (Z 77)

In the mapping process, hyperboxésand K are resized As for the case of multiple-outputs, the computations in layers
according to thefast learning rule[22], [23] by updating five and four are exactly the same as the above and proceed
weights,w,; andwy, as follows: independently for each output linguistic variable.

Layer 3: As in layer four, only the error signals need to be

new old new old
”’S f=a' A WS ), Er( ) = Y A wg( ). (14) computed. According to (8), this error signal can be derived as
4
B. Parameter Learning Step 6 = Z—iéf (22)

Z max

After the network structure has been adjusted according to )
the current training pattern, the network then enters the secdHere zmax = max (inputs of output terms nodg). As
learning step to adjust the parameters of the membersﬁﬁ‘} the case of mulilple—outputs, the error signal becomes
functions optimally with the same training pattern. In théi = & (%/Zmax)dy, where the summation is performed
parameter leaming, the network works in the feedforwafY€r the consequents of a rule node; that is, the error of a rule
manner; that is, the node and links at layer four are in tfi9de is the summation of the errors of its consequents.
down-up transmission mode. Basically, the idea of backprop-Layer 2: Using (5), (16), and (17), the updating rules of
agation algorithm is used for this parameter learning to firfty @ndw;; are derived as

the errors of node outputs in each layer. Then, these errors da?
are analyzed to perform parameters adjustment. The goal is to vii(t+1) =vi;(t) +n Fo 6; and
minimize the error function 8”2
a
wi(t+ 1) =ui; () + 83 23
E=Y M- G®F, i1 (1) =g, 23
@ where
where y;(t) is the_ ith desired output andy; (¢) is the i_th da® 17 if 0< (z; — i)y < 1
current output. It is noted that in the parameter learning we v & )
. o _ Vij 0  otherwise,
use only normalized training vectorg,andy, rather than the 9u2 yv o
complement coded oneg andy’. Assuming thatw is the @ { = 0= (uy —a)y <1 (24)
adjustable parameter in a node, the general learning rule used Iuij 0 otherwise.



LIN AND CHUNG: REINFORCEMENT NEURO-FUZZY COMBINER 733

RFCN consists of two FCNs; one FCN is used as the action

Environment network (fuzzy controller) and the other FCN as the prediction

network (fuzzy predictor). Each network has exactly the same

[ structure as that shown in Fig. 3. The action network plays
h——‘—f}——_ the role of the FCN in Fig. 2; it decides a set of weights,

] ] wi,wa, Wy, TOr then low-level control actions according
Integration Unit to n control status signal&,, E», - - -, E, (the “context”) at

Excternal [ each time step. The prediction network models the environ-
reinforcement | eve | lntemal | L. (D =i ment such that it can predict the reinforcement signals that

signals Weighting will eventually be obtained from the environment for the

ri(t+1) y ;'v(t+1) values . y . X X
S i - | current action (more precisely, the current weighting values)
P+ 1) ] 7}_1_—— Noise determined by the action network. The predicted reinforcement
};mdimd signals can provide the action network beforehand and more
reinforcement |, detailed reward/penalty information (“internal reinforcement
Ve signals”) about the candidate outputs (weighting values) for
the action network to learn and decrease the uncertainty it
Prediction Action faces to speed up the learning.
Associated with the RFCN is a reinforcement learning
Network Network scheme. We shall next introduce the functions and learning
algorithms of the action network and the prediction network,
f f respectively, in the following two subsections.

Environment states E,
A. Action Network

The goal of the reinforcement learning of the action network
_ _ _ is to adjust the parameteus (composed of:;; andw;;) of the
The above supervised Igarnlng _al_gorlthm performs_ wedktion network, to change the connection types, or even to add
only when a set of supervised training data are availablgew nodes, if necessary, such that each reinforcement signal
Unfortunately, such detailed and precise training data may gemaximum; that is
very expensive or even impossible to obtain in some real-
o . r;
world applications. This problem becomes even severe for Aw oc Z . (25)
ahiecti —~ Qw
multiobjective control. In many cases, the controlled system 7

may only be able to provide the learning algorithm with

reinforcement signals such as binary decisions of right/wrorlg determinedr;/dw, we need to knowdr; /Jy;, wherey; is
of the current controller. In order to train the FCN with thigh€th-output of the action network with as its reinforcement

kind of evaluative feedback, we shall present a reinforcemeign@l- Since the reinforcement signal does not provide any
learning scheme in the next section. hint as to what the right answer should be in terms of a cost

