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Correspondence

New Techniques on Deformed Image instead of pure translation is employed and (1) is generalized to
Motion Estimation and Compensation .
P min Z (Ii(z, y) — L (f(x, 9), g(x, U)))2 @
Chin-Teng Lin, Gin-Der Wu, and Shih-Chieh Hsiao (=, y)ER

wheref(z, y) andg(z, y) are the functions of transformation applied

) ) ) to coordinate values of andy, respectively. Geometric transforma-
_ Abstract—In this paper, new techniques for deformed image mo- ,nq inciyde:affine, perspectiveand polynomialtransformation. In
tion estimation and compensation using variable-size block-matching . L .
are proposed, which can be applied to an image sequence compressiorfll these transformations, translation is a special case.
system or a moving object recognition system. The motion estimation  Variable-size block-matching motion compensation is proposed in
and compensation techniques have been successfully applied in the area[5]—[7] to tackle the problem of nonuniform motion in search blocks
of image sequence coding. Many research papers on improving the per- of pinck-matching algorithm. In the algorithm, an image is adaptively

formance of these techniques have been published; many directions are divided into blocks of iable size t tth ti f unif
proposed, which can all lead to better performance than the conventional @'VI0€0 INtO DIOCKS of variable size 1o meet the assumption of unirorm

techniques. Among them, both generalized block-matching and variable- motion for all blocks. The algorithm is a split or merge segmentation
size block-matching are successfully applied in reducing the data rate scheme based on regular decomposition of an image into blocks
of compensation error and motion information, respectively. These two of varying sizes, each of which has more or less uniform motion
algorithms have their merits, but suffer from their drawbacks. Moreover, 5 o meters. In comparison with traditional fixed size block-matching
reducmg the data rate in compensation error IS sometimes increasing . .
the data rate in motion information, or vice versa. Based on these sche_mes, better results are obtained and fewer overhead bits are
two algorithms, we propose and examine several algorithms which are required.
effective in reducing the data rate. We then incorporate these algorithms The generalized block-matching algorithms can estimate the mo-
into a system, in which they work together to overcome the disadvantages tjo information more correctly than the conventional block-matching
of individual and keep their merits at the same time. The proposed thods: th d the dat te i fi H
system can optimally balance the amount of data rate in two aspects (i.e., methoas; u§, reduce .e ata rate n Compensallon.error. ,OW'
compensation error and motion information). Experimental results show €Ver, more bits are required to represent the motion information,
that the proposed system outweighs the conventional techniques. Since wewhich means data rate in motion information is increased. Similarly,
propose a recovery operation which tries to recover the incorrect motion yariable-size block-matching techniques effectively reduce the data
vectors from the global motion, this proposed system can also be applied o460 i gne aspect (motion information or compensation error), but
for the moving object recognition in image sequence. . .
increase the data rate in the other.
Index Terms—Block-matching, data rate, genetic algorithm, image  |n this paper, we propose a system which can effectively reduce
motion estimation, moving object recognition. total data rate consumed in off-line image sequence compression. The
proposed system incorporates merits of generalized block-matching
|. INTRODUCTION and of variable-size block-matching, and eliminates drawbacks of

both techniques. The system makes every effort to reduce and balance

For the purpose of reducing temporal redundancy in image YRe amount of data rate in both aspects optimally, and thus reduces

guence, motion estimation and compensation techniques have bt%eentotal data rate. Since we propose a recovery operation which

successfully applied [1]-[3]. Motion estimation and compensatlc}rrlles to recover the incorrect motion vectors from the global motion,
S

techniques can be regarded as determining a coordinate transfor- . - .
. : . . - Is proposed system can also be applied for the moving object
mation that is applied to every pixel of the frame. The coefficien R T .
recognition in image sequence. The simplified architecture of the

of transformation are chosen by minimizing the distortion measure, . L .
, . proposed system is shown in Fig. 1. The functions of the proposed
Assume thd(x, y) andI;_(x, y) represent the pixel values of two . . . ) SR
. . . . system are described in brief below. In the first layer, which is
consecutive frames, respectively, aBdis a reference block id;.

; . L T hown in the bottom of Fig. 1, the predicted frame is partitioned
We can express the block-matching motion estimation as finding . o
. . g . - = info blocks of smallest size. In the next layer, blocks are classified
motion vector(d.., d,) which satisfies the following requirement:

into several clusters of variable size. Consequently, pixels of the same
min Z (L(z, y) — Ly (z + doy y + d,))° 1) cluster are transformed to a deformed_ region by the output function

of that clusterf;;. Eventually, a region in the reference frame is thus
obtained that is the best fit of block in the predicted frame.

In block-matching motion estimation, the assumption that an This paper is organized as follows. In Section II, learning of output
image is composed of rigid objects in pure translational motion fanction is introduced. In Section llI, partitioning of the input space
employed. In reality, however, motion is a complex combination @8 discussed. The proposed system is then described in Section IV.
translation and rotation. In order to cope with rotation as well &imulations are conducted in Sections II-E and IV-B, which show
other nonlinear deformations, a general approach to block-matchihat the performance of the proposed system is superior to that of the
motion estimation was proposed in [4]. A geometric transformatiatbnventional block-matching motion compensation.

(z,y)ER
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A perspective transformation that has eight degrees of freedom is
described by

p = et anvtan
’ aizu + azzv + 1
Y \ a2t + a22v 4 asz

1 = -
1

A 1 . 7
l’ l’ r’ ,' "‘,‘ : 1 ‘l : K ‘\ aisu + a23v + 1 ( )
A R | [ 1 \ K
b 0] oot H Y [ . _ . L
A o 1 ! | The eight coefficients can be determined by establishing correspon-
4wy T i fm‘\ dence between four points in the reference and those in the predicted
/o ,' ,' fn OF X . f 7 frame. Let @, vx) and @, yx) for £ =0, 1, 2, 3 be four pairs of
P i 52 . . . .
! A - ) points in the two frames, respectively. Moreover, (7) can be rewritten
1 1 JO2 ! 1
; I as
;) " f24 ! '
T ol
i et [ ;! ! Jea T =anu+ a21v + a1 — a1z3ur — A230L,
7 2§ d 1
T s b 7 y =a12u + a220 + a3z — a1z3uy — aa3vy. (8)
)4 !
T _ _ Applying (8) to the four pairs of correspondence points yields the
TR L LRI following 8 x 8 system of equations:
rig vo 10 0 0 —wogro —wvoTo] [A117 rro
up vy 1 0 0 0 —wixy —-vizy a1 T
R uz ve 1 0 0 0 —ugxe —wvous as1 €2
Fig. 1. Architecture of the proposed system. us vy 10 0 0 —usws —vsws | (a2 | _ |¥3
0 0 0 w wvo 1 —uoyo —voyo | |a22 Yo
0 0 0 (151 U1 1 —UuUi1Yy1 —V1Y1 asz2 Y1
learning algorithms. Finally, we conclude the section with simulations | 0 0 0 w2 w2 1 —usyas —v2y2 | |ais Yo
on the proposed learning algorithms. LO 0 0 wus ws 1 —wusys —v3ysd Lags. Lys ©

