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A Reinforcement Neuro-Fuzzy
Combiner for Multiobjective Control

Chin-Teng Lin and I-Fang Chung

Abstract—This paper proposes aneuro-fuzzy combiner(NFC)
with reinforcement learning capability for solving multiobjective
control problems. The proposed NFC can combinen existing low-
level controllers in a hierarchical way to form a multiobjective
fuzzy controller. It is assumed that each low-level (fuzzy or
nonfuzzy) controller has been well designed to serve a particular
objective. The role of the NFC is to fuse then actions decided by
the n low-level controllers and determine a proper action acting
on the environment (plant) at each time step. Hence, the NFC
can combine low-level controllers and achieve multiple objectives
(goals) at once. The NFC acts like a switch that chooses a proper
action from the actions of low-level controllers according to the
feedback information from the environment. In fact, the NFC
is a soft switch; it allows more than one low-level actions to
be active with different degrees through fuzzy combination at
each time step. An NFC can be designed by the trial-and-error
approach if enough a priori knowledge is available, or it can be
obtained by supervised learning if precise input/output training
data are available. In the more practical cases when there is no
instructive teaching information available, the NFC can learn by
itself using the proposed reinforcement learning scheme. Adopted
with reinforcement learning capability, the NFC can learn to
achieve desired multiobjectives simultaneously through the rough
reinforcement feedback from the environment, which contains
only critic information such as “success (good)” or “failure
(bad)” for each desired objective. Computer simulations have
been conducted to illustrate the performance and applicability
of the proposed architecture and learning scheme.

Index Terms—Critic information, mutual credit assignment,
priori knowledge, reinforcement learning, soft switch.

I. INTRODUCTION

I N fuzzy logic control, the hierarchical fuzzy controllers are
usually considered for solving the control problems with

complex requirements, multiple goals (objectives), or multiple
tasks [1]. The application examples ranging from the cart-
pole balancing problem [2] to recuperative turboshaft engine
control [3] and aircraft engine control [4]. A hierarchical
fuzzy control scheme permits the decomposition of a complex
problem into a set of simpler ones. Once these simpler
problems have been solved using low-level controllers, they
can be combined through a high-level fuzzy controller to solve
the larger problem. The high-level fuzzy controller contains
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the explicit tradeoff knowledge and defines the degree of
compromise among usually competing control goals.

At present, the design of a hierarchical fuzzy controller
for multiobjective control relies heavily on trial-and-error and
expert knowledge [1], [2]. The existing supervised-learning-
based neuro-fuzzy controllers [5]–[9] are usually impractical
to use for multiobjective control, since they require precise
training data covering all control objectives. For some real-
world applications, precise training data are usually difficult
and expensive, if not impossible, to obtain. This is even
true for the multiobjective control problems, where different
objectives have different priorities and are correlated with
each other. The reinforcement learning techniques, which
only require scalar evaluation (calledreinforcement signal)
of the controller output from the environment, could solve
this problem. However, most applications of control archi-
tectures based on reinforcement learning have focused on
single objective [11], [12]. In general reinforcement learn-
ing environments, we need to solve both thestructural and
temporalcredit assignment problems. In the structural credit
assignment problem, we need to attribute network error to
different nodes or weights. Most supervised neural learning
algorithms (e.g., the backpropagation rule) [13] can be used to
solve this problem. In the temporal credit assignment problem,
we need to assign credit or blame to each step (control
output) individually in long sequences leading up to eventual
successes or failures. This problem results from the fact that
a reinforcement signal may only be available at a time long
after a sequence of actions has occurred; this signal may be
caused by a network output (action) several time steps before
or by the whole sequence of actions with varying degrees of
contribution. Several reinforcement learning methods such as
temporal difference [14], [15] and Q-learning methods [16] can
be used to solve the temporal credit assignment problem. When
consider the reinforcement learning for multiobjective control,
we encounter another problem—themutualcredit assignment
problem. In this problem, we need to assign credit or blame to
each action individually among all the actions decided by the
low-level controllers that try to achieve the multiple control
objectives. This problem becomes severe when the multiple
control objectives are complexly related and have different
priorities. This is the main problem we want to attack in this
paper.

For the control with multiple tasks, Jacobs [17] developed
a modular gating architecture that dose task decomposition.
The gating architecture consists of several expert modules and
a special gating module that has an output for each expert
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module. When presented with supervised training patterns
from multiple tasks, the expert modules compete with each
other to learn the training patterns, and this competition
is mediated by the gating module. The gating architecture
has been used to learn multiple tasks within the supervised
learning paradigm. Singh [18] extended the gating architecture
to a CQ (compositional )-learning architecture that fits in
reinforcement learning environments. Similar architectures are
also studied in [19], [20]. In these architectures, only one
action is selected at each time step. Moreover, they focus
on the control problems with multiple discrete and sequential
tasks. Hence, they do not suit directly to the multiobjective
control problems considered in this paper, where we aim at
achieving multiple control objectives simultaneously. In [1],
Bonissone proposed the idea of using fuzzy gating module in
the gating architecture to design a hierarchical fuzzy controller.
The soft gating module allows more than one actions to be
active at any one time. However, no detailed design procedure
or learning scheme are proposed in [1].

In this paper, we adopt the concept of gating architecture
shown in Fig. 1 to solve the multiobjective control problems.
We propose aneuro-fuzzy combiner(NFC) with reinforce-
ment learning capability to work as the gating module. The
NFC performs soft switching among the outputs (actions)
of different low-level controllers. The soft switching allows
more than one actions to be active with different degrees
at each time step according to the environment states and
feedback, which can be supervised- or reinforced-type. The
proposed NFC can combineexisting low-level controllers in
a hierarchical way to form a multiobjective fuzzy controller. It
is assumed that each low-level (fuzzy or nonfuzzy) controller
has been well designed to serve a particular objective. The
role of the NFC is to fuse the actions decided by the
low-level controllers and determine a proper action acting on
the environment (plant) at each time step. Hence, the NFC
can combine low-level controllers and achieve multiobjectives
at once. The NFC results in smoother transitions between
control actions. Moreover, it allows expert knowledge to
be moved up into the gating module, so that the low-level
controllers handle the dynamics, while the high-level NFC
deals with quasisteady state conditions, thus making the design
of low-level controllers easier. An NFC can be designed by
the trial-and-error approach if enougha priori knowledge is
available, or it can be obtained by supervised learning if
precise input/output training data are available. In the more
practical cases when no instructive teaching information is
available, the NFC can learn by itself using the proposed rein-
forcement learning scheme. This learning scheme is developed
based on the proposed supervised learning scheme. Adopted
with reinforcement learning capability, the NFC can learn to
achieve desired multiobjectives simultaneously through the
rough reinforcement feedback from the environment. The re-
inforcement feedback contains only critic information such as
“success (good)” or “failure (bad)” for each desired objective.

