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New Techniques on Deformed Image
Motion Estimation and Compensation

Chin-Teng Lin, Gin-Der Wu, and Shih-Chieh Hsiao

Abstract—In this paper, new techniques for deformed image mo-
tion estimation and compensation using variable-size block-matching
are proposed, which can be applied to an image sequence compression
system or a moving object recognition system. The motion estimation
and compensation techniques have been successfully applied in the area
of image sequence coding. Many research papers on improving the per-
formance of these techniques have been published; many directions are
proposed, which can all lead to better performance than the conventional
techniques. Among them, both generalized block-matching and variable-
size block-matching are successfully applied in reducing the data rate
of compensation error and motion information, respectively. These two
algorithms have their merits, but suffer from their drawbacks. Moreover,
reducing the data rate in compensation error is sometimes increasing
the data rate in motion information, or vice versa. Based on these
two algorithms, we propose and examine several algorithms which are
effective in reducing the data rate. We then incorporate these algorithms
into a system, in which they work together to overcome the disadvantages
of individual and keep their merits at the same time. The proposed
system can optimally balance the amount of data rate in two aspects (i.e.,
compensation error and motion information). Experimental results show
that the proposed system outweighs the conventional techniques. Since we
propose a recovery operation which tries to recover the incorrect motion
vectors from the global motion, this proposed system can also be applied
for the moving object recognition in image sequence.

Index Terms—Block-matching, data rate, genetic algorithm, image
motion estimation, moving object recognition.

I. INTRODUCTION

For the purpose of reducing temporal redundancy in image se-
quence, motion estimation and compensation techniques have been
successfully applied [1]–[3]. Motion estimation and compensation
techniques can be regarded as determining a coordinate transfor-
mation that is applied to every pixel of the frame. The coefficients
of transformation are chosen by minimizing the distortion measure.
Assume theIt(x; y) andIt�1(x; y) represent the pixel values of two
consecutive frames, respectively, andR is a reference block inIt.
We can express the block-matching motion estimation as finding the
motion vector(dx; dy) which satisfies the following requirement:

min
(x; y)2R

(It(x; y)� It�1(x+ dx; y + dy))
2
: (1)

In block-matching motion estimation, the assumption that an
image is composed of rigid objects in pure translational motion is
employed. In reality, however, motion is a complex combination of
translation and rotation. In order to cope with rotation as well as
other nonlinear deformations, a general approach to block-matching
motion estimation was proposed in [4]. A geometric transformation
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instead of pure translation is employed and (1) is generalized to

min
(x; y)2R

(It(x; y)� It�1(f(x; y); g(x; y)))
2 (2)

wheref(x; y) andg(x; y) are the functions of transformation applied
to coordinate values ofx andy, respectively. Geometric transforma-
tions include:affine, perspective,and polynomial transformation. In
all these transformations, translation is a special case.

Variable-size block-matching motion compensation is proposed in
[5]–[7] to tackle the problem of nonuniform motion in search blocks
of block-matching algorithm. In the algorithm, an image is adaptively
divided into blocks of variable size to meet the assumption of uniform
motion for all blocks. The algorithm is a split or merge segmentation
scheme based on regular decomposition of an image into blocks
of varying sizes, each of which has more or less uniform motion
parameters. In comparison with traditional fixed size block-matching
schemes, better results are obtained and fewer overhead bits are
required.

The generalized block-matching algorithms can estimate the mo-
tion information more correctly than the conventional block-matching
methods; thus, reduce the data rate in compensation error. How-
ever, more bits are required to represent the motion information,
which means data rate in motion information is increased. Similarly,
variable-size block-matching techniques effectively reduce the data
rate in one aspect (motion information or compensation error), but
increase the data rate in the other.

In this paper, we propose a system which can effectively reduce
total data rate consumed in off-line image sequence compression. The
proposed system incorporates merits of generalized block-matching
and of variable-size block-matching, and eliminates drawbacks of
both techniques. The system makes every effort to reduce and balance
the amount of data rate in both aspects optimally, and thus reduces
the total data rate. Since we propose a recovery operation which
tries to recover the incorrect motion vectors from the global motion,
this proposed system can also be applied for the moving object
recognition in image sequence. The simplified architecture of the
proposed system is shown in Fig. 1. The functions of the proposed
system are described in brief below. In the first layer, which is
shown in the bottom of Fig. 1, the predicted frame is partitioned
into blocks of smallest size. In the next layer, blocks are classified
into several clusters of variable size. Consequently, pixels of the same
cluster are transformed to a deformed region by the output function
of that cluster,fij . Eventually, a region in the reference frame is thus
obtained that is the best fit of block in the predicted frame.

This paper is organized as follows. In Section II, learning of output
function is introduced. In Section III, partitioning of the input space
is discussed. The proposed system is then described in Section IV.
Simulations are conducted in Sections II-E and IV-B, which show
that the performance of the proposed system is superior to that of the
conventional block-matching motion compensation.

II. L EARNING OF OUTPUT FUNCTION

In this section, we are engaged in the learning of output function.
First, we formulate the mathematical basis on determining the coef-
ficients of a transformation. Consequently, we propose two learning
algorithms, recursive least-square (RLS) and genetic algorithm (GA)
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Fig. 1. Architecture of the proposed system.

learning algorithms. Finally, we conclude the section with simulations
on the proposed learning algorithms.

A. Determination of Transformation Coefficients

In this section, we introduce how to solve for coefficients of a
transformation, which is the basis of the proposed learning algorithms
in the following sections.