We can thus determine coefficients by solving the linear system. This
yields a solution to the general quadrilateral-to-quadrilateral problem.
In this section, we introduce how to solve for coefficients of a |, aqgition to affine and perspective transformation used in [4],
transformation, which is the basis of the proposed learning algorithigg introduce polynomial transformation in this paper. The polynomial

in the following sections. . _transformation is originally intended to account for sensor-related spa-
_An affine transformation that has six degrees of freedom, relatigg| distortions and external image distortions. The form of bivariate
directly to coefficientsii1, az1, asi1, aiz, azz, asz, is of the form  y51ynomial transformation is

A. Determination of Transformation Coefficients

r=ap1u+ as1v + asz;

N N—i
Y =aiou + asev + ago. 3) r= Z Z (l,'J"lLi'Uj
i=0 j=0
These six coefficients may be determined by specifying the coordinate N N—i o
correspondence of three noncollinear points in both images. Let y=Y_ 3 bijuv’. (10)
(uk, vi) and @, yi) for k. =0, 1, 2 be three pairs of points in the i=0 j=0

reference and predicted frames, respectively. Affine mapping can be
determined by solving the system of six linear equations as followNote that a first-degreeN = 1) bivariate polynomial defines the
mapping function that is exactly given by an affine transformation.

ug vo 10 0 07 ran To In polynomial transformation, the number of coefficients is related
wr v 100 07 Jax 1 to the degree of polynomial. A polynomial transformation of degree
wz vz 10 0 0fjas| _ |22 N has2K coefficients, K™ for a;; and K for b;;, where
. (4) J J
0 0 0 wy wo 1] [ae Yo
0 0 0 wuy wv1 1] a2 Y1 N N—i o
N N y
0 0 0 up vs 1J Lass " E=%1-= W 11)
1=0 7=0
Let the system of equations given above be denoted as '
WA — X ®) If we provide K pairs of correspondence points, we can solve the

following system of equations and determine the coefficients of a

solving for the coefficients in terms of the knowm( v,) and polynomial of degreeV:

(zx, yx) pairs, we have

2 2 N N
1 wy o Ug Vo uy v Uy Vg
2 2 N N
-1 v v [ ) )
A=WIX. (6) 1 u v w1V ui L; ul\, Ll\f
1 wus v U Vs us U5 uy v

The constraint oW to consist of noncollinear points SErves to BNSUre | creerr e
that W is nonsingular, i.edet (W) # 0. Consequently, the inverse | -----orreriemeeenannns AR AR NN
W~ is guaranteed to exist. 1 ur vk wrvx uk vk - uR VR
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[ @00 7 with initial conditions of

@10 0

o1 € ag=0 and Sy, =+1I a7
ai £

@20 | =1 (12) where~ is a positive big number andl is the identity matrix of
o2 ' dimensionk x K, and K is the number of columns iW.

: Since the derivative of (7) shows that RLS method has poor
ano LK convergence accuracy in nonlinear transformation, we cannot solve
Lao 4 the system in (9) using the RLS method directly. In this paper, an

and alternative approach is proposed as follows according to the above
wg  wve wove uz  v: o w) oY observation. First, the correspondence pair of points are shifted to
wi ovr o wvy wd o v e wd ol zero-mean by the same amount of displacenient s,). Second,
ws vy wgvz  us  vd - wd ) those shifted data are arranged as row vectors. Consequently, the
............................................ row vectors are applied to the RLS method sequentially, and learning
............................................ result, A’, is obtained. Finally, the exact solutiod, can be
1 uxg vk ugvk uk vik - w0l recovered fromA' using the following equation:
rboo 7 .
bio / rayy r (al1 + alzs,)/div 7
bo, z? asy (ahy + abys.)/div ) _
b1 fyv as1 (asy — aqzslz — 11"211 Sy —)I—/ar - div)/div
bo |7 ayz | 12 + a138y v
be ||| (13) a | = (y + ays,) /v (18)
. as2 (asy — dl9s. — ahysy + sy - div)/div
a3 ays/div
bno YK Laos L a;Jdiv J
_boj\/' m

. . ) where div=1—a}; —ab;, anda,; anda!; are elements oA andA’,

B. Supervised Learning of Output Function respectively. In simulations, coefficients of perspective transformation

In the previous section, concept of geometric transformations aace determined correctly with the proposed approach.
methods to solve for their coefficients are introduced. Solving aln the RLS learning of polynomial transformation, the trans-
system of equations, we are required to provide sufficient numtermation function in (10) is also nonlinear. Similarly, we can
of noncollinear point pairs in both frames. In an image sequencift the correspondence pair of points to zero-mean by amount of
however, it is not easy to estimate the coordinate of the correspondiigplacements.., s,), apply RLS to obtain:;; andb;;, and recover
point in another frame, when a particular point in the current franmefficients,a;; andb,;, of polynomial transformation from;; and
is given. In other words, it is almost impossible to provide accuraté; using (19) and (20), shown at the bottom of the page.

point pairs in both frames. Exhaustive search algorithm used in [4]The supervised learning algorithm is summarized as follows.
can find the coefficients, but it takes a very long computation time Step 1: SelectK points, randomly or not. Note that the number

even the search region is small, which is not practical. _ of noncollinear points in the selected points must be
In this section, we propose a recursive least-square (RLS) learning equal to or greater than that of points required to properly
algorithm to find the coefficients of geometric transformation. Let determine the selected transformation.
the 7th row vector of matrixW defined in (5) bew; and theith Step 2: App|y full-search b|ock_matching a|gorithm to the se-
element ofX defined in (5) ber;. Then A can be calculated using lected points to obtain their motion vectors.
the following recursive least-square formula: Step 3: Coordinate of each point is used as input, and the sum of
a1 =ai + Sei Wl (2101 — Wisiai) (14) each point’s coordinate and its associated motion vector
hL TS T ek Ak v vhLS serves as desired output. They form a pair of training
_ Siw, 1 Wit1Si C_ data.
Sip1 =8 — oL =0, 1, p— 1 (15) - . .
I+ wipaSiwiy, Step 4:  Apply training data sequentially to the RLS algorithm
A=a, (16) to learn the coefficients of transformation.