The outline of this paper is as follows. In Section II, we
introduce the structure of a multiobjective fuzzy control system
along with the proposed neural fuzzy combiner (NFC). A hier-
archical design method for the NFC is presented in Section III.

Fig. 1. Gating architecture.

A supervised learning scheme and a reinforcement learn-
ing scheme for the NFC are then developed in Sections IV
and V, respectively. Convergence analysis of reinforcement
learning is proposed in Section VI. In Section VII, we apply
the proposed architecture to the cart-pole balancing problem
and the crane control problem. Section VIII summarizes the
conclusions.

II. M ULTIOBJECTIVE FUZZY CONTROL SYSTEM

This section introduces the structures and functions of the
proposed multiobjective fuzzy control system (MFCS) and
its key component, neural fuzzy combiner (NFC). As shown
in Fig. 2, the structure of the MFCS is basically a gating
architecture shown in Fig. 1, in which the soft switch is
realized by the NFC in the MFCS. In the proposed MFCS,
we use an NFC to combine low-level controllers, which are
denoted as modules 1 to in Fig. 2. Each module receives
an input vector from the environment, and produce a
control signal fed into the NFC for further processing at
each time step, where is a sub-vector of the environment
state vector It is assumed that each low-level (fuzzy
or nonfuzzy) controller has been well designed to serve a
particular objective of the required multiple objectives. Since
many techniques have been developed to design a controller
for a single objective control problem, these techniques can be
applied to design each low-level controller in the MFCS. These
techniques include traditional control theorems such as PID
control, fuzzy control [21], neuro-fuzzy control [5]–[10], etc.
Notice that while achieving decomposition of a multiobjective
task into a set of single-objective tasks may be difficult, or
even impossible, there are useful classes of tasks where such
decomposition is achievable. The technique proposed in this
paper is applicable to the multiobjective control problems,
where the decomposition is achievable and the controller
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Fig. 2. Basic structure of the MFCS.

for each single objective exists. The role of the NFC is to
fuse the actions, decided by the low-level
controllers and determine a proper actionacting on the
environment (plant) according to control status signals at each
time step. The remaining of this paper will focus on the design
of the NFC.

As shown in Fig. 2, the proposed NFC is composed of two
elements, a fuzzy context network (FCN) and an integration
unit. The FCN decides a set of weights,
for the low-level control actions according to control
status signals (the “context”) at each time step.
The control status signals indicate the status of the control
objectives and are defined by

(1)

where any proper distance measure can be used. The control
status signal defined in the above indicates the degree
that the th control objective is achieved at the current time
step. Such information can be obtained by simply checking
the status of each control objective independently. The weight

produced by the FCN determines the degree (weighting)
of the low-level control action to act on the environment.
With these weighting values, the integration unit will do the
following linearly weighted summation to combine thelow-
level actions into a final action as output to the environment:

(2)

The function of the FCN is basically to find the (dynamic)
mapping between the control status signalsand low-level
control actions’ weighting values Due to the powerful
learning ability of neural fuzzy networks, we consider the use
of neuro-fuzzy techniques to realize the FCN in this paper.
The proposed FCN (see Fig. 3) has five layers with node and
link numbering defined by the brackets on the right-hand side
of the figure. Layer-1 nodes are input nodes (input linguistic
nodes) representing input linguistic variables. Layer-5 nodes
are output nodes (output linguistic nodes) representing output
linguistic variables. Layer-2 and layer-4 nodes areterm nodes
that act as membership functions representing the terms of the
respective input and output linguistic variables. Each layer-3
node is a rule node representing one fuzzy logic rule. Layer-3
links define the preconditions of the rule nodes, and layer-4
links define the consequents of the rule nodes. The links in
layers 2 and 5 are fully connected between linguistic nodes
and their corresponding term nodes.

The FCN uses the technique ofcomplement codingfrom
Fuzzy ART [22] to normalize the input/output training vectors.
Complement coding is a normalization process that rescales
an -dimensional vector in to its

-dimensional complement coding form in such
that

(3)
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Fig. 3. Fuzzy context network.

where and is the com-
plement of i.e., As mentioned in [22],
complement coding helps avoid the problem of category
proliferation when using fuzzy ART for fuzzy clustering. It
also preserves training vector amplitude information.

We shall next describe the functions of the nodes, in
each of the five layers of the FCN, where is an integration
function, and is an activation function. Assume that the
dimension of the input space is and that of the output space
is

Layer 1: Each node in this layer is called an input linguistic
node and corresponds to one input linguistic variable. Layer-
1 nodes just transmit input signals to the next layer directly.

That is

(4)

Note that due to the complement coding process, for each input
node there are two output values, and

Layer 2: Nodes in this layer are called input term nodes
and each represents a term of an input linguistic variable, and
acts as a one-dimensional membership function. The following
trapezoidal membership function [24] is used:

(5)
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where and are, respectively, the left-flat and right-flat
points of the trapezoidal membership function of theth input
term node of the th input linguistic node; is the input
to the th input term node from theth input linguistic node
(i.e., ); and

if
if
if

(6)

The parameter is the sensitivity parameter that regulates the
fuzziness of the trapezoidal membership function.

Layer 3: Nodes in this layer are called rule nodes and each
represents one fuzzy logic rule. Each layer-3 node hasinput
term nodes fed into it, one for each input linguistic node. The
links in layer 3 are used to perform precondition matching of
fuzzy logic rules. Hence the rule nodes perform the following
operation:

(7)

where is the th input to a node in layer 3 and the
summation is over the inputs of this node.