function, there is no gradient information, and the gradient,
dr;/dy;, can only be estimated. If we can estiméke /Jy;,
then the on-line supervised learning algorithm developed in
Fig. 4 shows how a controller and its training environmenke |ast section can be directly applied to the action network
interact in a reinforcement learning problem. The environmegy golve the reinforcement learning problem.
supplies a time-varying input vector to the network, receives | estimating the gradient information using the stochastic
its time-varying output vectors, and then provides time—varyi@(pmraﬂon method [25], [26], the outpuf; of the action
scalar reinforcement signals. For each control objectieere etwork does not directly act on the environment. Instead,
is a corresponding reinforcement signa(t) indicating the jt js treated as a mean (expected) value. The actual output
degree (status) of fulfillment of this objective. In this paper, gg|ye, i, is chosen by exploring a range around this mean
reinforcement signat;(¢) can be both forms point. This range of exploration corresponds to the variance
1) two-valued number;;(t) € {—1,0}, such that;(#) =0 of a probability function which is the normal distribution in
means “a success” and(t) = —1 means “a failure”;  our design. The amount of exploratiom,(¢), is chosen as
2) a real numbery;(t) € [—1, 0], which represents a more
detailed and continuous degree of failure or success. oi(t) = 1

We also assume that eagty(t) is the reinforcement signal (1 +exp(2pi(?)))

available at time stepand is caused by the inputs and outputgnere p;(t) is the predicted (expected) reinforcement signal
chosen at time step- 1 or even affected by earlier inputs anccoming from the prediction network to predict(t). Once the

outputs. _ _ _ variance has been decided, the actual output of the stochastic
To resolve the reinforcement learning problems, an intgyde can be set as

grated network, called the reinforcement fuzzy context net-
work (RFCN) is proposed. As shown in Fig. 4, the proposed 7:(t) = N(y:(t), 0:(¢)). (27)

Fig. 4. Reinforcement fuzzy context network.

V. REINFORCEMENT LEARNING OF THE NFC

(26)
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That is, ;(¢) is a normal or Gaussian random variable witmetwork. It is noted that a prediction network in the RFCN

the density function has n outputs, one for predicting each external reinforce-
. 9 ment signal. To solve the temporal credit assignment problem
1 —(9 — yi) ; - - i .
Prob(3;) = exXp{ — g o (28) mentioned in Section I, the technique based on the temporal
oV 2m 20} difference methods, which are closely related to the dynamic

Using the above stochastic exploration method with murrogramming technique [27], is used [14], [15]. Unlike the
tiparameter distribution, the gradient information is estimatéPervised learning method which assigns credit according to

as the difference between the predicted and actual output, the
. temporal-difference methods assign credit according to the
873 N N yi(t — 1) — yi(t — 1) . . s
~ P (1)t — 1) difference between temporally successive predictions.
Py X ai(t — 1) A general learning rule for the temporal-difference proce-
- . Yi — Ys i
= 74(t) [yz } (29) dures [15] is
il

Aw(t) = n(r(t) + vp(t) — p(t — 1))Vep(t —1)  (31)
where the subscript,— 1, represents time displacement. The
signal#;(t) is called the internal reinforcement signal comingvhere

from the prediction network. It indicates the prediction error w predictor’s adjustable parameter;

of the prediction network (e.g., the difference betweeft) D predictor’s output;

andr;). The exact mathematical formula of the internal rein- external reinforcement signal (i.e., desired
forcement signalsi;(¢), will be studied in the next subsection. output);

Equation (29) is in fact @ompetitivelearning rule due to the ~ (0 <+ < 1) discount-rate parameter;

product termg; (¢t — 1) and thus we call this new scheme as 7 learning rate.

compgtitive stochastic-exploratiamle. This term functions as We shall derive the learning rule of the prediction network
a “gating” factor for scaling the effects caused by differerdccording to (31). According to this equation, the error signal
low-level controllers. This competitive stochastic-exploratiop;(¢) of the output node of the prediction network is

learning rule is a novel scheme to solve the reinforcement

learning problem in multiobjective control. Fi(t) = ri(t) +pi(t) — ps(t — 1), 0<y<1. (32

. Ba5|cally: the training of an action network If not a” SuPe[fpe goal of training the prediction network is to minimize the
vised learning problem. There are no correct “target” outpu

: . squared error
values for each input pattern. However, in the structure-
learning step of the action network, we need desired output E— Z l(f‘(t))g
values to determine proper output fuzzy partitions as well L2V
. . . . T
as membership functions and to find fuzzy logic rules. The

1
desired output values can be estimated as =3 5 (ri®) +pi(t) — pilt — 1))?,
() ~ ui(t) + ﬁg” (30) i=1,n. (33)
Yi

With the above error function, we can derive the struc-
ture/parameter learning algorithm for the prediction network
using the gradient descent method. The resulting structure
the structure-learning step in Section IV can be performed ‘fSﬁrn?ng step -is e>§actly the same as that of the supervised

g step P ?é};lrmng algorithm in Section IV. The parameter learning al-

the action network directly. orithm of the prediction network can be obtained by replacing

As for the parameter learning of the action network, tht%1 N
. L . . t 7 t) — 7 t) by the t " t i t) — i t—1
goal is to maximize the external reinforcement signat). ine(lgnlg ((2)4) Gi(t) by the termri(?) + ypil?) — pil )