r i ] _ i—dg (o \I—dy H §
Z (I'U <d1> <dy>( Sv’”) ( b!/) If da,v d!/ 7& 0

i>dy,j>d;
Adyd, = i+j<N (19)

Z ai’j(_sx)i(_sy)j + s if d. =d, =0

and

’ i J L Ni—dg CNi—dy
Z bLJ <dL> (dy>(_5r) (_5y)] if dr, (ly # 0

i2de, > d;
ba,a, = i+ <N v (20)
> b(=sa) (=sy) + sy ifd, =d, =0

i20,5>0
Fi<N
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(x,y)=(f(u,v),8(u,v))

()™
(u;,v,)

(u,,v, ) are coded as the string

Lo L vo [ [ o Jofva Ju v |

849

(x0,¥0)

.......................

.(xl’}ﬁ)

(x5, ,)

(x,,y,) are selected beforehand

(0,0)(0,8)(8,0)(8,8)

A string of binary-coding GA
They can be used to determine

a transformation

Fig. 2. Coding of the string in the binary-coding GA.

C. Genetic Algorithm Learning of Output Function

Genetic algorithm (GA) is a general purpose optimization algo-
rithm with a probabilistic component that provide a means to search
poorly understood, irregular spaces. Holland [8] developed the GA to
simulate some of the processes observed in natural evolution. In this
section, we propose two GA learning schemes of output functions.

1) Binary Coding Genetic Algorithmin  Section II-B, it is
pointed out that if we apply a number of point pairs (three in affine
transformation, four in perspective transformation, dadf (11) in
polynomial transformation), the coefficients can be determined by
solving a system of equations [(4), (9), (12), and (13) for the three
transformations, respectively]. In other words, a transformation isgtep 3
determined by a group of point pairg., v+) and @, yi).

Applying binary-coding GA to learn the transformation coef-
ficients, we need to generate the strings by the coordinates oftep 4
points, which is described as follows. We fix points. ( yx) in the
compensated frame, and vary poinis (vx) in the reference frame.

The variable pointsu(;., v;) are coded as strings in GA. A sufficient

number of ¢, vx) and , yx) can represent a transformation;

hence, a transformation is thus coded. For example, in the perspective
transformation case, four pairs of points are required to solve for
coefficients. Therefore, four fixed points in the compensated frame,

e.g., (0, 0), (8,0), (8 8), and (0, 8), are selected beforehand, St€p S
and four correspondence pointsio, vg), (u1, v1), (us2, v2), and

(us, v3), are coded as a string of eight bytes. To decode the string,

a system of equations is constructed by the four pairs of points
and the coefficients are obtained by solving the system of equa-
tions. The obtained coefficients (i.e., the obtained transformations,Step
f and g) are evaluated by applying them to (2). The smaller the
value of (2) is, the better the obtained coefficients (transformations)
are. The coding of the string in binary-coding GA is illustrated

in Fig. 2.

The following steps are employed to generate and handle a set
strings (i.e., a population) in the GA learning [9].

6

gf

is defined by

FIT= > |I(x, y) — Ii(x, y),
(z.y)ER

Z |It($3 y‘) - It71(f(;17, y)? g(wﬂ y))| (21)

(z,y)ER

wheref andg are the functions of transformation which
are determined by the coded string. The purpose of the
GA learning in our case is to search for the transforma-
tion which minimizes the above fitness function.
Reproduction:Reproduction is a process in which indi-
vidual strings are copied according to their fitness values,
i.e., based on the principle of survival of the fittest.
Crossover:We use theN-point crossover operator, in
which a string isN bytes in length. At first, two strings
from the reproduced population are mated at random, and
N crossover points bits position, where one crossover
point for each byte) are selected according to the type
of transformation we are learning. Then the strings are
crossed and separated at these points to produce two new
strings.

Mutation: Mutation is the random alteration of bits in the
string which assists in keeping diversity in the popula-
tion. As a source of new bits, mutation is introduced and
is applied with a probability,.,. In addition, a variation
operation in GA is adopted, which enforces preserving
the best string.

If the stopping condition is not met (e.g., the error is
above a predefined level), return to Step 2. Otherwise,
the GA is terminated.

Our experiments show that the learning curve of the binary-
coding GA on a block of uniform motion falls in the first several
geénerations, and remains unchanged in the following generations.
In our experience, the binary-coding GA typically converges in

Step 1 |Initialization: We first generate an initial populationseyeral generations except in blocks of nonuniform motion due to
containing V,,,,, strings, where,,.,, is the number of ynmask of background or variation of illumination, which takes more

strings in each population. generations to reach convergence.

Fitness Functionin this step, each string is decoded by 2) Floating-Point Genetic Algorithm:In the previous section, we

an evaluator into an objective function value called fitcode the coordinates of points (pixels) as a string, instead of coding
ness,FIT. A fitness value is assigned to each individuatoefficients themselves. Because of the restriction on binary coding,
in the population. According to (2), the fitness functiorwe can use only integer grid points. It is possible to extend the

Step 2



850 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 6, DECEMBER 1999

Crossover site tional motion compensation technique directly, because the obtained
coordinate value of a point is not restricted to an integer. QCA is
|2.15|3_76 o.12|1.03|2.36|2.24|1.37|3.24| thus proposed to tackle this problem.