Layer 4: The nodes in this layer are called output term
nodes; each has two operating modes:down–uptransmission
and up–down transmission modes (see Fig. 3). In down-up
transmission mode, the links in layer 4 perform the fuzzy OR
operation on fired (activated) rule nodes that have the same
consequent

(8)

where is the th input to a node in layer 4 and is the
number of inputs to this node from the rule nodes in layer
3. In up-down transmission mode, the nodes in this layer and
the up-down transmission links in layer 5 function exactly
the same as those in layer 2: each layer-4 node represents
a term of an output linguistic variable and acts as a one-
dimensional membership function. A set of output term
nodes, one for each output linguistic node, defines an-
dimensional hyperbox (membership function) in the output
space.

Layer 5: Each node in this layer is called a output linguistic
node and corresponds to one output linguistic variable. There
are two kinds of nodes in layer 5. The first kind of node
performs up-down transmission for training data (desired
outputs) to feed into the network, acting exactly like the input
linguistic nodes. For this kind of node, we have

(9)

where is the th element of the normalized desired output
vector. Note that complement coding is also performed on
the desired output vectors. The second kind of node performs
down–up transmission for decision signal output. These nodes
and the layer-5 down-up transmission links attached to them
act as a defuzzifier. If and are the corners of the

hyperbox of the th term of the th output linguistic variable
then the following functions can be used to simulate the

center of areadefuzzification method

(10)

where is the input to theth output linguistic node from its

th term node, and denotes the center
value of the output membership function of theth term of
the th output linguistic variable.

III. H IERARCHICAL DESIGN METHOD

FOR THE NEURAL FUZZY COMBINER

The proposed FCN maintains the spirit of human-like think-
ing and reasoning as in fuzzy logic systems. Hence, if neces-
sary and available, experts’ knowledge can be easily incorpo-
rated into the structure of the FCN. In this section, we shall
take use of this property and propose a hierarchical design
method for the FCN.

The proposed hierarchical FCN design method is based on
the hierarchical fuzzy controller design approach proposed in
[2] for the controller design problem with multiple goals. In
this approach, it is assumed that priorities can be assigned
among the goals. Let be a set of goals
that the system should achieve and maintain. Assume that the
priorities of the goals can be ordered as As an
example, in the simple problem of balancing a pole on the
palm of a hand and also moving the pole to a predetermined
location, we can set the goal of keeping the pole balanced
as the first priority, and the goal of moving to the desired
location as the second priority. Furthermore, assuming that
is the input linguistic variable related to achieving goalwe
can derive the control rules recursively by the following steps.

Step 1: Acquire the rule set of appropriate control rules
directly related to the highest priority goal. These rules are in
the general form of

Step 2: Subsequently form the rule set for to
The format of the rules in these rule sets is similar to the

ones in the previous step except that they include aspects of
approximately achieving the previous goal, i.e., “IF is
approximately achieved AND is THEN is ”

The above design concept can be applied to design the FCN
in our MFCS. The fundamental concept of the hierarchical
FCN design method is to let the FCN switchsoftly to the low-
level controller that tries to achieve a high-priority goal. When
the high-priority goal is achievedapproximately, the FCN then
switch softly to the low-level controller that can achieve the
goal with next high priority. Take the aforementioned pole-
balancing problem as an example. Assume thatand
are the control status signals for the first control goal
“balancing the pole,” and the second goal “moving the
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TABLE I
EXAMPLE RULE TABLES FOR THE FCN. (a) RULE

TABLE FOR w1 AND (b) RULE TABLE FOR w2

(a) (b)

pole to a predetermined location,” respectively. Suppose that
module 1 is a well-designed controller for achieving goal
and module 2 is a well-designed controller for achieving goal

Then the fuzzy rule table for the FCN could be designed
as in Table I. In the FCN, the inputs are the control status
signals and the output are the weighting values of
the low-level controllers (modules 1 and 2), In this
design, the term set for and is (negative), (zero),

(positive) and the term set for and is (small),
(medium), (large) In this example, we assume that the

goal is approximatelyachieved if approaches zero, i.e.,

From the rule tables, we observe that module 1 (the first
low-level controller) will be activated (i.e., ) when the
first goal is not achieved (i.e., ). At the same time,
module 2 (the second low-level controller) is suppressed (i.e.,

). We also observe that module 2 is activated (i.e.,
) only when the first goal is achieved (i.e., ).

At the same time, module 1 is suppressed (i.e., ).
One special case occurs when both goals are achieved, i.e.,

In this case, the FCN will give the two
low-level controllers equal weights (i.e., ).

IV. SUPERVISED LEARNING OF THE NFC

The hierarchical design method for the NFC proposed in the
last section is straightforward but it relies heavily on expert
knowledge and the precise analysis of controlled problem. In
this section, we present an on-line two-step learning scheme
for the proposed NFC (more precisely, the FCN). For an on-
line incoming training pattern, the following two steps are
performed in this learning scheme. First, a structure learning
scheme is used to decide proper fuzzy partitions and to find
the presence of rules. Second, a supervised learning scheme
is used to optimally adjust the membership functions for the
desired outputs. In this learning method, only the training
data need to be provided from the outside world. The users
don’t need to provide the initial fuzzy partitions, membership
functions and fuzzy logic rules.

A. Structure-Learning Step

The structure-learning task can be stated as: Given input
training data at time and desired output
value we need proper fuzzy partitions,
membership functions, and fuzzy logic rules. At this stage,
the network works in a two-sided manner; that is, the nodes
and links in layer 4 are in the up-down transmission mode
so training input and output data are fed in the network from
both sides.

The structure-learning step consists of three learning pro-
cesses: input fuzzy clustering process, output fuzzy clustering
process, and mapping process. The first two processes are
performed simultaneously on both sides of the network, and
are described below.

