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Reactive Navigation in Dynamic
Environment Using a Multisensor Predictor

Kai-Tai Song and Charles C. Chang

Abstract—A reactive navigation system for an autonomous mobile
robot in unstructured dynamic environments is presented. The motion
of moving obstacles is estimated for robot motion planning and obstacle
avoidance. A multisensor-based obstacle predictor is utilized to obtain
obstacle-motion information. Sensory data from a CCD camera and mul-
tiple ultrasonic rangefinders are combined to predict obstacle positions
at next sampling instant. A neural network, which is trained off-line,
provides the desired prediction on-line in real time. The predicted obstacle
configuration is employed by the proposed virtual-force-based navigation
method to prevent collision with moving obstacles. Simulation results are
presented to verify the effectiveness of the proposed navigation system
in an environment with multiple mobile robots or moving objects. This
system was implemented and tested on an experimental mobile robot at
our laboratory. Navigation results in real environment are presented and
analyzed.

I. INTRODUCTION

Although many approaches to motion planning for mobile robots
in uncertain static environment have been proposed in the literature
[16], [21], they do not effectively resolve navigation problems involv-
ing multiple moving obstacles in real-world applications. Providing
information of all obstacle trajectories in advance, if at all possible,
would allow us to plan a safe trajectory (i.e., a path and robot arrival
times at every intermediate position) for the robot before it moves.
One approach involves planning an initial path, then constructing
trajectories or velocities by considering the trajectories of obstacles
[8], [12], [19]. Another approach considers time as an additional
dimension and plans for space–time [6], [9], [22]. Recently, Fiorini
and Shiller [7] employed velocity information to determine potential
collisions and computed the trajectories of a robot moving in a time-
varying environment. A drawback to such approaches is that they
are only applicable to situations where thea priori knowledge about
obstacle motion is available. Due to the limitations in the sensor
system, it is difficult to obtain the velocity information of multiple
objects onboard the mobile robot in a dynamic environment.

Moreover, if unexpected events frequently occur, then complete
trajectory replanning used repeatedly are inappropriate owing to
real-time considerations. Under such circumstances, robots require
reactive navigational schemes. The robot should constantly monitor
its environment with onboard sensors and act appropriately when
deemed necessary. Several investigators have presented reactive
motion-planning schemes to cope with moving obstacles. Some
methods of this type alter the robot’s speed along the preplanned
path to avoid unexpected moving obstacles [10], [14]. More flexible
methods can modify both the robot’s speed and direction of motion
[15], [18], [25], [26]. While there is an increasing interest in solving
dynamic motion-planning problems, most of the results are presented
in computer simulations, relative fewer of them have been actually
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implemented on a real mobile robot. We believe this is mainly due
to the difficulties encountered in the sensing and perceptual systems.

To resolve the sensing problem, Nair and Aggarwal proposed a
vision system that can detect unexpected moving obstacles [17].
The system was able to detect moving obstacles 100 ms/frame
using an HP-735 workstation. But the use of such information in
obstacle avoidance was not investigated. Chang and Song examined
the feasibility of extracting simple implicit motion information from
multiple ultrasonic rangefinders [4]. This information is equivalent
to the next-time relative positions of obstacles’ nearest points to
the robot. Using such projected information, they proposed a vir-
tual force approach for a mobile robot navigating among moving
obstacles [5]. However, the frequent used ultrasonic sensors cannot
provide the comprehensive obstacle-motion information required for
the navigation method. Other types of sensors, e.g., CCD cameras,
provide substantially more information. These two types of sensors
can compensate each other [24]. Through proper arrangement, a
combination of them provides improved perceptual capacity. In this
paper, sensor data from a CCD camera and 16 ultrasonic sensors
are fused into an uniform representation to make more accurate
environmental prediction. A multilayer feedforward network, which is
trained off-line, provides the desired prediction on-line in real time.
The predicted obstacle configuration is employed by the proposed
virtual-force-based reactive navigation algorithm to prevent collision
with multiple moving obstacles.

In conventional potential field based methods [1], [13], the virtual
force is from the current obstacle positions. These methods are mainly
employed to deal with stationary obstacles. They simply regarded
the direction of the resultant force as the moving direction of the
robot. The traveling speed of the robot is not affected. This however,
contradicts the natural reaction to an applied force. It will not be
sufficient to handle fast moving obstacles. In this paper, the virtual
forces come from the predicted obstacle positions. Consequently,
it is a precautionary approach to a more reactive motion planning.
Moveover, the resultant force causes a motion change that follows
Newton’s law of motion, both the speed and moving direction
of the robot are simultaneously adjusted. This navigation scheme
can therefore handle moving as well as stationary obstacles much
more efficiently. However, it also needs more attention in designing
forces to achieve the desired obstacle avoidance behavior in dynamic
environments.