Suppose that the origin point of an image is on the left-top corner,
and the positive directions are rightward and downward; moreover,

|3.62|2.26| 1.10|1.80| 0.18| 1.37|2.18|2.26|

the motion vectord = (d., dy) on the location(z, y) of the
(@) predicted frame is evaluated, in which both andd, are floating
values. Without loss of generality, it is supposed that kbtandd,
Crossover site are positive, i.e., the point on the location, y) are compensated
from a pixel of right-bottom direction in the reference frame. One
|2.15|3.76| 1.10|1.80|0.18|].37|2.18|2.26| distinguishes the integer part and decimal part of the motion vector
as follows:
|3.62]2.26[0.12]1.03] 2.36]2.24]1 37[3.24] de =dui + doy
(b) dy =dyi +dyy (22)
Fig. 3. lllustration of crossover operation for floating-point strings: (a) beforehere (d..;, d,;) and (d.¢, d,s) are the integer and decimal parts
crossover and (b) after crossover. of (d., dy), respectively. The square, which is in location y), is

now reconstructed from the four locatior(s, + d.:, y + dy:), (= +
dei+1, y+dy:), (x+dei, y+dyi+1), and(z+doi+1, y+dyi+1)
in the reference frame. At these four locations, a reference square is
thus divided into four parts, with the area of each part decided by the
|2.15]3.76]0.12]1.03] 2. 3¢]2.24]1.37[3.24] decimal part,(d.s, d,;), of the motion vectord.., d,). The area

@ of each part is viewed as a weighting factor in deciding the new

gray value. More precisely, we assign the gray value of the pixel,

which is in location(z, y), from the weighted gray values of the
four locations (pixels).
(b) Hence, for any locatior(z, y) in the compensated frame, with
gssociated motion vectofd., d,), the compensated gray value

Mutation site (e.q., adding a random number 1.81)

|2. 15‘3.76' 0. 12]2.84[ 2.36|2.24l 1 .37|3.24|

Fig. 4. lllustration of mutation operation for a floating-point string: (a) befor:

mutation and (b) after mutation. I.(x, y) is decided by the following equation:
§ W(m, n)y—(x,y’) * I’r'(7n-/ n)
point to sub-subpixel accuracy. However, strings will be very long if I | _ (m,n)eD 23
PRI e : Y oz, y) = (23)
a infinitesimal-subpixel is desired. Moreover, the computation time E w o
. o . . . (m,n)—(z",y’)
of decoding a string into coefficients, which occurs in the stage of (m.m)ED

evaluating fitness value, occupies a significant portions of execution
time in the GA learning. where

In order to increase the accuracy of the estimated coefficients and (' /) EN (x4 de, y+d,):
lessen the computation load, floating-point GA [10] is adopted. In the
floating-point GA, we can code the coefficients themselves as strings A
of real values. Thus, the computation load of decoding is eliminated. D ={(m, n)| one of the four points
Initially, the GA randomly generates a population of floating-point that are nearest to the poifit’, y')},
strings. An interpreter takes this floating-point string and uses it to
set the coefficients of transformation. In this way, according to a
defined fitness function, a fithess value is assigned to each string in
the population. GA can look for a better set of strings to form a on the unit-square ofz’, y').
new population as the next generation. The crossover operation for

encoding is demonstrated in Fig. 3. The steps to generate and handfe®" @y Iocatior(_;c./ y) in the compensated image frame, its gray
a set of strings in the floating-point GA learning is similar to thosléaIue can be obtained by (23). In (23), the numerator denotes the

in the binary-coding GA except for the mutation process, in which M Of product of the weighting factor and the gray value of points

random numben\ (¢, i) is added to the string. The range Af¢, ) that belong toD, and the denomlna_ltor_ls the sum of all welghtlng
is variable according to theth generation and théth element in a factors, which is used as the normalization factor in the reconstruction

string. Fig. 4 shows an example illustrating the mutation operatiofl°¢€SS-

Typically, the learning curve of the floating-point GA on a block of

uniform motion falls quickly in the first several generations, and iF- Simulation Results

the following generations the curve is slightly downward or stays on In this section, we compare the performance of a total of ten algo-

the same value. rithms: conventional block-matching (BM), and affine, perspective,

polynomial transformations with three different learning algorithms
o ] ) (RLS, binary-coding GA, floating-point GA), respectively. We syn-

D. Infinitesimal-Subpixel Compensation thesize nine test images of different transformations to evaluate the
In this section, we propose a quarter compensation algoritHearning algorithms. Among the nine test images, image 1 is the

(QCA). Note that the conventional motion compensation methadsulted image of rotation; image 2 is that of scaling; images 3

operates only on the integer grids. We cannot apply the motiamd 4 are resulted images of shearing in different directions. These

parameters estimated by generalized block-matching to the convenages mentioned above are affine-transformed images. Images 5

source pixel of compensated paint

Wim, n)—(=7,yn): the area (weighting factor)
of the block of(m, ») that falls on
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. . . Fig. 6. SNR comparison between BM and RLS, GA, FGA affine transfor-
Fig. 5. Compensation error comparison between BM and RLS, GA, F

J > ations.
affine transformations.
5.50
and 6 are perspective-transformed images. Images 7 and 8 are
more complex images of affine and perspective transformations§,
respectively. Image 9 is created to test the subpixel prediction abiIi@
of learning algorithms. The quality evaluation between the originag Ny
image and reconstructed one is performed under some objecti’ge — A— RLS:AFF
quality criteria. These criteria include total absolute difference errofg 450 — % - GA:AFE
SNR, and data entropy, which are defined as follows. B —%—FGA:AFF
« total absolute difference error K
(=5
~ o
Emor= " [L(x.y) ~ I+ dey+dy)l (24 3
« signal to noise ratio (SNR) 3.50 :
1 2 3 4 5 6 7 8 9
M N ) Image
S )
i=1 j=1 Fig. 7. Entropy comparison between BM and RLS, GA, FGA affine trans-
SNRiy = 10 log,y —— - ; (25)  formations.
i=1 j=1 190000.00
« estimated entropy of compensation error '.-' A
. 5 : Jam A
255 B 150000.00 i g '-:\‘\\ 2NN
H==> p;log, pi (26) 3 % i RN AN
. 5] . hAY 1 L
=0 5 v 14 R P --m--BM
L2 % 3 . f — - RLS:PER
; T ; - ; & 11000000 } 2 G * '
where p; is the probability of pixel valug in the difference 2 v e - — 9% - GA:PER
image. E
Note that! and are the desired image frame and the reconstructe@ 0000.00
image frame, respectively. The absolute difference error reflects thé )
ability of learning algorithms in motion estimation and compensation.
SNR indicates the visual quality of the reconstructed images. The 500000

estimated entropy of compensation error is included to show the 1 2 3 4 5 6 1 8 9
approximate data rate.

In Fig. 5, we compare the performance in terms of compensation ) ]
error between BM and affine transformation of generalized block!9: 8- Compensation error comparison between BM and RLS, GA, FGA
matching with RLS, GA (binary-coding GA), FGA (floating-pointperSpecnve transformations.