Input Fuzzy Clustering Process:We use the fuzzy ART fast
learning algorithm [22], [23] to find the input membership
function parameters, and This is equivalent to finding
proper input space fuzzy clustering or, more precisely, to
forming proper fuzzy hyperboxes in the input space. Initially,
for each complement coded input vector[see (3)], the values
of choice functions, are computed by

(11)

where “ ” is the minimum operator performed for the
pairwise elements of two vectors, is a constant,

is the current number of rule nodes, and is the
complement weight vector, which is defined by

where is the
weight vector of layer-2 links associated with rule node
The choice function value indicates the similarity between the
input vector and the complement weight vector We
then need to find the complement weight vector closest to
This is equivalent to finding a hyperbox (category) that
could belong to. The chosen category is indexed bywhere

(12)

Resonanceoccurs when the match value of the chosen cate-
gory meets the vigilance criterion

(13)

where is a vigilance parameter. If the vigilance
criterion is not met, we saymismatch resetoccurs. In this case,
the choice function value is set to zero for the duration of
the input presentation to prevent persistent selection of the
same category during search (we call this action “disabling

”). A new index is then chosen using (12). The search
process continues until the chosensatisfies (13). If no such

is found, then a new input hyperbox is created by adding a
set of new input term nodes, one for each input linguistic
variable, and setting up links between the newly added input
term nodes and the input linguistic nodes. The complement
weight vectors on these new layer-2 links are simply given as
the current input vector, These newly added input term
nodes and links define a new hyperbox, and thus a new
category, in the input space. We denote this newly added
hyperbox as

Output Fuzzy Clustering Process:The output fuzzy clus-
tering process is exactly the same as the input fuzzy clustering
process except that it is performed between layers 4 and 5
which are working in the up-down transmission mode. Of
course, the training pattern used now is the desired output
vector after complement coding We denote the
chosen or newly added output hyperbox byThis hyperbox
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is defined by the complement weight vector in layer 5:

The above two fuzzy clustering processes produce a chosen
input hyperbox indexed as and a chosen output hyperbox
indexed as If the chosen input hyperbox is not newly
added, then there is a rule node,that corresponds to it. If
the input hyperbox is a newly added one, then a new rule
node (indexed as in layer 3 is added, and connected to the
input term nodes that constitute it.

Mapping Process:After the two hyperboxes in the input
and output spaces are chosen in the input and output fuzzy
clustering processes, the next step is to perform the mapping
process which decides the connections between layer-3 and
layer-4 nodes. This is equivalent to deciding the consequents
of fuzzy logic rules. This mapping process is described by
the following algorithm, wherein connecting rule nodeto
output hyperbox we means connecting the rule nodeto
the output term nodes that constitutes the hyperboxin the
output space.

Step 1: IF rule node is a newly added node
THEN connect rule node to output
hyperbox

Step 2: ELSE IF rule node is not connected to output
hyperbox originally
THEN disable and perform Input Fuzzy
Clustering Process to find the next qualified
(i.e., the next rule node that satisfies (12)
and (13)].
Go to Step 1.

Step 3: ELSE no structure change is necessary.

In the mapping process, hyperboxesand are resized
according to thefast learning rule [22], [23] by updating
weights, and as follows:

(14)

B. Parameter Learning Step

After the network structure has been adjusted according to
the current training pattern, the network then enters the second
learning step to adjust the parameters of the membership
functions optimally with the same training pattern. In the
parameter learning, the network works in the feedforward
manner; that is, the node and links at layer four are in the
down-up transmission mode. Basically, the idea of backprop-
agation algorithm is used for this parameter learning to find
the errors of node outputs in each layer. Then, these errors
are analyzed to perform parameters adjustment. The goal is to
minimize the error function

(15)

where is the th desired output and is the th
current output. It is noted that in the parameter learning we
use only normalized training vectors,and rather than the
complement coded ones and Assuming that is the
adjustable parameter in a node, the general learning rule used

is

(16)

(17)

where is the learning rate. To show the learning rules, we
derive the rules layer by layer using the hyperbox member-
ship functions with corners ’s and ’s as the adjustable
parameters for these computations. For clarity, we consider
the single-output case.

Layer 5: Using (10), (16), and (17), the updating rules of
the corners of hyperbox membership function,and are
derived as

(18)

(19)

The error to be propagated to the preceding layer is

(20)

Layer 4: In the down-up transmission mode, there is no
parameter to be adjusted in this layer. Only the error signal

needs to be computed and propagated. According to (10),
the error signal is derived as

(21)

As for the case of multiple-outputs, the computations in layers
five and four are exactly the same as the above and proceed
independently for each output linguistic variable.

Layer 3: As in layer four, only the error signals need to be
computed. According to (8), this error signal can be derived as

(22)

where (inputs of output terms node). As
for the case of multiple-outputs, the error signal becomes

where the summation is performed
over the consequents of a rule node; that is, the error of a rule
node is the summation of the errors of its consequents.

Layer 2: Using (5), (16), and (17), the updating rules of
and are derived as

and

(23)

where

if

otherwise,

if

otherwise.
(24)
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Fig. 4. Reinforcement fuzzy context network.

The above supervised learning algorithm performs well
only when a set of supervised training data are available.
Unfortunately, such detailed and precise training data may be
very expensive or even impossible to obtain in some real-
world applications. This problem becomes even severe for
multiobjective control. In many cases, the controlled system
may only be able to provide the learning algorithm with
reinforcement signals such as binary decisions of right/wrong
of the current controller. In order to train the FCN with this
kind of evaluative feedback, we shall present a reinforcement
learning scheme in the next section.

V. REINFORCEMENT LEARNING OF THE NFC

Fig. 4 shows how a controller and its training environment
interact in a reinforcement learning problem. The environment
supplies a time-varying input vector to the network, receives
its time-varying output vectors, and then provides time-varying
scalar reinforcement signals. For each control objectivethere
is a corresponding reinforcement signal indicating the
degree (status) of fulfillment of this objective. In this paper, a
reinforcement signal can be both forms

1) two-valued number, such that
means “a success” and means “a failure”;

2) a real number, which represents a more
detailed and continuous degree of failure or success.

We also assume that each is the reinforcement signal
available at time stepand is caused by the inputs and outputs
chosen at time step or even affected by earlier inputs and
outputs.

To resolve the reinforcement learning problems, an inte-
grated network, called the reinforcement fuzzy context net-
work (RFCN) is proposed. As shown in Fig. 4, the proposed

RFCN consists of two FCNs; one FCN is used as the action
network (fuzzy controller) and the other FCN as the prediction
network (fuzzy predictor). Each network has exactly the same
structure as that shown in Fig. 3. The action network plays
the role of the FCN in Fig. 2; it decides a set of weights,

for the low-level control actions according
to control status signals (the “context”) at
each time step. The prediction network models the environ-
ment such that it can predict the reinforcement signals that
will eventually be obtained from the environment for the
current action (more precisely, the current weighting values)
determined by the action network. The predicted reinforcement
signals can provide the action network beforehand and more
detailed reward/penalty information (“internal reinforcement
signals”) about the candidate outputs (weighting values) for
the action network to learn and decrease the uncertainty it
faces to speed up the learning.