Thus, we need to estimate the gradient informatidn,/dy;,

. . . . . . . Since both the action and prediction networks are FCN's,
as we have obtained in (29). With this gradient mformaﬂogy)ert knowledge, if available, can be put into the network

wherer is a real number in the rande, 1] and dr;/dy; can

the parameter-learning step can be performed in the wg ectly asa priori knowledge to speed up the learning. Obvi-

similar to that in the supervised learning scheme in Section | usly, the hierarchical design method introduced in Section |l

More clearly, the exact parameter learning rules of the acti Buld be used to design the action network directly. When
network :alre .theh same as (18)._(24)| excaept))t tEat the te per fuzzy rules for the action network have been deter-
;}gﬁgtzﬁ‘&%g)(]@"n_t ;\;,/egé]quatlons Is replaced by the new err ined, we can design the prediction network based on these
A T S Pl rules using the concept of hierarchical design approach.
Consider again the aforementioned pole-balancing problem
in Section Il as an example. Assume the fuzzy rule table for
An FCN is used as the prediction network in the RFChkhe action network is shown in Table I. Then the fuzzy rule
shown in Fig. 4. The prediction network receives externgble for the prediction network could be designed as Table II.
reinforcement signals from the environment and producEsr the prediction network, the inputs are the control status
more informative internal reinforcement signals to the actiagignalsE;, E>, and the outputs are the predicted reinforcement

B. Prediction Network
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TABLE I [15], Dayan [28], [29], etc. They transformed the TD learning
EXAMPLE RULE TABLES FOR THE PREDICTION NETWORK FOR algorithm into absorbing Markov chain and exploited the
THE RFCN. (a) RILE TABLE FOR p1 AND (b) RULE TABLE FOR po . .
concept of the convergence analysis l@arning automata
N E71 p N E;l b such ase-optimality, absolutely expedient- -, etc., to study
NM[B M N[BTM M thg convergence property. However, these results are only
B, Z2 M| G |M B, 2 B|G | B suitable for the predictor (e.g., a neural network) with a
PM[B [M] P/MM|B single output. Since we concern with the predictor (FCN)

with multiple outputs in this paper and thus face the mutual
(@) () credit assignment problem, we need to come out our own

signals,p;, p2. In this design, the term set fdf;, and E, is convergence proof for the proposed reinforcement learning
{N (negative),Z (zero), P (positive)}, and the term set for Scheme.

p1 andp, is {B (bad),M (median),G (good)}. It is observed Before we perform the convergence analysis, some symbols
that the rules in Table Il predict the reinforcement signaksed in TD learning algorithm need to be explained or rede-
for the actions chosen by the rules in Table | under certdified in advance. As shown in (31), the rule of weight vector
control status. For example, from Table |, whéh = x, updating for TD learning algorithm is given by

the action network chooses; = L and ws, = S, which _

suppresses the second low-level controller and allows the firsqc](t) = wlt = 1)+ n(r®) +vp() —p(t = 1))Vep(t - 1)
low-level controller to try to achieve the first control objectivevherep(t) = p(x(t), w(t — 1)), and=(¢) is the input vector
(i.e., balancing the pole). Hence, we expect to obtain a larg@rtime t. However, the above weight vector updating would
reinforcement signal for the first control objectiygs = M). be inconvenient because prediction differences result from
To keep the pole balanced whéf = IV, we need a force to changes irr; changes irx should be reflected in weight vector
the left, which will push the pole position further away fromw updating. Hence, Sutton proposes that the above equation
the desired position wheB; = N, but push the pole position can be transformed to

closer to the desired position whet, = P. Hence we can

expect a bad reinforcement feedback for the second control(t) =w(t — 1) +n(r(t) + vp(z(t), w(t — 1))

objective(p» = B) when E> = N, and a better reinforcement —p(z(t — 1), w(t — 1))Vp(x(t — 1), w(t — 1))
feedback for the second control objectiye, = M) when (34)

E, = P. The other rules in Table Il can be obtained by similar

consideration. we shall now study the convergence characteristic of the TD

learning algorithm in (34) on the prediction network with two
VI. CONVERGENCEANALYSIS OF REINFORCEMENTLEARNING output nodes by using the technique in [30].
In this section, we shall study the convergence propertyStep 1: First, we normalize the gradient vector,,p; (z(t —
of the proposed reinforcement learning scheme. As shownlipw(t — 1)) in (34) and obtain
Fig. 4, the proposed RFCN is composed of two FCN’s acting .. = ‘ _
as the prediction network and action network. In Section V, W(%w”(t) =n(ri(t) + ypi(a(t), w(t — 1))

have proposed a reinforcement learning algorithm for RFCN, —pi(z(t—1),w(t - 1))
where the weight updating rules for the action network and Vpi(z(t — 1), w( — 1)) L

e . . . X i=1,2. (35)
the prediction network were derived, respectively. The weight IV wpi(z(t — 1), w(t — 1))