GA) learning algorithms. The RLS predicts the frame more accurate ] )
than the BM except for two frames. In addition, the performances gerder blocks where motion vectors are prone to error. Compensation
both binary-coding and floating-point GA’s outweigh the RLS an@Tors on border blocks greatly deteriorate the performance of RLS.
BM, and the floating-point GA is superior to the binary-coding one. Fig. 8 shows the test result in terms of compensation error between

Fig. 6 shows the quality of the reconstructed images on the baBil! and perspective transformation, instead of affine transformation,
of signal-to-noise ratio. As expected, the performance of GA’s & generalized block-matching with RLS, GA, and FGA learning. The
superior to the others. The estimated entropy of compensation erro@npensation errors of GA’s are again lower than those of the other
shown in Fig. 7. The GA's outweigh the other algorithms again. Notwo algorithms. However, compensation errors on the binary-coding
that the performance of RLS in terms of SNR and entropy is po&A and floating-point GA are approximate in this case. The results
when compared with BM, because the RLS is unable to predict thé comparisons on SNR and entropy are shown in Figs. 9 and 10,
test images correctly and produces more frame difference errorsrespectively.

Image
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Fig. 9. SNR comparison between BM and RLS, GA, FGA perspective . )
transformations. Fig. 11. Compensation error comparison between BM and RLS, GA, FGA
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Fig. 10. Entropy comparison between BM and RLS, GA, FGA perspectidg. 12. SNR comparison between BM and RLS, GA, FGA polynomial
transformations. transformations.

We also test the algorithms with polynomial transformation, and 530
the comparison of total absolute difference error is shown in Fig. 1%.
The performance of BM is the worst when compared with th
other three algorithms. The binary-coding GA performs better tha®

the floating-point one, but the RLS algorithm sometimes results i --®--BM

the lowest error. The outcome indicates that the implementatigh, . | —4A- RLS:POLY
of GA’s is not optimized for learning coefficients of polynomial & =% - GAPOLY
transformation. The comparison of algorithms on SNR is shown arﬁ T FGAPOLY

Fig. 12. The performance of GA'’s is better than that of RLS and BMS

Learning algorithms are also compared in terms of coding entropg.

As depicted in Fig. 13, the BM needs more bits than others. Not&

that the performance of RLS is superior to that of BM in terms of 350

compensation error and estimated entropy. However, the performance ! 2 3 4 5 6 7 8 9

of RLS is similar to that of BM in terms of SNR, because the RLS Image

fails to predict the test images correctly_on the border bIo<_:ks. Fig. 13. Entropy comparison between BM and RLS, GA, FGA polynomial
In summary, the performance of GA’s in terms of frame differenceansformations.

SNR, and entropy is superior to the other algorithms. This is due to

the global optimization capability of GA’s. With the crossover and ) o )

mutation operations, the GA, unlike the block-matching and RL&Ntinuous evolution of GA’s cannot produce an individual (string)

algorithms, is able to get out of a local minimum trap and finwhich is closer tom4 thanm,. Although there may be a chance to

better local minima or even the global minimum. However, it igeachm ¢, butitis not guaranteed to occur in a few generations. Third,

observed that the standard GA learning hardly reaches the glolfaysing floating-point GA, the global minimum. is harder to reach

minimum, which means the standard GA lacks the ability on finghenm; is closer tom, due to the possible big change of floating-

local tuning. Three possible reasons account for this situation. Firggint strings applied by GA operations. If we fix the change of the

the GA is trapped into local minima when almost all the individualstrings to a small scale, then the number of generations to reach

in a generation look alike. Second, assume the global minimumvil increase. The performance of standard GA can be improved with

mgq, and the current located minimum i4s;. It is possible that the tailored mutation operation and fine local tuning. Tailored mutation
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means that we adaptively change the mutation rate as well as tfgattern directly; instead, we use as elements of pattern the points
mutation operation properly after some generations according to that are transformed from a set of fixed reference points by the
extend of the situations caused by the first and second reasons intthesformation for clustering. If all corresponding transformed points
above. This is in contrast to using fixed mutation rate and operatioh two transformations differ below a threshold valiig, which

in the standard GA. Fine tuning means that we adaptively changeans the effects of these two transformations are similar, then we
the updating scale (size) of GA operations according to the distarean consider these two transformations are in the same cluster. In
to desired solution or the number of generations. This is differetitese two approaches, the first is fast but restricted, while the second
from using fixed updating size in the standard GA, and can solve tiserobust and effective.

problem caused by the third reason in the above.

B. Partitioning of Input Space Using Entropy Criterion

In this section, we shall introduce two operations: merge and split.
In this section, we shall propose several methods to reduce thigese two operations can effectively reduce or increase the number of
data rate of motion information. There are two directions which caslocks and optimally balance the amount of data rate corresponding

I1l. PARTITIONING OF INPUT SPACE

reduce the data rate of motion information effectively: to the prediction error and motion parameters, because they operate
» reduce the number of blocks used in compensation; under entropy criteria. Two entropy criteria for split are stated as
» reduce the entropy of transformation coefficients. follows.

Partitioning of input space must operate without increasing total frame* If the total absolute difference error (or another error measure)
difference error, or operate under the criteria which can optimally —of the motion compensated block is above a preset threshold
reduce the total data rate. the block is split:

A. Partitioning of Input Space Using Parameter Similarity Errofospic > T'=> split 27

As pointed out, an efficient way to reduce the data rate of
motion information is using less blocks, thus less motion information,
in motion compensation. Under the premise that the total frame
error does not increase, we can achieve this goal by classifying
those blocks which experience nearly the same transformation as
a group. At first, we take the coefficients of transformation as
elements of the pattern directly. In order to determine whether two >4+ Hzspriv — Hnosplie = split (28)
transformations are similar or the same, we simply compare each
corresponding coefficients of two transformations. If the difference of Wwheren is the number of pixels in the blockipspie and

 If the extra-cost to send additional motion parameters is worth
the gain obtained on the frame difference side, then the block
is split into four subblocks:

n - (HrDnosplit — HFDsplit)

each corresponding coefficients is below a threshold VAlyge can Hrpnosplis are their entropy (26) with or without split, re-
consider these two transformations as the same one. The algorithm spectively, andz .1 and Hayospiic the entropy [(26)] of the
of clustering is described in details as follows. motion vectors with or without split, respectively.
Step 1: Initialize the first clusteC, = P;, whereP, is the first ~ The merge operation operates in the sense of reducing total data
pattern. Let elements af; and P; be¢;; andp,;, j = rate. Unlike the combination process mentioned in the previous
1.2, ---N, where N is the number of elements in asection, which keeps the compensated error unchanged or decrease
pattern. in a small amount, the merge process that operates under the criteria
Step 2: Seti = 2.
Step 3: Input patternP;. A EIMolgombine< 7= combine (29)