An affine transformation that has six degrees of freedom, relating
directly to coefficientsa11; a21; a31; a12; a22; a32, is of the form

x = a11u+ a21v + a31

y = a12u+ a22v + a32: (3)

These six coefficients may be determined by specifying the coordinate
correspondence of three noncollinear points in both images. Let
(uk; vk) and (xk; yk) for k = 0; 1; 2 be three pairs of points in the
reference and predicted frames, respectively. Affine mapping can be
determined by solving the system of six linear equations as follows:

u0 v0 1 0 0 0
u1 v1 1 0 0 0
u2 v2 1 0 0 0
0 0 0 u0 v0 1
0 0 0 u1 v1 1
0 0 0 u2 v2 1

a11

a21

a31

a12

a22

a32

=

x0

x1

x2

y0

y1

y2

: (4)

Let the system of equations given above be denoted as

WA = X (5)

solving for the coefficients in terms of the known (uk; vk) and
(xk; yk) pairs, we have

A =W�1
X: (6)

The constraint onW to consist of noncollinear points serves to ensure
thatW is nonsingular, i.e.,det (W) 6= 0. Consequently, the inverse
W
�1 is guaranteed to exist.

A perspective transformation that has eight degrees of freedom is
described by

x =
a11u+ a21v + a31

a13u+ a23v + 1

y =
a12u+ a22v + a32

a13u+ a23v + 1
: (7)

The eight coefficients can be determined by establishing correspon-
dence between four points in the reference and those in the predicted
frame. Let (uk; vk) and (xk; yk) for k = 0; 1; 2; 3 be four pairs of
points in the two frames, respectively. Moreover, (7) can be rewritten
as

x = a11u+ a21v + a31 � a13ux� a23vx;

y = a12u+ a22v + a32 � a13uy � a23vy: (8)

Applying (8) to the four pairs of correspondence points yields the
following 8 � 8 system of equations:

u0 v0 1 0 0 0 �u0x0 �v0x0
u1 v1 1 0 0 0 �u1x1 �v1x1
u2 v2 1 0 0 0 �u2x2 �v2x2
u3 v3 1 0 0 0 �u3x3 �v3x3
0 0 0 u0 v0 1 �u0y0 �v0y0
0 0 0 u1 v1 1 �u1y1 �v1y1
0 0 0 u2 v2 1 �u2y2 �v2y2
0 0 0 u3 v3 1 �u3y3 �v3y3

a11

a21

a31

a12

a22

a32

a13

a23

=

x0

x1

x2

x3

y0

y1

y2

y3

:

(9)
We can thus determine coefficients by solving the linear system. This
yields a solution to the general quadrilateral-to-quadrilateral problem.

In addition to affine and perspective transformation used in [4],
we introduce polynomial transformation in this paper. The polynomial
transformation is originally intended to account for sensor-related spa-
tial distortions and external image distortions. The form of bivariate
polynomial transformation is

x =

N

i=0

N�i

j=0

aiju
i
v
j

y =

N

i=0

N�i

j=0

biju
i
v
j
: (10)

Note that a first-degree (N = 1) bivariate polynomial defines the
mapping function that is exactly given by an affine transformation.

In polynomial transformation, the number of coefficients is related
to the degree of polynomial. A polynomial transformation of degree
N has2K coefficients,K for aij andK for bij , where

K =

N

i=0

N�i

j=0

1 =
(N + 1)(N + 2)

2
: (11)

If we provideK pairs of correspondence points, we can solve the
following system of equations and determine the coefficients of a
polynomial of degreeN :

1 u0 v0 u0v0 u20 v20 � � � uN0 vN0
1 u1 v1 u1v1 u21 v21 � � � uN1 vN1
1 u2 v2 u2v2 u22 v22 � � � uN2 vN2
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

1 uK vK uKvK u2K v2K � � � uNK vNK
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�

a00
a10
a01
a11
a20
a02

...
aN0

a0N

=

x0
x1
x2
...
...

xK

(12)

and
1 u0 v0 u0v0 u20 v20 � � � uN0 vN0
1 u1 v1 u1v1 u21 v21 � � � uN1 vN1
1 u2 v2 u2v2 u22 v22 � � � uN2 vN2
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
1 uK vK uKvK u2K v2K � � � uNK vNK

�

b00
b10
b01
b11
b20
b02
...

bN0

b0N

=

y0
y1
y2
...
...

yK

: (13)

B. Supervised Learning of Output Function

In the previous section, concept of geometric transformations and
methods to solve for their coefficients are introduced. Solving a
system of equations, we are required to provide sufficient number
of noncollinear point pairs in both frames. In an image sequence,
however, it is not easy to estimate the coordinate of the corresponding
point in another frame, when a particular point in the current frame
is given. In other words, it is almost impossible to provide accurate
point pairs in both frames. Exhaustive search algorithm used in [4]
can find the coefficients, but it takes a very long computation time
even the search region is small, which is not practical.

In this section, we propose a recursive least-square (RLS) learning
algorithm to find the coefficients of geometric transformation. Let
the ith row vector of matrixW defined in (5) bewi and theith
element ofX defined in (5) bexi. ThenA can be calculated using
the following recursive least-square formula:

ai+1 = ai + Si+1w
T
i+1(xi+1 �wi+1ai) (14)

Si+1 =Si �
Siw

T
i+1wi+1Si

1 +wi+1Siw
T
i+1

; i = 0; 1; � � � ; p� 1 (15)

A = ap (16)

with initial conditions of

a0 = 0 and S0 = 
I (17)

where 
 is a positive big number andI is the identity matrix of
dimensionK �K, andK is the number of columns inW.

Since the derivative of (7) shows that RLS method has poor
convergence accuracy in nonlinear transformation, we cannot solve
the system in (9) using the RLS method directly. In this paper, an
alternative approach is proposed as follows according to the above
observation. First, the correspondence pair of points are shifted to
zero-mean by the same amount of displacement(sx; sy). Second,
those shifted data are arranged as row vectors. Consequently, the
row vectors are applied to the RLS method sequentially, and learning
result, A0, is obtained. Finally, the exact solution,A, can be
recovered fromA0 using the following equation:

a11
a21
a31
a12
a22
a32
a13
a23

=

(a0

11 + a0

13sx)=div
(a0

21 + a0

23sx)=div
(a0

31 � a0

11sx � a0

21sy + sx � div)=div
(a0

12 + a0

13sy)=div
(a0

22 + a0

23sy)=div
(a0

32 � a0

12sx � a0

22sy + sy � div)=div
a0

13=div
a0

23=div

(18)

where div= 1�a0

13�a0

23, andaij anda0

ij are elements ofA andA0,
respectively. In simulations, coefficients of perspective transformation
are determined correctly with the proposed approach.