Zp(ijsatlt?agsircualﬁ foar tr;g d:::togegecz\é?rk rg(ég\éicrje”;nsviﬁtig? ::]Notice that (35) is equivalent to the original TD learning

twork y i 9 dified Ip th tive di t.eﬁ orithm [(31)] used in our prediction network, since the
network parameters are modiied along the negative direc If?]rgut/output data are normalized to the range of [0, 1] in
of the error function with respect to these parameters. Alst%,

we can show that the FCN is a universal approximator V|aCe epr:]oecess of complement coding in the proposed leaming
the Stone—Weierstrass Theorem. So, it can be expected tsn i

) . 2:1In we formul he error function of th
the parameters will eventually converge to the values which tep (33), we formulate the error function of the

o . o . grediction network as the summation of every single error
minimize the error function to within some small fluctuations. -
value of the prediction outputs. Hence, we can express the

Howevgr, this expectapon IS pasgd on the condition thﬁl dating rule of the weight vector in the prediction network

the estimated gradient information is correcAs we know, b

the gradient information is estimated based on the interndl

reinforcement signali;(¢), in (32) which is provided by the Aw(t) = Awy () + Awa(t),

prediction network. Hence, to study the convergence property w(t) =w(t — 1) + Aw(t). (36)

of the reinforcement learning of RFCN, we need to study

the convergence property of the weight updating rule of the Step 3: With the preparation in Steps 1 and 2, we can

prediction network. show that if the learning constantis small enough, then the
As described in Section V-B, the reinforcement learningpdated weight vector has greater effect of bringinge(¢ —

of the prediction network is mainly based on ttemporal 1),w(t)) closer top;(x(t),w(t—1)) than the effect of bringing

difference(TD) learning algorithm. The convergence properp; (z(t — 1), w(t)) closer top,(z(t),w(t — 1)) assuming that

ties of TD learning algorithm have been studied by Suttahe difference in output;(t) +vp;(x(t),w(t — 1)) — p;(x(t —
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1),w(t — 1)) is greater than-;(t) + yp;(x(t),w(t — 1)) — y < Vpz(z(t — 1), w(t — 1))
pi(a(t — 1), w(t — 1)), wherei,j € {1,2},i # j, are the IV wp2(@(t — 1), w(t— D)
indexes of the two output nodes of the prediction network.
In other words, larger correction will be made to the output Vupi(a(t = 1), w(t — 1))>' (41)
node which produces bigger prediction error. Namely, we
can prove that the reinforcement learning process of tidcording to (38) and through a simple vector operation, (41)
prediction network will go toward the convergence directiorbecomes (42), as shown at the bottom of the page.
This property is shown in the rest of this section. In (42)
For simplification, we assume the absolute variation of the
prediction value from the first output is greater than that of (Vwp2(z(t — 1), w(t — 1)), Vepi (st — 1), w(t — 1))) ‘

the absolute variation from the second output, i.e., IVwpi(z(t — 1), w(t — D)|| [|Vwp2(z(t — 1),w(t — 1))||
<1
|| > |BJ, (37) =
where A and B are set as follows: holds. Hence, it is possible to set the value of the learning rate
7 as shown in (43) at the bottom of the page.
A=r1(t) +yp1(x(t), w(t — 1)) — pr(x(t — 1), w(t — 1)), Then, (42) becomes

B =ra(t) + vpa((t), wit — 1)) — pa(a(t — 1), w(t — 1)).
b ! @ et D)

: , ~pi(a(t — 1), w(t - 1))
According to (36), we can writg; (x(t — 1), w(t)) as follows: | Vepi (et — 1), w(t — 1)|[(A+ B cosn). (44)
pi(a(t — 1), w(t))
=pi(z(t— 1), w(t — 1) + Aw(t))
=pi(xt — 1), wt — 1)+ Awi(t) + Aws(t)). (39)

Previously, we assumedl| > | B| [(37)]. Consider the case
of A > B > 0 now. We know thaf cosn| < 1, so we have

pu(z(t — 1), w(t))
> pi(z(t—1),w(t—1))
pi(@(t = 1), w(t) + 1l V wps (@t — 1), w(t — 1)[|(A - B)
~ pu(z(t — 1),w(t — 1)) + (Aw (?) >p1((t — 1), w(t — 1)). (45)
+ Awy ()T Vupi (x(t — 1), w(t — 1)).  (40)

If Aw(t)in (39) is a microvector, the above equation becomes

The above evaluation shows that in the caseiof B > 0,

By (35), the above equation can be rewritten as pu(z(t — 1), w(t)) approach.eg;l(:c(t),qg(t — 1)) rather than
pi(z(t — 1), w(t)) plgzc(t —1),w(t — 1)),. provided thaty |s.small enough. By .
N f1 f1 using the same technique, we can obtain the same conclusion
= pi(a(t — 1), w(t — 1)) for the cases oA > 0> B, 0> B > A, andB > 0 > A.
+n(ri(t) + v (2(t), wt — 1)) This completes the proof of the convergence property stated

—pi(z(t — 1), w(t — 1))) in Step 3 in this section.
N < Vwpr (&(t — 1), w(t — 1))

IVwpr (2(t = 1),w(t = D) VII. |LLUSTRATIVE EXAMPLES
Vepi(x(t—1),w(t — 1))

In this section, the proposed MFCS is applied to two
simulated examples to show its performance and applicability.
+n(r2(t) + yp2(2(t), w(t — 1)) These two examples are the cart-pole balancing control and
—p2(z(t — 1), w(t — 1))) the crane control problems.