Step 4: For each cluster, calculate distanbg. between pattern and

P; and clusterCy:
: k T (-HFDcornbine - HFDnocoulbiue)

DLA = Z |])z] - C’kf|‘ < 4- Hﬁnocombinc - HUcombino
’ = combine (30)
Step 5: Determine the: for which D;. < D, for all k # c.
Step 6: If Di. is less than a predefined constdnt then pattern does not have such restriction. In brief, if merge of blocks, which

P is assigned to cluster. Otherwise, a new cluster is reduces the number of motion parameters by one-fourth in the quad-
created with patter®; chosen as the center of the newree segmentation but increases error of compensation, can achieve a

cluster. o lower data rate, then the blocks are merged as one larger block.
Step 7: If there are more patterns, sét= i + 1 and go back  The split operation is also proposed for the goal of reducing
to Step 3. total data rate. However, it reversely splits a larger block to small

The approach that uses coefficients of transformation as contenbaks and assigns each split blocks a set of motion parameters. The
a pattern directly suffers from two problems. First, the threshold valegteria mentioned in (27) and (28) can serve as criteria for split. The
T. is difficult to determine. We need to s&t as large as possible in main purpose of split operation is to prevent premature combination.
a reasonable range in order to make this method effective. HoweuRecause the estimated motion parameters may be incorrect, the
the effect of the coefficients on the transformed pajnt,y), differs combination of blocks with incorrect parameters corrupts the further
as the value of reference pointu, v), changes. Second, in thelearning of these blocks. The split operation is thus proposed to
perspective transformation, two transformations whose coefficiemesnedy the problem of combination with error motion information.
differ a lot may produce similar deformation, if their coefficients are In comparison with combination methods proposed in the previous
proportional. section, the merge and split operation perform more effectively in

To tackle the problems mentioned above, in an alternative amduction of data rate, because the number of blocks is effectively
proach, we do not use the coefficients of transformation as elemergduced in the operations.
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Fig. 14. A pair of consecutive images and its motion vectors: (a), (b) moving rectangle, and (c) the motion vectors of the moving rectangle in.(a) and (b)

C. Quad-Tree Segmentation

In previous sections, methods of reducing the number of blocks \
partitioned in an image are introduced. In these methods, images are ..
segmented adaptively into variable sizes, which introduces overhead Js
of r(_epresentln_g size and.locatlon of blocks in an image. When.t.lh—(le. 15. The proposed operation that tries to recover the incorrect motion
partm(_)ns are_ flxed_, there is no overhead. Hoyvever, when the pa_rtltlﬂ rmation from the global motion.
of an image is variable, the overhead occupies an amount of bit-rate.

Therefore, the quad-tree segmentation is introduced to reduce the
overhead. the parameters of the current block and that of neighbor blocks

Quad-trees which represent the segmentation are typically ceme tested with motion compensation, and their compensation errors
structed by top-down or bottom-up methods [11]. In the proposede compared. After comparison, the parameters of this block are
system, a bottom-up construction is adopted. The procedure of metigen replaced by the ones with the lowest error. This operation is
in the proposed system is described in Sections IlI-A and IlI-B. Thbustrated in Fig. 15. The upper-left block whose motion information
quad-tree structure can be representetidgcodd12]. The treecode is fo is tested with motion compensation, but the motion information
is encoded by listing the nodes encountered by a depth-first traveisatemporarily replaced witty,, f», or fs, each for a time. After
of the tree structure. If encountered node is not a leaf, then it gdmparing the compensation error of each motion information, the
represented by “1”; otherwise it is represented by “0”. The approache with the lowest errorf,, becomes the new motion information
of treecode requires exactly one bit of overhead per node, whichaisthe current block, wheré is 0, 1, 2, or 3.
used to distinguish between leaf nodes and internal nodes. Therefore,
ieznrgilrlltg:{gmead rate is achieved with the structure of quad-treelv PROPOSEDDEFORMED IMAGE MOTION ESTIMATION SYSTEM

fi fos fis [os f are tested

on the block. f, is min.
o

We have discussed in the previous sections two aspects of reducing
the amount of information required in a block-matching motion esti-
mation and motion-compensation compression algorithm. In the past,
incorporating techniques of two aspects simply means segmentation

Several methods of partitioning input space are discussed in Uﬂeimages followed by block-matching or by generalized block-
previous sections. They rely on the assumption that all motiAatching [14], which lacks the ability of determining as a whole the
information of blocks are correct, which is not always true ifbjocks in the same motion that is more complex than pure translation.

image sequence. In fact, the motion information which minimizeg this paper, we propose a system in which those information
the compensated error is not necessarily the real motion of objectsd@uction algorithms can cooperate well.

an image sequence. We demonstrate the statement by the following
example. o
In Fig. 14(c), motion vectors of a “moving rectangle” are shownA' Description of the Proposed System
The real motion vector of the solid block is-4, —7). Because  The architecture of the proposed system is already shown in
the block-matching algorithm finds a best fit of a small referenddd- 1. The block diagram of the proposed system in a motion
subblock, in which several candidates are possible, the estima@sdimation and compensation system is shown in Fig. 16. There are
motion vector can be used to perform compensation perfectly thou§yf® main components in the proposed system. The component of
they may not be the actual motion vector. output function and that of input partition are discussed in Sections Il
The estimated motion information which differs from the actual on@nd IlI, respectively. Quad-tree segmentation is adopted in combining
may be recovered from that of neighbor blocks. Because a moviagd splitting of blocks in the input space.
object in an image sequence is larger than the block size of a minimallhe operation procedure of the proposed system is described as
block in many occasions, motion information of neighbor blocks aféllows.
usually the same as, or approximate to, current blocks. The concept dbtep 1: Input space (compensated image) is partitioned into

D. Improvement of Partitioning with Motion
Information of Neighbor Blocks

global motion is discussed in many researches on motion estimation blocks of minimum size.

or related interests. In [13], a method which reconstructs the frameStep 2: For each block, learn the associated output function

with the aid of neighbor motion vector is successfully applied to (transformation).

motion compensation. Step 3: The output functions of blocks are replaced and
We propose a recovery operation which tries to recover the tested with neighbor output function, as described in

incorrect motion vector from the global motion. In the operation, Section IlI-D.
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Fig. 16. Block diagram of the proposed deformed image motion estimation system.
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) ) ) ) Fig. 18. SNR comparison among GA perspective, FGA affine, FGA per-
Fig. 17. Compensation error comparison among GA perspective, FGfective, and the proposed system.

affine, FGA perspective, and the proposed system.