In the RLS learning of polynomial transformation, the trans-
formation function in (10) is also nonlinear. Similarly, we can
shift the correspondence pair of points to zero-mean by amount of
displacement(sx; sy), apply RLS to obtaina0

ij andb0

ij , and recover
coefficients,aij andbij , of polynomial transformation froma0

ij and
b0

ij using (19) and (20), shown at the bottom of the page.
The supervised learning algorithm is summarized as follows.

Step 1: SelectK points, randomly or not. Note that the number
of noncollinear points in the selected points must be
equal to or greater than that of points required to properly
determine the selected transformation.

Step 2: Apply full-search block-matching algorithm to the se-
lected points to obtain their motion vectors.

Step 3: Coordinate of each point is used as input, and the sum of
each point’s coordinate and its associated motion vector
serves as desired output. They form a pair of training
data.

Step 4: Apply training data sequentially to the RLS algorithm
to learn the coefficients of transformation.

ad d =
i�d j�d

i+j�N

a0ij
i

dx

j

dy
(�sx)

i�d (�sy)
j�d if dx; dy 6= 0

i�0 j�0
i+j�N

a0ij(�sx)
i(�sy)

j + sx if dx = dy = 0
(19)

and

bd d =
i�d j�d

i+j�N

b0ij
i

dx

j

dy
(�sx)

i�d (�sy)
j�d if dx; dy 6= 0

i�0 j�0
i+j�N

b0ij(�sx)
i(�sy)

j + sy if dx = dy = 0
(20)
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Fig. 2. Coding of the string in the binary-coding GA.

C. Genetic Algorithm Learning of Output Function

Genetic algorithm (GA) is a general purpose optimization algo-
rithm with a probabilistic component that provide a means to search
poorly understood, irregular spaces. Holland [8] developed the GA to
simulate some of the processes observed in natural evolution. In this
section, we propose two GA learning schemes of output functions.

1) Binary Coding Genetic Algorithm:In Section II-B, it is
pointed out that if we apply a number of point pairs (three in affine
transformation, four in perspective transformation, andK of (11) in
polynomial transformation), the coefficients can be determined by
solving a system of equations [(4), (9), (12), and (13) for the three
transformations, respectively]. In other words, a transformation is
determined by a group of point pairs (uk; vk) and (xk; yk).

Applying binary-coding GA to learn the transformation coef-
ficients, we need to generate the strings by the coordinates of
points, which is described as follows. We fix points (xk; yk) in the
compensated frame, and vary points (uk; vk) in the reference frame.
The variable points (uk; vk) are coded as strings in GA. A sufficient
number of (uk; vk) and (xk; yk) can represent a transformation;
hence, a transformation is thus coded. For example, in the perspective
transformation case, four pairs of points are required to solve for
coefficients. Therefore, four fixed points in the compensated frame,
e.g., (0; 0), (8; 0), (8; 8), and (0; 8), are selected beforehand,
and four correspondence points,(u0; v0), (u1; v1), (u2; v2), and
(u3; v3), are coded as a string of eight bytes. To decode the string,
a system of equations is constructed by the four pairs of points
and the coefficients are obtained by solving the system of equa-
tions. The obtained coefficients (i.e., the obtained transformations,
f and g) are evaluated by applying them to (2). The smaller the
value of (2) is, the better the obtained coefficients (transformations)
are. The coding of the string in binary-coding GA is illustrated
in Fig. 2.

The following steps are employed to generate and handle a set of
strings (i.e., a population) in the GA learning [9].

Step 1: Initialization: We first generate an initial population
containingNpop strings, whereNpop is the number of
strings in each population.

Step 2: Fitness Function:In this step, each string is decoded by
an evaluator into an objective function value called fit-
ness,FIT . A fitness value is assigned to each individual
in the population. According to (2), the fitness function

is defined by

FIT =
(x; y)2R

jIt(x; y)� ~It(x; y)j;

=
(x; y)2R

jIt(x; y)� It�1(f(x; y); g(x; y))j (21)

wheref andg are the functions of transformation which
are determined by the coded string. The purpose of the
GA learning in our case is to search for the transforma-
tion which minimizes the above fitness function.

Step 3: Reproduction:Reproduction is a process in which indi-
vidual strings are copied according to their fitness values,
i.e., based on the principle of survival of the fittest.

Step 4: Crossover:We use theN -point crossover operator, in
which a string isN bytes in length. At first, two strings
from the reproduced population are mated at random, and
N crossover points (N bits position, where one crossover
point for each byte) are selected according to the type
of transformation we are learning. Then the strings are
crossed and separated at these points to produce two new
strings.

Step 5: Mutation: Mutation is the random alteration of bits in the
string which assists in keeping diversity in the popula-
tion. As a source of new bits, mutation is introduced and
is applied with a probabilitypm. In addition, a variation
operation in GA is adopted, which enforces preserving
the best string.

Step 6: If the stopping condition is not met (e.g., the error is
above a predefined level), return to Step 2. Otherwise,
the GA is terminated.

Our experiments show that the learning curve of the binary-
coding GA on a block of uniform motion falls in the first several
generations, and remains unchanged in the following generations.
In our experience, the binary-coding GA typically converges in
several generations except in blocks of nonuniform motion due to
unmask of background or variation of illumination, which takes more
generations to reach convergence.

2) Floating-Point Genetic Algorithm:In the previous section, we
code the coordinates of points (pixels) as a string, instead of coding
coefficients themselves. Because of the restriction on binary coding,
we can use only integer grid points. It is possible to extend the
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(a)

(b)

Fig. 3. Illustration of crossover operation for floating-point strings: (a) before
crossover and (b) after crossover.