Associated with the RFCN is a reinforcement learning
scheme. We shall next introduce the functions and learning
algorithms of the action network and the prediction network,
respectively, in the following two subsections.

A. Action Network

The goal of the reinforcement learning of the action network
is to adjust the parameters(composed of and ) of the
action network, to change the connection types, or even to add
new nodes, if necessary, such that each reinforcement signal
is maximum; that is

(25)

To determine we need to know where is
the th-output of the action network with as its reinforcement
signal. Since the reinforcement signal does not provide any
hint as to what the right answer should be in terms of a cost
function, there is no gradient information, and the gradient,

can only be estimated. If we can estimate
then the on-line supervised learning algorithm developed in
the last section can be directly applied to the action network
to solve the reinforcement learning problem.

In estimating the gradient information using the stochastic
exploration method [25], [26], the output of the action
network does not directly act on the environment. Instead,
it is treated as a mean (expected) value. The actual output
value, is chosen by exploring a range around this mean
point. This range of exploration corresponds to the variance
of a probability function which is the normal distribution in
our design. The amount of exploration, is chosen as

(26)

where is the predicted (expected) reinforcement signal
coming from the prediction network to predict Once the
variance has been decided, the actual output of the stochastic
node can be set as

(27)
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That is, is a normal or Gaussian random variable with
the density function

(28)

Using the above stochastic exploration method with mul-
tiparameter distribution, the gradient information is estimated
as

(29)

where the subscript, represents time displacement. The
signal is called the internal reinforcement signal coming
from the prediction network. It indicates the prediction error
of the prediction network (e.g., the difference between
and The exact mathematical formula of the internal rein-
forcement signals, will be studied in the next subsection.
Equation (29) is in fact acompetitivelearning rule due to the
product term and thus we call this new scheme as
competitive stochastic-explorationrule. This term functions as
a “gating” factor for scaling the effects caused by different
low-level controllers. This competitive stochastic-exploration
learning rule is a novel scheme to solve the reinforcement
learning problem in multiobjective control.

Basically, the training of an action network is not a super-
vised learning problem. There are no correct “target” output
values for each input pattern. However, in the structure-
learning step of the action network, we need desired output
values to determine proper output fuzzy partitions as well
as membership functions and to find fuzzy logic rules. The
desired output values can be estimated as

(30)

where is a real number in the range and can
be replaced by in (29). According to
the input state values and the estimated desired output values,
the structure-learning step in Section IV can be performed on
the action network directly.

As for the parameter learning of the action network, the
goal is to maximize the external reinforcement signal,
Thus, we need to estimate the gradient information,
as we have obtained in (29). With this gradient information,
the parameter-learning step can be performed in the way
similar to that in the supervised learning scheme in Section IV.
More clearly, the exact parameter learning rules of the action
network are the same as (18)–(24) except that the term

in these equations is replaced by the new error
term

B. Prediction Network

An FCN is used as the prediction network in the RFCN
shown in Fig. 4. The prediction network receives external
reinforcement signals from the environment and produces
more informative internal reinforcement signals to the action

network. It is noted that a prediction network in the RFCN
has outputs, one for predicting each external reinforce-
ment signal. To solve the temporal credit assignment problem
mentioned in Section I, the technique based on the temporal-
difference methods, which are closely related to the dynamic
programming technique [27], is used [14], [15]. Unlike the
supervised learning method which assigns credit according to
the difference between the predicted and actual output, the
temporal-difference methods assign credit according to the
difference between temporally successive predictions.

A general learning rule for the temporal-difference proce-
dures [15] is

(31)

where

predictor’s adjustable parameter;
predictor’s output;
external reinforcement signal (i.e., desired
output);
discount-rate parameter;
learning rate.

We shall derive the learning rule of the prediction network
according to (31). According to this equation, the error signal

of the output node of the prediction network is

(32)

The goal of training the prediction network is to minimize the
squared error

(33)

With the above error function, we can derive the struc-
ture/parameter learning algorithm for the prediction network
using the gradient descent method. The resulting structure
learning step is exactly the same as that of the supervised
learning algorithm in Section IV. The parameter learning al-
gorithm of the prediction network can be obtained by replacing
the term by the term
in (18) to (24).

Since both the action and prediction networks are FCN’s,
expert knowledge, if available, can be put into the network
directly asa priori knowledge to speed up the learning. Obvi-
ously, the hierarchical design method introduced in Section III
could be used to design the action network directly. When
proper fuzzy rules for the action network have been deter-
mined, we can design the prediction network based on these
rules using the concept of hierarchical design approach.

Consider again the aforementioned pole-balancing problem
in Section III as an example. Assume the fuzzy rule table for
the action network is shown in Table I. Then the fuzzy rule
table for the prediction network could be designed as Table II.
For the prediction network, the inputs are the control status
signals and the outputs are the predicted reinforcement
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TABLE II
EXAMPLE RULE TABLES FOR THE PREDICTION NETWORK FOR

THE RFCN. (a) RULE TABLE FOR p1 AND (b) RULE TABLE FOR p2

(a) (b)

signals, In this design, the term set for and is
(negative), (zero), (positive) and the term set for

and is (bad), (median), (good) It is observed
that the rules in Table II predict the reinforcement signals
for the actions chosen by the rules in Table I under certain
control status. For example, from Table I, when
the action network chooses and which
suppresses the second low-level controller and allows the first
low-level controller to try to achieve the first control objective
(i.e., balancing the pole). Hence, we expect to obtain a larger
reinforcement signal for the first control objective
To keep the pole balanced when we need a force to
the left, which will push the pole position further away from
the desired position when but push the pole position
closer to the desired position when Hence we can
expect a bad reinforcement feedback for the second control
objective when and a better reinforcement
feedback for the second control objective when

The other rules in Table II can be obtained by similar
consideration.