\/

pr(a(t — 1), w(t)) ~py(a(t — 1), w(t — 1)) +1l|Vupy(a(t — 1), w(t — 1)
(Vapa(@(t — 1), 10(t — 1)), Voups (w(t — 1), (2 — 1)))
* <A TS ot — Dl — )| [Vwpa(alt — 1), wlt - 1>>||>' 42)

<pr2($(t - 1)vw(t - 1))a Vp1 (:B(t - 1)’w(t - 1))>
Vwp(®(t — 1), w(t — D)|| [[Vwp2(z(t — 1), w(t — )|

(43)

cosn =
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0 e = 0.0005 coefficient of friction of the cart on the
track;
! pp = 0.0000002 coefficient of friction of the pole on the
: cart;
A=0.02s sampling interval.

f— The constraints on the variables arel2° < 6 < 12°,
. . —2.4m < z < 2.4m, and —10N < f < 10N.
]‘T’] To apply the proposed MFCS to solve the above two-

objective problem, we need to define two control status signals,
E; and E,. In this problem, they are defined as follows
according to the two control objectives

Fig. 5. Cart—pole balancing system.

A. Control of the Cart—Pole Balancing System det

0 /100 def , )
The cart—pole balancing problem involves of learning how By = 6°/12°, By = (& — desirea)/4.8. (47)

to balance an upright pole as shown in Fig. 5. The bottoffhe control status signak, indicates the status of the first
of the pole is hinged to a cart that travels along a finitgs ol objective, i.e., to keep the pole balanced. The control
length track to its right or its left. Both the cart and pol§ays signale, indicates the status of the second control

can move only in the vertical plane; that is, each has O”Bbjective; i.e., to move the cart to a desired POSitiofeired.

one degree of freedom. There are two control objectives Jr"hey are normalized to be ifi-1, 1]. Hence anE; value
3 N T

our problem; move the cart to a desired position and keep Ygse to zero means the respective control objective is almost
pole at the upright position at the same time. Hence this iS;anieved.

multiobjective control problem and the proposed MFCS will gefore training an NFC for the MFCS to control the

be applied here_ to achieve thg two o_bjec_tives simultaneouslboo_objective cart-pole system, we first need to design two
There are four input state variables in this system: low-level controllers, one for each control objective. The first

¢  angle of the pole from an upright position (in degrees)ow-level controller (called “angle controller”) is to determine

¢  angular velocity of the pole (in degrees per second); sequence of forces to keep the pole balanced regardless of the

x  horizontal position of the cart's center (in meters); cart position. The second low-level controller (called “position

& velocity of the cart (in meters per second). controller”) is to determine a sequence of forces to move the
The only control action isf, which is the amount of force cart to a desired position as soon as possible regardless of
(in Newton$ applied to the cart to move it left or right. Thethe pole angle. Since both the angle controller and position
goal of this control problem is to design or train the MFC®ontroller are normal single-objective controllers, they can be
such that it can determine a sequence of forces with propiEsigned easily by existing control schemes. In this work, we
magnitudes to apply to the cart to balance the pole as welldasigned two fuzzy controllers to act as the angle and position
to push the cart to a desired position. controllers, respectively, based on the trial-and-error design

The model and the corresponding parameters of the capproach [21]. We shall use the NFC with reinforcement
pole balancing system for our computer simulation are adoptegrning to combine these two low-level controllers to achieve
from [14] with the consideration of friction effects. Theboth control objectives simultaneously.

equations of motion that we used are We formulate the cart—pole balancing problem as a rein-
_ : forcement learning problem by defining two reinforcement
6t +1) =0(t) + 26(2), signals, one for each control objective, as follows:
Ot + 1) =6(t) + A{(m + mp)g sinb(t) —1, if |6°(t)] > 12°
‘ ra(t) = { 0, otherwise, (48)
— cos 0(1)[f(t) +m,l0(t)* sin6(t) —1, if | = Zaesived| > 2.4m
) pp(m +mp)6(t e OF | — Zdesived| > 0.3m OVeEr
— e sgn(@(t)] — %}/ r2(t) = 300 time steps (49)

0, otherwise.
[(4/3)(m. + mp)l — myl cos? (1)),

ot +1) =2() + Ad(t) These reinforcement signals indicate that a failure occurs if
) o ’ N the pole angle deviation exceedd 2°, the cart bumps into