(a)

(b)

Fig. 4. Illustration of mutation operation for a floating-point string: (a) before
mutation and (b) after mutation.

point to sub-subpixel accuracy. However, strings will be very long if
a infinitesimal-subpixel is desired. Moreover, the computation time
of decoding a string into coefficients, which occurs in the stage of
evaluating fitness value, occupies a significant portions of execution
time in the GA learning.

In order to increase the accuracy of the estimated coefficients and
lessen the computation load, floating-point GA [10] is adopted. In the
floating-point GA, we can code the coefficients themselves as strings
of real values. Thus, the computation load of decoding is eliminated.
Initially, the GA randomly generates a population of floating-point
strings. An interpreter takes this floating-point string and uses it to
set the coefficients of transformation. In this way, according to a
defined fitness function, a fitness value is assigned to each string in
the population. GA can look for a better set of strings to form a
new population as the next generation. The crossover operation for
encoding is demonstrated in Fig. 3. The steps to generate and handle
a set of strings in the floating-point GA learning is similar to those
in the binary-coding GA except for the mutation process, in which a
random number�(t; i) is added to the string. The range of�(t; i)
is variable according to thetth generation and theith element in a
string. Fig. 4 shows an example illustrating the mutation operation.
Typically, the learning curve of the floating-point GA on a block of
uniform motion falls quickly in the first several generations, and in
the following generations the curve is slightly downward or stays on
the same value.

D. Infinitesimal-Subpixel Compensation

In this section, we propose a quarter compensation algorithm
(QCA). Note that the conventional motion compensation method
operates only on the integer grids. We cannot apply the motion
parameters estimated by generalized block-matching to the conven-

tional motion compensation technique directly, because the obtained
coordinate value of a point is not restricted to an integer. QCA is
thus proposed to tackle this problem.

Suppose that the origin point of an image is on the left-top corner,
and the positive directions are rightward and downward; moreover,
the motion vectord = (dx; dy) on the location(x; y) of the
predicted frame is evaluated, in which bothdx and dy are floating
values. Without loss of generality, it is supposed that bothdx anddy
are positive, i.e., the point on the location(x; y) are compensated
from a pixel of right-bottom direction in the reference frame. One
distinguishes the integer part and decimal part of the motion vector
as follows:

dx = dxi + dxf

dy = dyi + dyf (22)

where (dxi; dyi) and (dxf ; dyf) are the integer and decimal parts
of (dx; dy), respectively. The square, which is in location(x; y), is
now reconstructed from the four locations,(x+ dxi; y + dyi), (x+
dxi+1; y+dyi), (x+dxi; y+dyi+1), and(x+dxi+1; y+dyi+1)
in the reference frame. At these four locations, a reference square is
thus divided into four parts, with the area of each part decided by the
decimal part,(dxf ; dyf), of the motion vector(dx; dy). The area
of each part is viewed as a weighting factor in deciding the new
gray value. More precisely, we assign the gray value of the pixel,
which is in location(x; y), from the weighted gray values of the
four locations (pixels).

Hence, for any location(x; y) in the compensated frame, with
associated motion vector(dx; dy), the compensated gray value
Ic(x; y) is decided by the following equation:

Ic(x; y) =
(m;n)2D

w(m;n)!(x ; y ) � Ir(m; n)

(m;n)2D

w(m;n)!(x ; y )

(23)

where

(x0; y0)
�
=(x+ dx; y + dy):

source pixel of compensated point;

D
�
= f(m; n)j one of the four points

that are nearest to the point(x0; y0)g;

w(m;n)!(x ; y ): the area (weighting factor)

of the block of(m; n) that falls on

on the unit-square of(x0; y0):

For any location(x; y) in the compensated image frame, its gray
value can be obtained by (23). In (23), the numerator denotes the
sum of product of the weighting factor and the gray value of points
that belong toD, and the denominator is the sum of all weighting
factors, which is used as the normalization factor in the reconstruction
process.

E. Simulation Results

In this section, we compare the performance of a total of ten algo-
rithms: conventional block-matching (BM), and affine, perspective,
polynomial transformations with three different learning algorithms
(RLS, binary-coding GA, floating-point GA), respectively. We syn-
thesize nine test images of different transformations to evaluate the
learning algorithms. Among the nine test images, image 1 is the
resulted image of rotation; image 2 is that of scaling; images 3
and 4 are resulted images of shearing in different directions. These
images mentioned above are affine-transformed images. Images 5
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Fig. 5. Compensation error comparison between BM and RLS, GA, FGA
affine transformations.

and 6 are perspective-transformed images. Images 7 and 8 are
more complex images of affine and perspective transformations,
respectively. Image 9 is created to test the subpixel prediction ability
of learning algorithms. The quality evaluation between the original
image and reconstructed one is performed under some objective
quality criteria. These criteria include total absolute difference error,
SNR, and data entropy, which are defined as follows.

• total absolute difference error

Error= jIt(x; y)� ~I(x+ dx; y + dy)j; (24)

• signal to noise ratio (SNR)

SNRdb = 10 log
10

M

i=1

N

j=1

I2(i; j)

M

i=1

N

j=1

(I(i; j)� ~I(i; j))2

; (25)

• estimated entropy of compensation error

H = �

255

i=0

pi log2 pi (26)

where pi is the probability of pixel valuei in the difference
image.

Note thatI and ~I are the desired image frame and the reconstructed
image frame, respectively. The absolute difference error reflects the
ability of learning algorithms in motion estimation and compensation.
SNR indicates the visual quality of the reconstructed images. The
estimated entropy of compensation error is included to show the
approximate data rate.

In Fig. 5, we compare the performance in terms of compensation
error between BM and affine transformation of generalized block-
matching with RLS, GA (binary-coding GA), FGA (floating-point
GA) learning algorithms. The RLS predicts the frame more accurate
than the BM except for two frames. In addition, the performances of
both binary-coding and floating-point GA’s outweigh the RLS and
BM, and the floating-point GA is superior to the binary-coding one.