VI. CONVERGENCEANALYSIS OF REINFORCEMENTLEARNING

In this section, we shall study the convergence property
of the proposed reinforcement learning scheme. As shown in
Fig. 4, the proposed RFCN is composed of two FCN’s acting
as the prediction network and action network. In Section V, we
have proposed a reinforcement learning algorithm for RFCN,
where the weight updating rules for the action network and
the prediction network were derived, respectively. The weight
updating rule for the action network derived in Section V-
A is basically a gradient descent procedure in which the
network parameters are modified along the negative direction
of the error function with respect to these parameters. Also,
we can show that the FCN is a universal approximator via
the Stone–Weierstrass Theorem. So, it can be expected that
the parameters will eventually converge to the values which
minimize the error function to within some small fluctuations.
However, this expectation is based on the condition that
the estimated gradient information is correct. As we know,
the gradient information is estimated based on the internal
reinforcement signal, in (32) which is provided by the
prediction network. Hence, to study the convergence property
of the reinforcement learning of RFCN, we need to study
the convergence property of the weight updating rule of the
prediction network.

As described in Section V-B, the reinforcement learning
of the prediction network is mainly based on thetemporal
difference(TD) learning algorithm. The convergence proper-
ties of TD learning algorithm have been studied by Sutton

[15], Dayan [28], [29], etc. They transformed the TD learning
algorithm into absorbing Markov chain and exploited the
concept of the convergence analysis inlearning automata,
such as -optimality, absolutely expedient, etc., to study
the convergence property. However, these results are only
suitable for the predictor (e.g., a neural network) with a
single output. Since we concern with the predictor (FCN)
with multiple outputs in this paper and thus face the mutual
credit assignment problem, we need to come out our own
convergence proof for the proposed reinforcement learning
scheme.

Before we perform the convergence analysis, some symbols
used in TD learning algorithm need to be explained or rede-
fined in advance. As shown in (31), the rule of weight vector
updating for TD learning algorithm is given by

where and is the input vector
at time However, the above weight vector updating would
be inconvenient because prediction differences result from
changes in changes in should be reflected in weight vector

updating. Hence, Sutton proposes that the above equation
can be transformed to

(34)

we shall now study the convergence characteristic of the TD
learning algorithm in (34) on the prediction network with two
output nodes by using the technique in [30].

Step 1: First, we normalize the gradient vector
in (34) and obtain

(35)

Notice that (35) is equivalent to the original TD learning
algorithm [(31)] used in our prediction network, since the
input/output data are normalized to the range of [0, 1] in
the process of complement coding in the proposed learning
scheme.

Step 2: In (33), we formulate the error function of the
prediction network as the summation of every single error
value of the prediction outputs. Hence, we can express the
updating rule of the weight vector in the prediction network
by

(36)

Step 3: With the preparation in Steps 1 and 2, we can
show that if the learning constantis small enough, then the
updated weight vector has greater effect of bringing

closer to than the effect of bringing
closer to assuming that

the difference in output
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is greater than
where are the

indexes of the two output nodes of the prediction network.
In other words, larger correction will be made to the output
node which produces bigger prediction error. Namely, we
can prove that the reinforcement learning process of the
prediction network will go toward the convergence direction.
This property is shown in the rest of this section.

For simplification, we assume the absolute variation of the
prediction value from the first output is greater than that of
the absolute variation from the second output, i.e.,

(37)

where and are set as follows:

(38)

According to (36), we can write as follows:

(39)

If in (39) is a microvector, the above equation becomes

(40)

By (35), the above equation can be rewritten as

(41)

According to (38) and through a simple vector operation, (41)
becomes (42), as shown at the bottom of the page.

In (42)

holds. Hence, it is possible to set the value of the learning rate
as shown in (43) at the bottom of the page.
Then, (42) becomes

(44)

Previously, we assumed [(37)]. Consider the case
of now. We know that so we have

(45)

The above evaluation shows that in the case of
approaches rather than

provided that is small enough. By
using the same technique, we can obtain the same conclusion
for the cases of and
This completes the proof of the convergence property stated
in Step 3 in this section.

VII. I LLUSTRATIVE EXAMPLES

In this section, the proposed MFCS is applied to two
simulated examples to show its performance and applicability.
These two examples are the cart-pole balancing control and
the crane control problems.

(42)

(43)
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Fig. 5. Cart–pole balancing system.

A. Control of the Cart–Pole Balancing System

The cart–pole balancing problem involves of learning how
to balance an upright pole as shown in Fig. 5. The bottom
of the pole is hinged to a cart that travels along a finite-
length track to its right or its left. Both the cart and pole
can move only in the vertical plane; that is, each has only
one degree of freedom. There are two control objectives in
our problem; move the cart to a desired position and keep the
pole at the upright position at the same time. Hence this is a
multiobjective control problem and the proposed MFCS will
be applied here to achieve the two objectives simultaneously.
There are four input state variables in this system:

angle of the pole from an upright position (in degrees);
angular velocity of the pole (in degrees per second);
horizontal position of the cart’s center (in meters);
velocity of the cart (in meters per second).

The only control action is which is the amount of force
(in Newtons) applied to the cart to move it left or right. The
goal of this control problem is to design or train the MFCS
such that it can determine a sequence of forces with proper
magnitudes to apply to the cart to balance the pole as well as
to push the cart to a desired position.

The model and the corresponding parameters of the cart-
pole balancing system for our computer simulation are adopted
from [14] with the consideration of friction effects. The
equations of motion that we used are

(46)

where

9.8 m/s acceleration due to the gravity;
1 kg mass of the cart;
0.1 kg mass of the pole;

0.5 m half-pole length;

0.0005 coefficient of friction of the cart on the
track;

0.000 000 2 coefficient of friction of the pole on the
cart;

0.02 s sampling interval.

The constraints on the variables are
and

To apply the proposed MFCS to solve the above two-
objective problem, we need to define two control status signals,

and In this problem, they are defined as follows
according to the two control objectives

(47)

The control status signal indicates the status of the first
control objective, i.e., to keep the pole balanced. The control
status signal indicates the status of the second control
objective; i.e., to move the cart to a desired position,
They are normalized to be in Hence an value
close to zero means the respective control objective is almost
achieved.