2t +1) =a(t) + AL () + mypl[0(t)” sin 6(¢) the walls on both sides (i.64 — zqesiea| > 2.4m), or the cart
—0(t) cosO(t)] — pe sgn(@(t))}/(m+ my,) dose not reach the desired position in 300 time steps. The last
(46) condition is to ensure that the cart can arrive in the desired

position in short time instead of wandering over the track,

where where the number “300 time steps” is chosen objectively in
g=9.8m/¢ acceleration due to the gravity; the simulations.
m = 1Kkg mass of the cart; In the simulations, the learning system was tested for four
my, = 0.1 kg mass of the pole; runs. Each run consists of a sequence of trials; each trial begins

l=05m half-pole length; with the same initial condition and ends with a failure signal
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Fig. 6. Performance of the RFCN on the cart—pole balancing problem.

appearing, i.ex;(t) = —1. A run consists of at most 50 trials, context network (FCN) in Fig. 2 to form the whole MFCS for
unless the duration of each run exceeds 30000 time stepscémtrolling the multiobjective cart—pole system. The learned
the latter case, we consider the run “successful.” The followikgCN should function as the one designed by the hierarchical
learning parameters were used for each trial. The learning rdtsign method in Section Ill. When we applied this learned
n = 0.001, sensitivity parametety = 4, and initial vigilance FCN to the above cart-pole system for the case Qf.cq =
parametepinput = 0.7, pourput = 0.7 Were used for the action —1.5, the outputs (weighting values) of the FCf; and
network. The learning rate = 0.005, sensitivity parameter w,), the weighted-sum forcéf), and the resulted state status
~ =4, and initial vigilance parametgfinpus = 0.7, pousput = (6 andx) are shown in Fig. 8. It is observed that before the
0.7 were used for the critic network, wheyg,,.. was the two objectives are achieved simultaneously (it~ 0 and
vigilance parameter used in the input fuzzy clustering process.i.ea = —1.5 constantly), the two weighting factors; and
and pouwpue Was the vigilance parameter used in the output,, appear to be complementary to keep the priority relation
fuzzy clustering process. of the two low-level controllers.

Fig. 6 shows the number of trials until success for each run,As mentioned in Section Il and Section V-B, expert knowl-
where the four runs start at different initial states. The resuktsige, if available, can be put into the action and prediction
indicate that the RFCN can achieve both control objectivegtworks directly as priori knowledge to speed up the learn-
simultaneously after several trials (11 trials on average) forg. To illustrate this point, we performed another simulation
four different initial conditions and desired cart positionan which the rule tables in Tables | and Il were put into the
To observe the learning process more clearly, Fig. 7 shoastion and prediction networks of the RFCN, respectively, as
the state status] and z, and the corresponding two-valueda priori knowledge before starting the reinforcement learning.
external reinforcement signals of a run. From the figure, vithe membership functions of the fuzzy terms in the two rule
can tell the cause of each failure signal (i.e.,= —1); a tablesare givenin Fig. 9. In the reinforcement learning process
failure signal results either from the unacceptable pole angiéthe rule-embedded RFCN, the number of trials until success
or from the unacceptable cart position as defined in (48), (4®r each run is shown in Fig. 10, where the four runs start at
It is noted from (49) that there are two causesfor= —1, different initial states as we did in the above. As compared to
i.e., | — Zdesired| > 2.4m OF |& — Zyesirea| > 0.3m over 300 Fig. 6, Fig. 10 indicates that the embedded expert knowledge
time steps. Therefore, in Fig. 7, we usg (¢) to represent has reduced the average number of trials of RFCN from 11
the reinforcement signal corresponding to the situatjien; to 5.

Zdesired| > 2.4m, and ro2(t) to represent the reinforcement Comparing RFCN to the manually designed FCN, we see
signal corresponding to the situatiofy, — Zdesirea| > 0.3m  that although the latter could outperform the trained RFCN if
over 300 time steps. manually trial-and-error design is performed exhaustively, the

After reinforcement learning, the action network in théormer has some advantages over the latter. First, the hierar-
RFCN is well trained and can be used alone as the fuzekical (manual) design method for the FCN is straightforward
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Fig. 8. Weighting valuest, andws—outputs of learned FCN), weighted-sum (integrated) forte-¢utput of neural fuzzy combiner), and the resulted
state statugf and x) of the cart-pole system controlled by the trained RFCN in the casejof,.q = —1.5.