Fig. 6 shows the quality of the reconstructed images on the basis
of signal-to-noise ratio. As expected, the performance of GA’s is
superior to the others. The estimated entropy of compensation error is
shown in Fig. 7. The GA’s outweigh the other algorithms again. Note
that the performance of RLS in terms of SNR and entropy is poor
when compared with BM, because the RLS is unable to predict the
test images correctly and produces more frame difference errors on

Fig. 6. SNR comparison between BM and RLS, GA, FGA affine transfor-
mations.

Fig. 7. Entropy comparison between BM and RLS, GA, FGA affine trans-
formations.

Fig. 8. Compensation error comparison between BM and RLS, GA, FGA
perspective transformations.

border blocks where motion vectors are prone to error. Compensation
errors on border blocks greatly deteriorate the performance of RLS.

Fig. 8 shows the test result in terms of compensation error between
BM and perspective transformation, instead of affine transformation,
of generalized block-matching with RLS, GA, and FGA learning. The
compensation errors of GA’s are again lower than those of the other
two algorithms. However, compensation errors on the binary-coding
GA and floating-point GA are approximate in this case. The results
of comparisons on SNR and entropy are shown in Figs. 9 and 10,
respectively.
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Fig. 9. SNR comparison between BM and RLS, GA, FGA perspective
transformations.

Fig. 10. Entropy comparison between BM and RLS, GA, FGA perspective
transformations.

We also test the algorithms with polynomial transformation, and
the comparison of total absolute difference error is shown in Fig. 11.
The performance of BM is the worst when compared with the
other three algorithms. The binary-coding GA performs better than
the floating-point one, but the RLS algorithm sometimes results in
the lowest error. The outcome indicates that the implementation
of GA’s is not optimized for learning coefficients of polynomial
transformation. The comparison of algorithms on SNR is shown in
Fig. 12. The performance of GA’s is better than that of RLS and BM.
Learning algorithms are also compared in terms of coding entropy.
As depicted in Fig. 13, the BM needs more bits than others. Note
that the performance of RLS is superior to that of BM in terms of
compensation error and estimated entropy. However, the performance
of RLS is similar to that of BM in terms of SNR, because the RLS
fails to predict the test images correctly on the border blocks.

In summary, the performance of GA’s in terms of frame difference,
SNR, and entropy is superior to the other algorithms. This is due to
the global optimization capability of GA’s. With the crossover and
mutation operations, the GA, unlike the block-matching and RLS
algorithms, is able to get out of a local minimum trap and find
better local minima or even the global minimum. However, it is
observed that the standard GA learning hardly reaches the global
minimum, which means the standard GA lacks the ability on fine
local tuning. Three possible reasons account for this situation. First,
the GA is trapped into local minima when almost all the individuals
in a generation look alike. Second, assume the global minimum is
md, and the current located minimum ismi. It is possible that the

Fig. 11. Compensation error comparison between BM and RLS, GA, FGA
polynomial transformations.

Fig. 12. SNR comparison between BM and RLS, GA, FGA polynomial
transformations.

Fig. 13. Entropy comparison between BM and RLS, GA, FGA polynomial
transformations.

continuous evolution of GA’s cannot produce an individual (string)
which is closer tomd thanmi. Although there may be a chance to
reachmd, but it is not guaranteed to occur in a few generations. Third,
in using floating-point GA, the global minimummd is harder to reach
whenmi is closer tomd due to the possible big change of floating-
point strings applied by GA operations. If we fix the change of the
strings to a small scale, then the number of generations to reachmd

will increase. The performance of standard GA can be improved with
tailored mutation operation and fine local tuning. Tailored mutation
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means that we adaptively change the mutation rate as well as the
mutation operation properly after some generations according to the
extend of the situations caused by the first and second reasons in the
above. This is in contrast to using fixed mutation rate and operation
in the standard GA. Fine tuning means that we adaptively change
the updating scale (size) of GA operations according to the distance
to desired solution or the number of generations. This is different
from using fixed updating size in the standard GA, and can solve the
problem caused by the third reason in the above.

III. PARTITIONING OF INPUT SPACE

In this section, we shall propose several methods to reduce the
data rate of motion information. There are two directions which can
reduce the data rate of motion information effectively:

• reduce the number of blocks used in compensation;
• reduce the entropy of transformation coefficients.

Partitioning of input space must operate without increasing total frame
difference error, or operate under the criteria which can optimally
reduce the total data rate.

A. Partitioning of Input Space Using Parameter Similarity

As pointed out, an efficient way to reduce the data rate of
motion information is using less blocks, thus less motion information,
in motion compensation. Under the premise that the total frame
error does not increase, we can achieve this goal by classifying
those blocks which experience nearly the same transformation as
a group. At first, we take the coefficients of transformation as
elements of the pattern directly. In order to determine whether two
transformations are similar or the same, we simply compare each
corresponding coefficients of two transformations. If the difference of
each corresponding coefficients is below a threshold valueTc, we can
consider these two transformations as the same one. The algorithm
of clustering is described in details as follows.

Step 1: Initialize the first clusterC1 = P1, whereP1 is the first
pattern. Let elements ofCi andPi be cij andpij ; j =
1; 2; � � �N , whereN is the number of elements in a
pattern.

Step 2: Set i = 2.
Step 3: Input patternPi.
Step 4: For each cluster, calculate distanceDik between pattern

Pi and clusterCk:

Dik =
j

jpij � ckj j:

Step 5: Determine thec for which Dic < Dik for all k 6= c.
Step 6: If Dic is less than a predefined constantTc, then pattern

Pi is assigned to clusterc. Otherwise, a new cluster is
created with patternPi chosen as the center of the new
cluster.

Step 7: If there are more patterns, seti = i + 1 and go back
to Step 3.

The approach that uses coefficients of transformation as content of
a pattern directly suffers from two problems. First, the threshold value
Tc is difficult to determine. We need to setTc as large as possible in
a reasonable range in order to make this method effective. However,
the effect of the coefficients on the transformed point,(x; y), differs
as the value of reference point,(u; v), changes. Second, in the
perspective transformation, two transformations whose coefficients
differ a lot may produce similar deformation, if their coefficients are
proportional.