The rest of the paper is organized as follows. Section II de-
scribes the obstacle-configuration predictor that fuses data from a
CCD camera and multiple ultrasonic sensors. A novel navigation
scheme based on virtual force concept is presented in Section III.
Section IV illustrates a navigation design for a mobile robot among
multiple moving as well as stationary obstacles. Section V presents
the simulation results which indicate intelligent human-like avoidance
behavior in dynamic environments. In Section VI, the experimental
mobile robot is described and practical implementation results of
the proposed method are presented. Conclusions and areas for future
research are presented in Section VII.

II. OBSTACLE PREDICTION USING MULTIPLE SENSORS

In this work, a multisensor system is developed to inform the robot
what area will be occupied by obstacles. This is an implicit form
of considering the motion of obstacles. The obstacle-configuration
prediction is possible if one succeed in fusing multisensor data to
obtain the correlation among them. One possibility is to predict
future sensor readings. The measurement from any given sensor
must have a relationship to historical measurements from sensors
nearby if the motions of the robot and obstacles follow certain fixed
patterns when sensor data are taken. If one can find such relationship,

the sensor’s future measurement can be predicted. Knowing the
future measurements is equivalent to knowing what area will be
occupied by obstacles. It is helpful for navigation among moving
obstacles because the robot can respond to anticipated changes in the
environment.

Such an environment predictor has been implemented employing
16 Polaroid ultrasonic ranging sensors [4]. Ultrasonic transducers are
simple and very effective to obtain the distance to an obstacle. How-
ever, they have two major drawbacks. First, the specular reflection
may prevent the robot from seeing obstacles, subsequently causing
unexpected collisions. Second, the wide beams of ultrasonic sensors
cause poor angular resolution, making it impossible for the robot to
pass through closely cluttered environments. Therefore, another type
of sensor(s) for compensating ultrasonic sensors is highly desired.
Herein, we examine the feasibility of using a CCD camera to enhance
the onboard perceptual capacity of the mobile robot. The basic idea
is to combine the camera data with ultrasonic sensor data to obtain
more reliable environmental information.

A. CCD Camera Sensing

In our system, a CCD camera is exploited to provide percep-
tual information to the robot. Although the image from a CCD
camera contains much useful environmental information, extracting
and interpreting this information is a complex task. Utilizing two
cameras to measure distances requires image matching and a higher
computational cost. Moreover, it is considered that the robot must
react responsively to the moving obstacles. The real-time performance
is important. Consequently, a single camera was used to achieve this
task. We assumed that all obstacles stand on the ground and each
pixel is mapped to a ground distance (ground-plan constraint [11]).
Finding the lowest edge is equivalent to finding the nearest obstacle.

1) Calibration: The vision system is initially calibrated for dis-
tance measurement. The CCD camera should be installed at a fixed
position with a fixed orientation to cover the most important areas.
Apparently, the camera image positions have a defined, continuous
relationship with their actual ground positions. In this work, the polar
coordinate system is adopted to represent ground positions owing to
the consideration of fusion with ultrasonic sensor data. Therefore, the
image-ground relationship can be represented as

�g = f1(xi; yi) (1)

�g = f2(xi; yi) (2)

where

�g distance from the ultrasonic sensor ring to the measured
point;

�g angle between the robot’s heading and the measured point;
xi image position in thex-axis;
yi image position in they-axis.

Each of these two equations contains a camera distortion part and
many trigonometric and inverse trigonometric functions used in
geometrical transformations. It will take much calculation time for
these trigonometric functions. Moreover, because there is an uncertain
part due to the camera distortion, to derive a precise equation for other
parts becomes less meaningful. Consequently, a direct calibration
measurement was carried out to find the relationship between image
positions and ground positions. We express (1) and (2) as polynomials
so that the regression model can be adopted. First, taking Taylor
expansion for (1) atxi = 0, we obtain

�g = g0(yi) + c1xig1(yi) + c2x
2

i g2(yi) + c3x
3

i g3(yi)

+ higher order terms: (3)
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TABLE I
COEFFICIENTS OF THEREGRESSIONMODEL FOR �g

a1 a2 a3 a4 a5
9.376e-9 -6.139e-9 4.456e-10 -5.983e-8 -7.188e-6

a6 a7 a8 a9 a10
1.756e-5 9.111e-7 -1.417e-3 -5.304e-4 2.243

TABLE II
COEFFICIENTS OF THEREGRESSIONMODEL FOR �g

b1 b2 b3 b4 b5
1.908e-8 -3.750e-5 -7.615e-6 1.245e-6 2.468e-3

b6 b7 b8 b9 b10
2.151e-2 3.408e-3 -1.216 -5.006 5.434e2

Then, taking Taylor expansion forg0(yi), g1(yi), g2(yi), etc., in (3)
at yi = 0, we have