but it relies heavily on expert knowledge and precise analygavironment, and might not keep the system stable in face of
of controlled problem. On the other hand, the RFCN cdrig disturbances which are out of the control range of designed
learn by itself automatically through the rough reinforcemenmtiles. On the contrary, RFCN is a dynamic system with on-
feedback from the environment and avoid the needs of expline learning ability and can adapt to new environment through
knowledge and trial-and-error design. Second, the manuatigntinuous learning. Fig. 11 illustrates this point, where the
designed FCN is static; its rules and membership functiogtate status¢ and z, of the cart—pole system controlled by

are fixed once they are designed. Hence it cannot adapt to rteer RFCN and by the manually designed FCN, respectively,
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(a) Membership functions for environment signdls, (b) membership functions for weighting factouss, and (c) membership functions for predicted
reinforcement signalp;.
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Fig. 10. Performance of the rule-embedded RFCN on the cart—pole balancing problem.

are compared. A big disturbance was added to the cartcart position. Hence, the comparisons in Fig. 12 are not
the 200th s. This disturbance caused the cart-pole systeractly fair to the RFCN which faces a more difficult prob-
controlled by the manually designed FCN corrupt (see tthem. Even though, the RFCN shows the best performance in
low two figures in Fig. 11). However, the RFCN regainethe comparisons.

the two control objectives in short time after the disturbance

tr}rggghlfn-line learning as shown in the upper two figur@ Control of the Crane System

of Fig. 11.

Since the cart-pole control has become a benchmark prob! € overhead-traveling crane as shown in Fig. 13 is usually
lem in the reinforcement learning research realm, we Cgﬁed for loading work at ironworks and various factories. In
%e operation of crane motion, the load is required to arrive at

compare the performance of our RFCN to that of others. , , i X ,
e target point accurately without any swing. In this section,

In Fig. 12, the performance of the rule-embedded RFC 4 A
and blank RFCN is compared to that of seven other reilve shall apply our MFCS to solve this multiobjective crane

forcement learning schemes. These schemes can be foﬁﬂ'atro' problem. In this system, the only control action/is

. L . . ich is the amount of force (iNewton3} applied to the trolley
in the references indicated in the parentheses of Fig. 0 move it. The model and the corresponding parameters of the
The results show that the proposed RFCN outperforms the ' P gp

crane system for our computer simulation are adopted from

other schemes in terms of average number of trials, av_erztgg] with the consideration of friction effects. The dynamic
number of generated rules, and average angular deviation

.equations of motion that we used are
of the pole under the control of learned controller. It is
noted that all the compared schemes except [10] solved the L _

single objective cart-pole control problem, i.e., they only RO+ Dcost +g siné =0,

tried to keep the pole at upright position regardless of the (M+m)D +cqD — mR(é)2 +mRO cosf =f (50)
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Tests of adaptation ability of the RFCN (upper two figures) and the manually designed FCN (low two figures), where a big disturbance acts

Fuzzy Neural Networks
Barto’s system Neural Networks - -
Lin and Lin |Barto’s original | " y Fuzzy rules must be given in advance ‘
Ours* | Ours 3 system [14] with continuous Lin and Lee
[31] Yy output [31] Anderson [32] Lee and Berenji | Berenji and Khedkar [34]
(3] [10]
Trials 5 11 15 35 40 8000 10 300 10
Rule 5 | 10 10 162 162 — 189 13 35
number
Angular R R . o . o o B
doviation | 0.5710.5] 0.5 4 2.5 — 1 1 1

Fig. 12.

where
# (in degrees)
D (in meters)

vertical deviation;
trolley position;
acceleration due to the gravity;

g=98m/¢

m = 5000 kg trolley-load mass;
M =5000 kg trolley mass;
R=5m rope length;

ca = 500 kg/s

coefficient of friction.

The constraints on the variables ar630° < ¢ < 30° and

—105N < f < 108NV,

For computer simulation, we reformulate the dynamic equa-

tions in (50) into state equations as follows:

.I’Q(t)

z1(t+ 1) =z (¢) +A{ i

$4(t)

R

Osxl(t)}

Ours*: Putting expert knowledge
(fuzzy rules) into the RFCN
in advance.

Tr

olley M

Fig. 13. Crane system.

Trolley-load m

Performance comparisons of the blank RFCN (Ours) and rule-embedded RFCN) (©wther existing reinforcement learning schemes.
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. 1 jecti :
wa(t+1) =22(t) + A{—g sina (£) — —aa(t)za(t) for each control objectl.ve, as follows:
R —1, if |z (t)] > 30°
. 1, . o or |z1(t)| > 3° over 1000
sinzq(t) I x3(t) sinz1(t) cos xl(t)}, ri(t) = time steps (53)
z3(t+ 1) =x3(t) + Aza(t), 0, otherwise,
A =1, if |z3(t) — Zdesirea| > 0.3m
4(t +1) =24 (t) + e m cos? 21(1) ro(t) = over 1000 time steps (54)
m— 2 T\ .
(M +m) . 0, -otherW|.se.-
z2(t) These reinforcement signals indicate that a failure occurs if
: {f — cqma(t) +mR{ R the trolley-load swing angle exceeds3(0°, the trolley-load
5 swing angle is not stabilized to be withit3° in 1000 time
_ z4(t) cosa:l(t)} steps, or the trolley dose not reach the desired position in
1000 time steps. The last two conditions are to ensure that the

trolley-load can arrive in the desired position stably (without

sinzy (f) + mg sinzi(?) Cosxl(t)}’ swinging) in short time, where the number “1000 time steps”

25t + 1) =25(t) + Al—(z4(t + 1) — 24(¢)) coszy(¢) is chosen objectively in the simulations.