Before training an NFC for the MFCS to control the
two-objective cart-pole system, we first need to design two
low-level controllers, one for each control objective. The first
low-level controller (called “angle controller”) is to determine
a sequence of forces to keep the pole balanced regardless of the
cart position. The second low-level controller (called “position
controller”) is to determine a sequence of forces to move the
cart to a desired position as soon as possible regardless of
the pole angle. Since both the angle controller and position
controller are normal single-objective controllers, they can be
designed easily by existing control schemes. In this work, we
designed two fuzzy controllers to act as the angle and position
controllers, respectively, based on the trial-and-error design
approach [21]. We shall use the NFC with reinforcement
learning to combine these two low-level controllers to achieve
both control objectives simultaneously.

We formulate the cart–pole balancing problem as a rein-
forcement learning problem by defining two reinforcement
signals, one for each control objective, as follows:

if
otherwise,

(48)

if
or over

300 time steps
otherwise.

(49)

These reinforcement signals indicate that a failure occurs if
the pole angle deviation exceeds12 , the cart bumps into
the walls on both sides (i.e., ), or the cart
dose not reach the desired position in 300 time steps. The last
condition is to ensure that the cart can arrive in the desired
position in short time instead of wandering over the track,
where the number “300 time steps” is chosen objectively in
the simulations.

In the simulations, the learning system was tested for four
runs. Each run consists of a sequence of trials; each trial begins
with the same initial condition and ends with a failure signal
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Fig. 6. Performance of the RFCN on the cart–pole balancing problem.

appearing, i.e., A run consists of at most 50 trials,
unless the duration of each run exceeds 30 000 time steps. In
the latter case, we consider the run “successful.” The following
learning parameters were used for each trial. The learning rate

sensitivity parameter and initial vigilance
parameter were used for the action
network. The learning rate sensitivity parameter

and initial vigilance parameter
were used for the critic network, where was the

vigilance parameter used in the input fuzzy clustering process
and was the vigilance parameter used in the output
fuzzy clustering process.

Fig. 6 shows the number of trials until success for each run,
where the four runs start at different initial states. The results
indicate that the RFCN can achieve both control objectives
simultaneously after several trials (11 trials on average) for
four different initial conditions and desired cart positions.
To observe the learning process more clearly, Fig. 7 shows
the state status, and and the corresponding two-valued
external reinforcement signals of a run. From the figure, we
can tell the cause of each failure signal (i.e., ); a
failure signal results either from the unacceptable pole angle
or from the unacceptable cart position as defined in (48), (49).
It is noted from (49) that there are two causes for ,
i.e., or over 300
time steps. Therefore, in Fig. 7, we use to represent
the reinforcement signal corresponding to the situation,

and to represent the reinforcement
signal corresponding to the situation,
over 300 time steps.

After reinforcement learning, the action network in the
RFCN is well trained and can be used alone as the fuzzy

context network (FCN) in Fig. 2 to form the whole MFCS for
controlling the multiobjective cart–pole system. The learned
FCN should function as the one designed by the hierarchical
design method in Section III. When we applied this learned
FCN to the above cart-pole system for the case of

the outputs (weighting values) of the FCN and
the weighted-sum force and the resulted state status

and are shown in Fig. 8. It is observed that before the
two objectives are achieved simultaneously (i.e., and

constantly), the two weighting factors, and
appear to be complementary to keep the priority relation

of the two low-level controllers.
As mentioned in Section III and Section V-B, expert knowl-

edge, if available, can be put into the action and prediction
networks directly asa priori knowledge to speed up the learn-
ing. To illustrate this point, we performed another simulation
in which the rule tables in Tables I and II were put into the
action and prediction networks of the RFCN, respectively, as
a priori knowledge before starting the reinforcement learning.
The membership functions of the fuzzy terms in the two rule
tables are given in Fig. 9. In the reinforcement learning process
of the rule-embedded RFCN, the number of trials until success
for each run is shown in Fig. 10, where the four runs start at
different initial states as we did in the above. As compared to
Fig. 6, Fig. 10 indicates that the embedded expert knowledge
has reduced the average number of trials of RFCN from 11
to 5.

Comparing RFCN to the manually designed FCN, we see
that although the latter could outperform the trained RFCN if
manually trial-and-error design is performed exhaustively, the
former has some advantages over the latter. First, the hierar-
chical (manual) design method for the FCN is straightforward
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Fig. 7. Variations of pole angle, cart position and reinforcement signals during the reinforcement learning process of the RFCN on the cart-pole problem.

Fig. 8. Weighting values (w1 andw2—outputs of learned FCN), weighted-sum (integrated) force (f—output of neural fuzzy combiner), and the resulted
state status(� and x) of the cart-pole system controlled by the trained RFCN in the case ofxdesired = �1:5:

but it relies heavily on expert knowledge and precise analysis
of controlled problem. On the other hand, the RFCN can
learn by itself automatically through the rough reinforcement
feedback from the environment and avoid the needs of expert
knowledge and trial-and-error design. Second, the manually
designed FCN is static; its rules and membership functions
are fixed once they are designed. Hence it cannot adapt to new

environment, and might not keep the system stable in face of
big disturbances which are out of the control range of designed
rules. On the contrary, RFCN is a dynamic system with on-
line learning ability and can adapt to new environment through
continuous learning. Fig. 11 illustrates this point, where the
state status, and of the cart–pole system controlled by
the RFCN and by the manually designed FCN, respectively,
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(a) (b) (c)

Fig. 9. Membership functions of the fuzzy terms in Tables I and II used asa priori knowledge of the action and prediction networks of the RFCN.
(a) Membership functions for environment signalsEi, (b) membership functions for weighting factorswi, and (c) membership functions for predicted
reinforcement signalpi:

Fig. 10. Performance of the rule-embedded RFCN on the cart–pole balancing problem.

are compared. A big disturbance was added to the cart at
the 200th s. This disturbance caused the cart-pole system
controlled by the manually designed FCN corrupt (see the
low two figures in Fig. 11). However, the RFCN regained
the two control objectives in short time after the disturbance
through on-line learning as shown in the upper two figures
of Fig. 11.