�g =(d00 + d01yi + d02y
2

i + d03y
3

i + � � �)

+ c1xi(d10 + d11yi + d12y
2

i + d13y
3

i + � � �)

+ c2x
2

i (d20 + d21yi + d22y
2

i + d23y
3

i + � � �)

+ c3x
3

i (d30 + d31yi + d32y
2

i + d33y
3

i + � � �)

+ higher order terms: (4)

Expanding the above equation and choosing a finite number of terms
to approximate it, we obtain a polynomial expression for�g. Then,
we can use the regression method to find the coefficients. For this
purpose, we record 110 sets of data that relate ground positions to
the corresponding pixel positions in an image frame. According to
our test results, taking the 10 most dominant terms, in which the
orders ofxiyi � 3 can achieve reasonable precision. Therefore, the
regression model can be expressed as

�g = a1 � x
3

i + a2 � y
3

i + a3 � x
2

i yi + a4 � xiy
2

i + a5 � x
2

i

+ a6 � y
2

i + a7 � xiyi + a8 � xi + a9 � yi + a10 (5)

whereai’s are the coefficients. Similarly, the regression model for
�g can be expressed as

�g = b1 � x
3

i + b2 � y
3

i + b3 � x
2

i yi + b4 � xiy
2

i + b5 � x
2

i

+ b6 � y
2

i + b7 � xiyi + b8 � xi + b9 � yi + b10 (6)

where bi’s are the coefficients. The calibrated coefficients are pre-
sented in Tables I and II, respectively.

This method achieves the accuracy of 5.23 cm average distance
error (maximum error< 10 cm) and 1.32� average angular error
(maximum error< 2.75�).

2) Real-Time Vision System:Our mobile robot is equipped with a
real-time image processing board developed in this laboratory [23].
We take advantage of the onboard frame-rate edge detection capacity
(60 fields/s) to identify obstacles presented in an image. However,
two problems should be resolved to find obstacles. First, owing to
the noise in source images, what kind of edges can be regarded as
obstacles must be determined. Second, the floor of our laboratory
building is covered by 30� 30 cm tiles; edges may be extracted at
the gaps between tiles when lights are reflected from them. These
false edges (that are not from obstacles) must be eliminated. To
resolve the noise problem, we regard a group of edges as an obstacle
if it is constructed from at least three connected edges in terms of

8-connectivity. Our results demonstrate that the false edge problem
is attributed not to the color difference between tiles and gaps but,
instead, their reflectivity; the false edges usually occur when the
tiles are very bright due to light reflection. Under such circumstance,
although the gaps are darker than tiles, they also have relative high
gray levels. Therefore, brightening the complete image can effectively
eliminate this type of false edge. The algorithm is summarized in the
following equation:

pi;new =
pi + q if pi < q

255 if pi � q
(7)

where

pi;new new gray level of theith pixel;
pi original gray level of theith pixel;
q integer between 0 and 255.

Notably, this algorithm is realized on the image processing board in
hardware, hence it does not require extra processing time.

Fig. 1 presents a sample test result of the real-time image system
using the proposed image-processing algorithm. Fig. 1(a) depicts the
original image taken by the camera. Fig. 1(b) displays the detected
edges (dark points), which are extracted from a brightened image
(q = 85). The white lines in the figure are the nearest edges found
using the proposed method. We note that the obstacles are detected
and their distances to the mobile robot are obtained. The numbers
indicated below the image, from left to right, are the estimated
distance in directions from�60� to 60�. Each covers 7.5�.

B. Sensor Data Fusion

The purpose of sensor data fusion in this study is mainly to obtain
an uniform representation of multiple ultrasonic sensors and the CCD
camera. Herein, we process the image data such that they have the
same representation as ultrasonic sensor’s, that is, a distance to the
nearest obstacle in each observed direction. The following conditions
are important for this design:

1) the camera may observe something that ultrasonic sensors
cannot detect, and vice versa;

2) the camera-measured distances have a better directional reso-
lution than ultrasonic sensors;

3) the camera-measured distance may be uncertain due to unclear
edges.