To tackle the problems mentioned above, in an alternative ap-
proach, we do not use the coefficients of transformation as elements

of pattern directly; instead, we use as elements of pattern the points
that are transformed from a set of fixed reference points by the
transformation for clustering. If all corresponding transformed points
of two transformations differ below a threshold valueTd, which
means the effects of these two transformations are similar, then we
can consider these two transformations are in the same cluster. In
these two approaches, the first is fast but restricted, while the second
is robust and effective.

B. Partitioning of Input Space Using Entropy Criterion

In this section, we shall introduce two operations: merge and split.
These two operations can effectively reduce or increase the number of
blocks and optimally balance the amount of data rate corresponding
to the prediction error and motion parameters, because they operate
under entropy criteria. Two entropy criteria for split are stated as
follows.

• If the total absolute difference error (or another error measure)
of the motion compensated block is above a preset thresholdT ,
the block is split:

Errornosplit > T =) split: (27)

• If the extra-cost to send additional motion parameters is worth
the gain obtained on the frame difference side, then the block
is split into four subblocks:

n � (HFDnosplit �HFDsplit)

> 4 �H~v split �H~v nosplit =) split (28)

where n is the number of pixels in the block,HFDsplit and
HFDnosplit are their entropy (26) with or without split, re-
spectively, andH~v split andH~v nosplit the entropy [(26)] of the
motion vectors with or without split, respectively.

The merge operation operates in the sense of reducing total data
rate. Unlike the combination process mentioned in the previous
section, which keeps the compensated error unchanged or decrease
in a small amount, the merge process that operates under the criteria

� Errorcombine< T =) combine (29)

and

n � (HFDcombine �HFDnocombine)

< 4 �H~v nocombine �H~v combine

=) combine (30)

does not have such restriction. In brief, if merge of blocks, which
reduces the number of motion parameters by one-fourth in the quad-
tree segmentation but increases error of compensation, can achieve a
lower data rate, then the blocks are merged as one larger block.

The split operation is also proposed for the goal of reducing
total data rate. However, it reversely splits a larger block to small
ones and assigns each split blocks a set of motion parameters. The
criteria mentioned in (27) and (28) can serve as criteria for split. The
main purpose of split operation is to prevent premature combination.
Because the estimated motion parameters may be incorrect, the
combination of blocks with incorrect parameters corrupts the further
learning of these blocks. The split operation is thus proposed to
remedy the problem of combination with error motion information.

In comparison with combination methods proposed in the previous
section, the merge and split operation perform more effectively in
reduction of data rate, because the number of blocks is effectively
reduced in the operations.
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(a) (b) (c)

Fig. 14. A pair of consecutive images and its motion vectors: (a), (b) moving rectangle, and (c) the motion vectors of the moving rectangle in (a) and (b).

C. Quad-Tree Segmentation

In previous sections, methods of reducing the number of blocks
partitioned in an image are introduced. In these methods, images are
segmented adaptively into variable sizes, which introduces overhead
of representing size and location of blocks in an image. When the
partitions are fixed, there is no overhead. However, when the partition
of an image is variable, the overhead occupies an amount of bit-rate.
Therefore, the quad-tree segmentation is introduced to reduce the
overhead.

Quad-trees which represent the segmentation are typically con-
structed by top-down or bottom-up methods [11]. In the proposed
system, a bottom-up construction is adopted. The procedure of merge
in the proposed system is described in Sections III-A and III-B. The
quad-tree structure can be represented bytreecode[12]. The treecode
is encoded by listing the nodes encountered by a depth-first traversal
of the tree structure. If encountered node is not a leaf, then it is
represented by “1”; otherwise it is represented by “0”. The approach
of treecode requires exactly one bit of overhead per node, which is
used to distinguish between leaf nodes and internal nodes. Therefore,
a small overhead rate is achieved with the structure of quad-tree
segmentation.

D. Improvement of Partitioning with Motion
Information of Neighbor Blocks

Several methods of partitioning input space are discussed in the
previous sections. They rely on the assumption that all motion
information of blocks are correct, which is not always true in
image sequence. In fact, the motion information which minimizes
the compensated error is not necessarily the real motion of objects in
an image sequence. We demonstrate the statement by the following
example.

In Fig. 14(c), motion vectors of a “moving rectangle” are shown.
The real motion vector of the solid block is(�4; �7). Because
the block-matching algorithm finds a best fit of a small reference
subblock, in which several candidates are possible, the estimated
motion vector can be used to perform compensation perfectly though
they may not be the actual motion vector.

The estimated motion information which differs from the actual one
may be recovered from that of neighbor blocks. Because a moving
object in an image sequence is larger than the block size of a minimal
block in many occasions, motion information of neighbor blocks are
usually the same as, or approximate to, current blocks. The concept of
global motion is discussed in many researches on motion estimation
or related interests. In [13], a method which reconstructs the frame
with the aid of neighbor motion vector is successfully applied to
motion compensation.

We propose a recovery operation which tries to recover the
incorrect motion vector from the global motion. In the operation,

Fig. 15. The proposed operation that tries to recover the incorrect motion
information from the global motion.

the parameters of the current block and that of neighbor blocks
are tested with motion compensation, and their compensation errors
are compared. After comparison, the parameters of this block are
then replaced by the ones with the lowest error. This operation is
illustrated in Fig. 15. The upper-left block whose motion information
is f0 is tested with motion compensation, but the motion information
is temporarily replaced withf1, f2, or f3, each for a time. After
comparing the compensation error of each motion information, the
one with the lowest error,fk, becomes the new motion information
of the current block, wherek is 0, 1, 2, or 3.

IV. PROPOSEDDEFORMED IMAGE MOTION ESTIMATION SYSTEM

We have discussed in the previous sections two aspects of reducing
the amount of information required in a block-matching motion esti-
mation and motion-compensation compression algorithm. In the past,
incorporating techniques of two aspects simply means segmentation
of images followed by block-matching or by generalized block-
matching [14], which lacks the ability of determining as a whole the
blocks in the same motion that is more complex than pure translation.
In this paper, we propose a system in which those information
reduction algorithms can cooperate well.