. In the simulations, the learning system was tested for four

— g sinz;1(t)]/R (51) ! : . :
runs. Each run consists of a sequence of trials; each trial begins
where with the same initial condition and ends with a failure signal

1 g appearing, i.ez;(t) = —1. A run consists of at most 30 trials,
T2 RO+ D cos®, unless the duration of each run exceeds 30000 time steps. In
T3 D; the latter case, we consider the run “successful.” The following
T4 D; learning parameters were used for each trial. The learning rate
s 0, 7 = 0.005, sensitivity parametety = 4, and initial vigilance
sampling intervalA  0.02 s. parametepinpu; = 0.9, poutpur = 0.9 were used for the action

To apply the proposed MFCS to solve the above twaetwork. The learning rate = 0.01, sensitivity parameter
objective control problem, we define two control status signalg,= 4, and initial vigilance parametgfinpu, = 0.8, poutpur =
E, andE,, according to the two control objectives as follows0.8 were used for the critic network, wheyg,,... was the

def o vigilance parameter used in the input fuzzy clustering process
et and poutput Was the vigilance parameter used in the output
Ey = (23(t) — Tdesived)/ Tdesired- (52) fuzzy clustering process.

The control status signak; indicates the status of the first The simulation results of the crane system, corresponding to
control objective, i.e., to keep the swing of the trolley-loaffigs. 6 and 7 for the cart-pole system, are shown in Figs. 14
as little as possible. The control status sighalindicates the and 15. Fig. 14 indicates that the RFCN can achieve both
status of the second control objective, i.e., to push the tr0||§9ntrol objectives simultaneously after several trials (six trials
to a desired positiongdesicea. The signalE; is normalized ©N average) for four different desired trolley positions. Fig. 15
to be in[—1, 1] and the signalE; is normalized to be in Shows the state status; andzs, and the corresponding two-
[—1, 0]. The E;'s value close to zero means the respectivéalued external reinforcement signals of a run. It is noted
control objective is almost achieved. Notice that we normalifEom (53) that there are two causes for = -1, i.e,
the signalE, to be in[—1, 0] instead of[—1, 1], since we |z1(t)| > 30° or[z1(¢)| > 3° over 1000 time steps. Therefore,
do not want the trolley to go beyond and oscillate around tfi Fig. 15, we use-1(¢) to represent the reinforcement signal
desired position at any time. corresponding to the situatiorz:(¢)] > 30°, and r12(?)

Before we train an NFC for the MFCS to control thdo represent the reinforcement signal corresponding to the
two-objective crane system, we need to design two low-lev&ifuation,|z1(¢)| > 3° over 1000 time steps.
controllers, one for each control objective. As we did in the
last subsection, we used the trial-and-error design approach of
fuzzy control [21] to design these two low-level controllers. This paper proposes a neural fuzzy combiner (NFC) to
The first low-level controller (angle controller) is to controcombine a set of well-designed low-level controllers into a
the swinging angles of the trolley-load. The second low-levetultiobjective fuzzy control system (MFCS) for solving the
controller (position controller) is to determine a sequence obntrol problems with multiple goals. Three approaches have
forces to move the trolley to a desired position as soon heen developed to obtain a proper NFC, a hierarchical design
possible regardless of the trolley-load’s swing angle. We shatiethod, a supervised learning scheme, and a reinforcement
use an NFC with reinforcement learning to combine these tdgarning scheme. The first one is based on expert knowledge,
low-level controllers to achieve both control objectives of thand the other two are based on neural learning techniques suit-
crane system simultaneously. able for different learning environments. This paper extends

We formulate the crane control problem as a reinforcemethie application domain of reinforcement learning from single-
learning problem by defining two reinforcement signals, ormbjective to multiobjective control by proposing the concept of

VIIl. CONCLUSIONS
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Fig. 15. Variations of trolley-load swing angle, trolley position, and reinforcement signals during the reinforcement learning process of tten RFCN
the crane system.

mutual credit assignment and developing a novel competitilgarning schemes. The basic idea of the proposed multiob-
stochastic-exploration scheme. Computer simulations on fjeetive control techniques is to decompose a multiobjective
cart-pole balancing problem and the crane control probleask into a set of single-objective tasks. While achieving
have shown the applicabilities of the proposed structure asdch decomposition may be difficult, or even impossible,



744

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 6, DECEMBER 1999

there are useful classes of tasks where such decomposifizan J. A. Franklin, “Input space representation for reinforcement learn-
is achievable. Future research will focus on identifying the
classes of multiobjective tasks where the decomposition [ig;)
achievable.
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