Step 4: Classify transformation parameters according to the,
methods described in Section IlI-A. If combination is.g~ |
possible on the basis of quad-tree segmentation, then (g)
the combination. g 350 F

Step 5: Split blocks according to (27) and (28). E ::::gii;z
Step 6: For each block, relearn the associated output functiong 250 | — % FGAPER
Output functions of neighbor blocks and current blockg} ™ —=—Proposed System

are used as initial parameters (for RLS) or initial popu-g
lation (for GA) of learning process.
Step 7: Combine blocks according to (29) and (30).
Step 8: If the ending condition is not reached, go back to Step 3.
Step 9: For each block, verify the total data rate of the block-
matching algorithm when it is applied to the block
and that of generalized block-matching algorithm. If the
data rate of block-matching is lower, then replace thEig. 19. Entropy comparison among GA perspective, FGA affine, FGA
motion information of the block with the motion vectorPersPective, and the proposed system.
estimated by the block-matching algorithm.
We explain each step of the operation procedure of the proposed _. . - . .
system. In Step 2, GA is adopted to precisely estimate the motion I% Since th? input partltlgn and correspon@ng_output function h_avg
formation. In order to prevent GA from being trapped in local minimep,een modified, the learing of output function is pro.cessed again |r1
Step 3 is adopted to help GA escape from local minima with g|0b§|tep 6 to further reduce the data rate of compensation error. At this
motion; moreover, it can speed up the learning of GA in the futuRPint, we can apply Step 7 to combine blocks in the input space.
relearning. After learning of output function, Step 4 is introduced ttep 7 is executed after other operations in that it degrades the
reduce the data rate of motion information, including the data ra@gcuracy of motion information in exchange with less data rate. The
of representing output function and input partition. Step 5 prevergsding condition in Step 8 may be that the smallest fitness value falls
the premature combination of blocks, as described in Section Ibelow a preset threshold, or that the number of generations exceeds

1.50

Entropy

Image
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Fig. 20. Test images: three objects.

Fig. 21. Test images: the crane system.

Fig. 22. Reconstructed image and partition map of “three objects.”

a preset value. Finally, in Step 9 we further reduce the total daBa Simulation Results
rate. Since the generalized block-matching trades more bits in motiorNjne test images used in Section II-E are tested by the proposed
information for less bits in compensation error, sometimes the bi§§stem. In the test, the floating-point GA learning is adopted in the
saved in compensation error are less than that consumed in mOWPBposed system. Comparisons among the proposed system and GA
information. Thus Step 9 is proposed to tackle this problem. perspective, floating-point GA affine, floating-point GA perspective
In brief, the algorithms introduced in the previous two sectiongarning algorithms are shown in Figs. 17—19. The proposed system
are effective in reducing data rate, but they have restriction @ obviously superior to other algorithms.
drawbacks. The proposed system integrates these algorithms amdlle then test the proposed system with two pairs of consecutive
further improve the performance of each algorithm with the helpnages. The first pair of images is “three objects” in which three
of other algorithms. It is shown to be superior to the conventionabjects rotate in different directions and degrees as shown in Fig. 20.
techniques by simulations in the following section. The second pair of image is “the crane system” shown in Fig. 21.
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Fig. 23. Reconstructed image and partition map of “the crane system.”

TABLE |
COMPENSATED RESULTS OF THE “THREE OBJECTS | MAGE
Total Absolute Entropy of Computation Time
Difference Error Error Image SNR (second)
BM 40115.00 0.55 22.32 179
RL.S:AFF 39621.00 0.68 23.84 1211
GA:AFF 18646.00 0.53 29.48 5396
FGA:AFF 20553.00 0.56 28.35 5102
Proposed System 18232.00 0.52 29.58 5408
TABLE 1l
COMPENSATED RESULTS OF THE “THE CRANE SYSTEM” | MAGE
Total Absolute Entropy of Computation Time
Difference Error Error Image SNR (second)
BM 36177.00 3.53 32.45 183
RILS:AFF 57803.00 3.87 22.04 1223
GA:AFF 33542.00 3.45 33.06 5402
FGA:AFF 29856.00 3.29 34.15 5211
Proposed System 29681.00 3.28 34.17 5498
TABLE Il

DATA RATE COMPARISON BETWEEN THE PROPOSEDSYSTEM AND CONVENTIONAL BLOCK-MATCHING TECHNIQUE ON TWO TEST IMAGE SEQUENCES

Data Rate of Data Rate of

Data Rate of Number of

Test i i i
est image Algorithm Error Image MOthl'l Blocks Image . Total Data Rate
Information Segmentation
Three Object  Block Matching 9075.29 2502.92 256.00 0.00 11578.22
Proposed System 8597.50 2147.61 106.00 137.00 10882.11
Crane System  Block Matching 57819.14 1603.26 256.00 0.00 59422.40
Proposed System 53704.79 1130.58 61.00 81.00 54916.37

The “three objects” images are artificial and the illumination oPentium 1l 266 MHz (Frame size= 256 x 256, Frame rate=
objects and background does not change. The other one is takéjh

from real image sequences, and illumination of the contents inThe comparison in terms of data rate required between the block-
image varies. The reconstructed images and partition maps of thes&ching algorithm and the proposed system is summarized in
images by using the proposed system are shown in Figs. 22 drable Ill. The data rate of error image and that of motion information
23. The performance of the proposed system and BM and otheeffectively reduced in the proposed system. The overhead of image
affine transformation learning algorithms are compared, as giveegmentation is small due to the quad-tree segmentation. Though the
in Tables | and Il. We can conclude that the proposed systemnmtion information of one block in the proposed system requires
effective in reducing compensation error even the image sequennesre bits than that of block-matching, the total data rate in motion
are not intensity-invariant. However, the proposed system needs mimfermation decreases because the number of blocks is effectively
computation time than the others. If the system is applied to oneduced. In “mobile calendar,” data rate of motion information is
minute of video image, it will take about 3246000 s by usingnuch higher than that of block-matching, because only a small
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TABLE IV

SUMMARY OF THE FEATURES AND COMPARISON OF THE PROPOSED ALGORITHM

Algorithm Feature Advantages Disadvantages
RLS method Supervised learning with pre-chosen points | - Easy implementation » Unpredictable error due to the possibly
(Subsection 2.2) and corresponding motion vectors estimated | o Fagt computation wrong motion vectors estimated by the
by the block-matching algorithm as input- block-matching algorithm
output training pairs
Binary-Coding GA GA evolution by coding the estimated o Need not estimate the motion ° Longer computation time than the RLS