A. Description of the Proposed System

The architecture of the proposed system is already shown in
Fig. 1. The block diagram of the proposed system in a motion
estimation and compensation system is shown in Fig. 16. There are
two main components in the proposed system. The component of
output function and that of input partition are discussed in Sections II
and III, respectively. Quad-tree segmentation is adopted in combining
and splitting of blocks in the input space.

The operation procedure of the proposed system is described as
follows.

Step 1: Input space (compensated image) is partitioned into
blocks of minimum size.

Step 2: For each block, learn the associated output function
(transformation).

Step 3: The output functions of blocks are replaced and
tested with neighbor output function, as described in
Section III-D.
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Fig. 16. Block diagram of the proposed deformed image motion estimation system.

Fig. 17. Compensation error comparison among GA perspective, FGA
affine, FGA perspective, and the proposed system.

Step 4: Classify transformation parameters according to the
methods described in Section III-A. If combination is
possible on the basis of quad-tree segmentation, then do
the combination.

Step 5: Split blocks according to (27) and (28).
Step 6: For each block, relearn the associated output function.

Output functions of neighbor blocks and current block
are used as initial parameters (for RLS) or initial popu-
lation (for GA) of learning process.

Step 7: Combine blocks according to (29) and (30).
Step 8: If the ending condition is not reached, go back to Step 3.
Step 9: For each block, verify the total data rate of the block-

matching algorithm when it is applied to the block
and that of generalized block-matching algorithm. If the
data rate of block-matching is lower, then replace the
motion information of the block with the motion vector
estimated by the block-matching algorithm.

We explain each step of the operation procedure of the proposed
system. In Step 2, GA is adopted to precisely estimate the motion in-
formation. In order to prevent GA from being trapped in local minima,
Step 3 is adopted to help GA escape from local minima with global
motion; moreover, it can speed up the learning of GA in the future
relearning. After learning of output function, Step 4 is introduced to
reduce the data rate of motion information, including the data rate
of representing output function and input partition. Step 5 prevents
the premature combination of blocks, as described in Section III-

Fig. 18. SNR comparison among GA perspective, FGA affine, FGA per-
spective, and the proposed system.

Fig. 19. Entropy comparison among GA perspective, FGA affine, FGA
perspective, and the proposed system.

B. Since the input partition and corresponding output function have
been modified, the learning of output function is processed again in
Step 6 to further reduce the data rate of compensation error. At this
point, we can apply Step 7 to combine blocks in the input space.
Step 7 is executed after other operations in that it degrades the
accuracy of motion information in exchange with less data rate. The
ending condition in Step 8 may be that the smallest fitness value falls
below a preset threshold, or that the number of generations exceeds
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Fig. 20. Test images: three objects.

Fig. 21. Test images: the crane system.

Fig. 22. Reconstructed image and partition map of “three objects.”

a preset value. Finally, in Step 9 we further reduce the total data
rate. Since the generalized block-matching trades more bits in motion
information for less bits in compensation error, sometimes the bits
saved in compensation error are less than that consumed in motion
information. Thus Step 9 is proposed to tackle this problem.

In brief, the algorithms introduced in the previous two sections
are effective in reducing data rate, but they have restriction or
drawbacks. The proposed system integrates these algorithms and
further improve the performance of each algorithm with the help
of other algorithms. It is shown to be superior to the conventional
techniques by simulations in the following section.

B. Simulation Results

Nine test images used in Section II-E are tested by the proposed
system. In the test, the floating-point GA learning is adopted in the
proposed system. Comparisons among the proposed system and GA
perspective, floating-point GA affine, floating-point GA perspective
learning algorithms are shown in Figs. 17–19. The proposed system
is obviously superior to other algorithms.

We then test the proposed system with two pairs of consecutive
images. The first pair of images is “three objects” in which three
objects rotate in different directions and degrees as shown in Fig. 20.
The second pair of image is “the crane system” shown in Fig. 21.
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Fig. 23. Reconstructed image and partition map of “the crane system.”

TABLE I
COMPENSATED RESULTS OF THE “THREE OBJECTS” I MAGE

TABLE II
COMPENSATED RESULTS OF THE “THE CRANE SYSTEM” I MAGE

TABLE III
DATA RATE COMPARISON BETWEEN THE PROPOSEDSYSTEM AND CONVENTIONAL BLOCK-MATCHING TECHNIQUE ON TWO TEST IMAGE SEQUENCES

The “three objects” images are artificial and the illumination of
objects and background does not change. The other one is taken
from real image sequences, and illumination of the contents in
image varies. The reconstructed images and partition maps of these
images by using the proposed system are shown in Figs. 22 and
23. The performance of the proposed system and BM and other
affine transformation learning algorithms are compared, as given
in Tables I and II. We can conclude that the proposed system is
effective in reducing compensation error even the image sequences
are not intensity-invariant. However, the proposed system needs more
computation time than the others. If the system is applied to one
minute of video image, it will take about 3 246 000 s by using

Pentium II 266 MHz (Frame size= 256 � 256, Frame rate=
10).

The comparison in terms of data rate required between the block-
matching algorithm and the proposed system is summarized in
Table III. The data rate of error image and that of motion information
is effectively reduced in the proposed system. The overhead of image
segmentation is small due to the quad-tree segmentation. Though the
motion information of one block in the proposed system requires
more bits than that of block-matching, the total data rate in motion
information decreases because the number of blocks is effectively
reduced. In “mobile calendar,” data rate of motion information is
much higher than that of block-matching, because only a small
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TABLE IV
SUMMARY OF THE FEATURES AND COMPARISON OF THE PROPOSEDALGORITHM

number of blocks is combined. However, the amount of data rate that
decreases in error image exceeds that increases in motion information,
which results in a reduced total data rate.