Since the cart-pole control has become a benchmark prob-
lem in the reinforcement learning research realm, we can
compare the performance of our RFCN to that of others.
In Fig. 12, the performance of the rule-embedded RFCN
and blank RFCN is compared to that of seven other rein-
forcement learning schemes. These schemes can be found
in the references indicated in the parentheses of Fig. 12.
The results show that the proposed RFCN outperforms the
other schemes in terms of average number of trials, average
number of generated rules, and average angular deviation
of the pole under the control of learned controller. It is
noted that all the compared schemes except [10] solved the
single objective cart-pole control problem, i.e., they only
tried to keep the pole at upright position regardless of the

cart position. Hence, the comparisons in Fig. 12 are not
exactly fair to the RFCN which faces a more difficult prob-
lem. Even though, the RFCN shows the best performance in
the comparisons.

B. Control of the Crane System

The overhead-traveling crane as shown in Fig. 13 is usually
used for loading work at ironworks and various factories. In
the operation of crane motion, the load is required to arrive at
the target point accurately without any swing. In this section,
we shall apply our MFCS to solve this multiobjective crane
control problem. In this system, the only control action is
which is the amount of force (inNewtons) applied to the trolley
to move it. The model and the corresponding parameters of the
crane system for our computer simulation are adopted from
[35] with the consideration of friction effects. The dynamic
equations of motion that we used are

(50)
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Fig. 11. Tests of adaptation ability of the RFCN (upper two figures) and the manually designed FCN (low two figures), where a big disturbance acts
on the cart at the 200th second.

Fig. 12. Performance comparisons of the blank RFCN (Ours) and rule-embedded RFCN (Ours�) to other existing reinforcement learning schemes.

where

(in degrees) vertical deviation;
(in meters) trolley position;

9.8 m/s acceleration due to the gravity;
5000 kg trolley-load mass;
5000 kg trolley mass;

5 m rope length;
kg/s coefficient of friction.

The constraints on the variables are and

For computer simulation, we reformulate the dynamic equa-
tions in (50) into state equations as follows:

Fig. 13. Crane system.
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(51)

where

;
;

;
;

;
sampling interval s.

To apply the proposed MFCS to solve the above two-
objective control problem, we define two control status signals,

and according to the two control objectives as follows:

(52)

The control status signal indicates the status of the first
control objective, i.e., to keep the swing of the trolley-load
as little as possible. The control status signalindicates the
status of the second control objective, i.e., to push the trolley
to a desired position, The signal is normalized
to be in and the signal is normalized to be in

The ’s value close to zero means the respective
control objective is almost achieved. Notice that we normalize
the signal to be in instead of since we
do not want the trolley to go beyond and oscillate around the
desired position at any time.

Before we train an NFC for the MFCS to control the
two-objective crane system, we need to design two low-level
controllers, one for each control objective. As we did in the
last subsection, we used the trial-and-error design approach of
fuzzy control [21] to design these two low-level controllers.
The first low-level controller (angle controller) is to control
the swinging angles of the trolley-load. The second low-level
controller (position controller) is to determine a sequence of
forces to move the trolley to a desired position as soon as
possible regardless of the trolley-load’s swing angle. We shall
use an NFC with reinforcement learning to combine these two
low-level controllers to achieve both control objectives of the
crane system simultaneously.

We formulate the crane control problem as a reinforcement
learning problem by defining two reinforcement signals, one

for each control objective, as follows:

if
or over 1000

time steps
otherwise,

(53)

if
over 1000 time steps

otherwise.
(54)

These reinforcement signals indicate that a failure occurs if
the trolley-load swing angle exceeds30 , the trolley-load
swing angle is not stabilized to be within3 in 1000 time
steps, or the trolley dose not reach the desired position in
1000 time steps. The last two conditions are to ensure that the
trolley-load can arrive in the desired position stably (without
swinging) in short time, where the number “1000 time steps”
is chosen objectively in the simulations.

In the simulations, the learning system was tested for four
runs. Each run consists of a sequence of trials; each trial begins
with the same initial condition and ends with a failure signal
appearing, i.e., A run consists of at most 30 trials,
unless the duration of each run exceeds 30 000 time steps. In
the latter case, we consider the run “successful.” The following
learning parameters were used for each trial. The learning rate

sensitivity parameter and initial vigilance
parameter were used for the action
network. The learning rate sensitivity parameter

and initial vigilance parameter
were used for the critic network, where was the

vigilance parameter used in the input fuzzy clustering process
and was the vigilance parameter used in the output
fuzzy clustering process.

The simulation results of the crane system, corresponding to
Figs. 6 and 7 for the cart-pole system, are shown in Figs. 14
and 15. Fig. 14 indicates that the RFCN can achieve both
control objectives simultaneously after several trials (six trials
on average) for four different desired trolley positions. Fig. 15
shows the state status, and and the corresponding two-
valued external reinforcement signals of a run. It is noted
from (53) that there are two causes for i.e.,

or over 1000 time steps. Therefore,
in Fig. 15, we use to represent the reinforcement signal
corresponding to the situation, and
to represent the reinforcement signal corresponding to the
situation, over 1000 time steps.

VIII. C ONCLUSIONS

This paper proposes a neural fuzzy combiner (NFC) to
combine a set of well-designed low-level controllers into a
multiobjective fuzzy control system (MFCS) for solving the
control problems with multiple goals. Three approaches have
been developed to obtain a proper NFC, a hierarchical design
method, a supervised learning scheme, and a reinforcement
learning scheme. The first one is based on expert knowledge,
and the other two are based on neural learning techniques suit-
able for different learning environments. This paper extends
the application domain of reinforcement learning from single-
objective to multiobjective control by proposing the concept of
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Fig. 14. Performance of the RFCN on the crane system.

Fig. 15. Variations of trolley-load swing angle, trolley position, and reinforcement signals during the reinforcement learning process of the RFCNon
the crane system.

mutual credit assignment and developing a novel competitive
stochastic-exploration scheme. Computer simulations on the
cart-pole balancing problem and the crane control problem
have shown the applicabilities of the proposed structure and

learning schemes. The basic idea of the proposed multiob-
jective control techniques is to decompose a multiobjective
task into a set of single-objective tasks. While achieving
such decomposition may be difficult, or even impossible,
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there are useful classes of tasks where such decomposition
is achievable. Future research will focus on identifying the
classes of multiobjective tasks where the decomposition is
achievable.
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