(Subsection 2.3.1) motion vectors (i.., correspondence points

in the neighbor frame) as a string

vectors by the block-matching
algorithm
» Higher accuracy than the RLS method

method
 Cannot cover all transformation types due
to the resolution constraint

Floating-point GA GA evolution by coding the coefficients of | - Need not estimate the motion vectors | » Longer computation time than the RLS
(Subsection 2.3.2) transformation function as a string directly by the clock-matching algorithm method
= Higher accuracy than the RLS method | - Not easy to reach global minimum
and binary-coding GA = Need to control the search range of the
coefficients of perspective transformation

Quarter Compensation | Decide the gray value of a pixel in a » More accurate than the conventional | - Longer computation time than
Algorithm (QCA) recovered image from the weighted gray motion compensation method that conventional integer-grid motion
(Subsection 2.4) values of the four neighboring pixels operates only on the integer grids compensation methods

o Can recover the image compressed by
the subpixel motion estimation scheme

Input space partitioning | Partition the input space according to the
Using parameter similarity of coefficients of the
Similarity transformation functions

(Subsection 3.1)

° Intuitive and direct
o Short computation time
> Reduce data rate

o Ignore the possibility that combining
dissimilar transformation can reduce total
data error

Input space partitioning | Combine two blocks into a single one, if this | - Achieve lower data rate than the
method based on parameter similarity

Using entropy criterion | combination can reduce the data rate
(Subsection 3.2) (including the increased error data and
decreased transformation coefficient data)

« Long computation time (can be improved
by using the method based on parameter
similarity for preprocessing)

Quad-tree segmentation | Use Q-tree structure to represent the

o Reduced the data rate for representing

o The way that an image can be partitioned

(Subsection 3.3) partitioning (formed blocks) of an image the partitioning of an image is restricted

Partitioning Recover incorrect motion vector from the = Find more accurate motion vectors = Need extra operations

Improvement method | motion information of neighbor blocks o Can reduce the time in finding the best

(Subsection 3.4) transformation for each block

The proposed system | Integrate the algorithms presented in this - Efficiently reduce the data rate than = Take longer time in image compression
(Section 4) paper into an efficient deformed image conventional methods than conventional methods

motion estimation system

o Suitable for off-line coding

number of blocks is combined. However, the amount of data rate tt&mulation results show that the proposed system effectively reduces
decreases in error image exceeds that increases in motion informatibe, data rate in image compression.

which results in a reduced total data rate.

V. CONCLUSION
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Il. APPROXIMATE ANALOGICAL REASONING SCHEMA (AARS)
POPFNN-AARS(S): A Pseudo

The approximate analogical reasoning schema (AARS) was pro-
Outer-Product Based Fuzzy Neural Network PP g g ( ) P

posed by Turksen and Zhong [13] as an alternative to the commonly
used compositional rule of inference (CRI) [18] and the truth value
restriction (TVR) method [19]. It exhibits the advantages of fuzzy set
theory and analogical reasoning in expert systems development.

H ! H wif A
Abstract—A novel fuzzy neural network, the Pseudo Outer-Product- Given an_ o_bserved fact _and a sw_nple fuzzy rule “if4 then
based Fuzzy Neural Network using the singleton fuzzifier together with B.” the basic idea of AARS is to modify the consequergef the
the Approximate Analogical Reasoning Schema, is proposed in this paper. fuzzy rule according to the closeness of the observed 4adb the

This network shall henceforth be referred to as the singleton fuzzifier gntecedentd. If they are close (similar) enough, in comparison to

POPFNN-AARS. The singleton fuzzifier POPFNN-AARS employs the .
Approximate Analogical Reasoning Schema (AARS) [13] instead of the a threshold value, then the rule can be fired and the conclusfon

commonly used Truth Value Restriction (TVR) method [19]. This makes €an be deduced using some modification techniques. Formally, their
the structure and learning algorithms of the singleton fuzzifier POPFNN- ‘closeness’ is expressed asimilarity measurgSM) that is in turn
AARS simpler and conceptually clearer than those of the POPFNN-TVR  gbtained from adistance measur¢DM) [23]. Once thesimilarity
model [20]-[22]. Different Similarity Measures (SM) and Modification measureSM(A, A') betweenA and A’ exceeds the value of the

Functions (FM) [23] for AARS are investigated. The structures and learn- L . . .
ing algorithms of the proposed singleton fuzzifier POPFNN-AARS are thresholdr, the fuzzy rule is fired. A modification function (MF) is

presented. Several sets of real-life data are used to test the performance Subsequently constructed and is used to modify the consequgnce

of the singleton fuzzifier POPFNN-AARS and their experimental results  of the fuzzy rule to deduce a conclusi@ti, instead of using Zadeh'’s

are presented for detailed discussion. CRI. The whole fuzzy inference process of using AARS is shown in
Index Terms— Approximate analogical reasoning schema (AARS), Fig. 1. Brief introductions on different SM’s and MF's are presented

fuzzy rule identification, integrated fuzzy neural networks, modification in Sections II-A and |I-B, respectively.

functions, one-pass learning, pseudo outer-product learning, similarity

measures, singleton fuzzifier POPFNN-AARS.

C. Quek and R. W. Zhou

A. Similarity Measures

The notion of similarity plays a fundamental role in theories
. INTRODUCTION of knowledge and behavior. The theoretical analysis of similarity
Zhou and Quek [20], [21] proposed the structure and learninglations has been dominated by geometric models. These models
algorithms of the pseudo outer-product based fuzzy neural netwaelipresent objects as points in some coordinate spaces such that
using the truth value restriction method (POPFNN-TVR). This novéhe observed dissimilarity among objects corresponds to the metric
fuzzy neural network has successfully been applied in an automalistance between the respective points. Many measures of similarity
_ _ ' _ among fuzzy sets have been proposed in the literature, and some
Wa“gig‘éiﬁ:ﬁ;%ﬁ"gf ’Q“S%‘é?;tZrEld%?;?Lre(‘gsidal'l"'amh 1, 1999. This papgave been incorporated into linguistic approximation procedures. In
The authors are with the Intelligent Sys.terﬁs Laboratory, Nanyang Techr;[(-)lJrksen an.d thng’s paper [13], similarity measure (SM) between
logical University, Singapore 639798. fuzzy sets is defined as a measurement transformed from a distant
Publisher Item Identifier S 1083-4419(99)08051-6. measure (DM) by using SM= 1/(1 + DM). In 1987, Zwicket al.
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