V. CONCLUSION

A system for deformed image motion estimation and compensation
is proposed in this paper. The system is composed of several
components and algorithms which try to reduce in different aspects
the total data rate of image compression. Table IV summarizes the
features of the proposed algorithms. The component concerned with
learning of output function is on the purpose of reducing inter-
frame redundancy. To learn the output function, we propose the
RLS and GA learning of generalized block-matching. In supplement
with generalized block-matching, we present a quarter compensation
algorithm which can reconstruct the predicted frame according to the
motion information of generalized block-matching. The component
focused on partitioning of input space is on the purpose of reducing
the data rate of motion information. Segmentation algorithms of
variable-size block-matching are proposed to reduce the number of
parameters. In addition, we introduce the concept of global motion
which helps to find the motion of blocks and consequently improve
the segmentation of image and reduce the data rate. The proposed
system successfully integrates these two components into a whole
system. We discuss the drawbacks of each algorithm, and explain
how to eliminate the drawbacks with the help of other algorithms.

Simulation results show that the proposed system effectively reduces
the data rate in image compression.
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POPFNN-AARS(S): A Pseudo
Outer-Product Based Fuzzy Neural Network

C. Quek and R. W. Zhou

Abstract—A novel fuzzy neural network, the Pseudo Outer-Product-
based Fuzzy Neural Network using the singleton fuzzifier together with
the Approximate Analogical Reasoning Schema, is proposed in this paper.
This network shall henceforth be referred to as the singleton fuzzifier
POPFNN-AARS. The singleton fuzzifier POPFNN-AARS employs the
Approximate Analogical Reasoning Schema (AARS) [13] instead of the
commonly used Truth Value Restriction (TVR) method [19]. This makes
the structure and learning algorithms of the singleton fuzzifier POPFNN-
AARS simpler and conceptually clearer than those of the POPFNN-TVR
model [20]–[22]. Different Similarity Measures (SM) and Modification
Functions (FM) [23] for AARS are investigated. The structures and learn-
ing algorithms of the proposed singleton fuzzifier POPFNN-AARS are
presented. Several sets of real-life data are used to test the performance
of the singleton fuzzifier POPFNN-AARS and their experimental results
are presented for detailed discussion.

Index Terms—Approximate analogical reasoning schema (AARS),
fuzzy rule identification, integrated fuzzy neural networks, modification
functions, one-pass learning, pseudo outer-product learning, similarity
measures, singleton fuzzifier POPFNN-AARS.

I. INTRODUCTION

Zhou and Quek [20], [21] proposed the structure and learning
algorithms of the pseudo outer-product based fuzzy neural network
using the truth value restriction method (POPFNN-TVR). This novel
fuzzy neural network has successfully been applied in an automatic
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off-line signature verification system [22]. The experimental results
have successfully demonstrated the efficacy of POPFNN-TVR. In
the TVR method, implication rules are used to derive the truth
values of the consequences from the truth values of the conditions.
This process is essentially based on the matrix operation. The effect
of such matrix operations on the inference process of POPFNN-
TVR is conceptually unclear. To resolve this problem, a variation
of POPFNN-TVR is proposed. The novel fuzzy neural network
called the pseudo outer-product based fuzzy neural network using the
singleton fuzzifier together with the approximate analogical reasoning
schema; henceforth referred to as the singleton fuzzifier POPFNN-
AARS, uses the approximate analogical reasoning schema (AARS) as
its fuzzy inference models. This avoids the computational complexity
of the TVR method. A brief description of the AARS fuzzy inference
model and its similarity measures (SM’s) as well as modification
functions (MF’s) is given in the following section. Section III briefly
contrasts the TVR and AARS fuzzy inference models. The structures
and learning algorithms of the proposed singleton fuzzifier POPFNN-
AARS’s are presented in Sections IV and V, respectively. Section VI
discusses the experimental results and analysis on the performance
of the proposed fuzzy neural network. and Section VII concludes
the work in this paper together with a brief description of the
family of POPFNN architectures developed at the Intelligent Systems
Laboratory.

II. A PPROXIMATE ANALOGICAL REASONING SCHEMA (AARS)

The approximate analogical reasoning schema (AARS) was pro-
posed by Turksen and Zhong [13] as an alternative to the commonly
used compositional rule of inference (CRI) [18] and the truth value
restriction (TVR) method [19]. It exhibits the advantages of fuzzy set
theory and analogical reasoning in expert systems development.

Given an observed factA0 and a simple fuzzy rule “ifA then
B;” the basic idea of AARS is to modify the consequenceB of the
fuzzy rule according to the closeness of the observed factA0 to the
antecedentA: If they are close (similar) enough, in comparison to
a threshold value, then the rule can be fired and the conclusionB0

can be deduced using some modification techniques. Formally, their
‘closeness’ is expressed as asimilarity measure(SM) that is in turn
obtained from adistance measure(DM) [23]. Once thesimilarity
measureSM(A;A0) betweenA and A0 exceeds the value of the
threshold�; the fuzzy rule is fired. A modification function (MF) is
subsequently constructed and is used to modify the consequenceB

of the fuzzy rule to deduce a conclusionB0; instead of using Zadeh’s
CRI. The whole fuzzy inference process of using AARS is shown in
Fig. 1. Brief introductions on different SM’s and MF’s are presented
in Sections II-A and II-B, respectively.

A. Similarity Measures

The notion of similarity plays a fundamental role in theories
of knowledge and behavior. The theoretical analysis of similarity
relations has been dominated by geometric models. These models
represent objects as points in some coordinate spaces such that
the observed dissimilarity among objects corresponds to the metric
distance between the respective points. Many measures of similarity
among fuzzy sets have been proposed in the literature, and some
have been incorporated into linguistic approximation procedures. In
Turksen and Zhong’s paper [13], similarity measure (SM) between
fuzzy sets is defined as a measurement transformed from a distant
measure (DM) by using SM= 1/(1 + DM). In 1987, Zwick et al.

1083–4419/99$10.00 1999 IEEE