A wide-angle CCD camera is installed on the mobile robot. The
present design adopts three camera-measured distances within a
single ultrasonic sensor beam angle. The fusion results are made
in each camera-measured direction. Consequently, they have the
same directional resolution as the camera-measured distances. Fig. 2
illustrates the sensor arrangement and sensing directions. We see
from the figure that 21 camera-measured distances are taken over
the angular span covered by seven ultrasonic sensors. The fusion
principle adopts the shortest distance that is reliable (using prediction
as a criterion) as the fused result.

C. Multisensor Neural Network Predictor

A multilayer feedforward network was adopted to accomplish
obstacle configuration prediction. Fig. 3 depicts the neural network
structure. In each direction, the distance data from neighboring
directions and their previous readings are employed to predict the
next-time distance reading. In the figure,sfi(t) represents the fused
sensor data for the measurement directioni at sample instantt and
sui(t) represents the reading from ultrasonic sensori at sample
instantt. The inputs to the predictor are the historical measurements
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Fig. 1. Experimental results of identifying obstacles and their distances.

of sensors near the sensor whose reading in the next time instant
is being predicted. Before the measurement data enter the neural
net module, they are normalized to a value between 0 and 1. The
larger the measured distance, the closer the value to 1. The outputs
of the neural network are the normalized sensor data prediction,
which is also a value between 0 and 1. To convert them into the
predicted sensor data, the denormalization module multiplies them
by the maximum sensor range. The number of neighboring sensors
considered in the predictor depends on the velocities of the robot
and obstacles. It also depends on the sensor arrangement of the
robot. Considering moderate velocities of the robot and moving
obstacles, the measurements within the central 135� are sampled to
predict the obstacle motion. Within the camera covered area, the
fused data are used; outside that area, ultrasonic sensor data alone
are used. Therefore, the fused data in direction 1–21 plus the data
from ultrasonic sensors 1 and 9 are taken as the inputs to the neural
network. Since the previous sensor data as well as the present data
are used in the obstacle configuration prediction, altogether there are
46 (23� 2) inputs to the neural network. The fact that the camera has

full-distance measurements within only about the central 45� accounts
for why the predictions of fused data are made at these areas (other
areas still use ultrasonic sensors alone for prediction). Therefore, the
distances in the central nine camera-measured directions (nos. 7–15)
are predicted by this neural network. The hidden layers of the neural
network have forty-five and thirty processing elements, respectively.
The structure of the neural net is thus 46-45-30-9.

The relative-error-backpropagation (REBP) [4] was adopted as
the training algorithm for the artificial neural network (ANN). This
algorithm is to minimize the error functionE defined by

E
�
= 1

2

j

[(TN; j �AN; j)=TN; j ]
2 (8)

whereAN; j andTN; j are the actual and desired outputs of thejth
neuron of the output layer. One can obtain the minimal relative error
by minimizing E. Consequently, the absolute prediction error for
distant obstacles can be allowed a larger value, while that of close
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Fig. 2. Sensor arrangement for environmental configuration prediction; the
numbers inside the circle indicate the ultrasonic sensor positions; the numbers
at the arrows indicate the directions in which camera measures distances.

Fig. 3. ANN structure exploiting fused sensory data.

obstacles is kept small. This feature is suited for navigation applica-
tions. The neural network was trained off-line using data generated
by sensor models. The entire training data for the neural network
consist of thirty thousand sets of sensor readings. Approximately 29

Fig. 4. Explanation of the APPE.

TABLE III
APPE COMPARISON OF USING FUSED DATA AND USING

ULTRASONIC DATA (OBSTACLE SPEED IS 140–200 cm/s)

Sensor Data Used APPE(cm) Using
Current Data

APPE(cm) Using REBP

Ultrasonic Alone 34.5 24.8
Fused Data 35.6 15.9

h CPU time was spent on a Sun Classic workstation to train the
neural network to convergence.

It is clear that using fused data from the camera and ultrasonic
sensors has a better directional resolution than using only ultrasonic
sensors. However, with improved directional resolution, there is a
higher possibility to lead to miss-calculation, in which the predicted
obstacle is actually detected in the neighboring measurement direc-
tion. A situation in practice does little influence on the navigation
performance. Next, a fair and unbiased comparison is made to confirm
the prediction accuracy. Herein, we define an index termed apparent
position prediction error (APPE). Assume that a measured (predicted)
distance is regarded as a point obstacle in the measured (predicted)
direction at that distance. The APPE is the distance between the
predicted and the matched (at next sample instant) obstacles. The
matched obstacle is the closest obstacle measured in the predicted or
its neighboring directions. From Fig. 4

APPEm = min
m�k<i<m+k

ei (9)

where

APPEm APPE of the prediction in them direction;
ei distance from the predicted obstacle position in them

direction to the actual measured obstacle position in the
ith direction;

k number of neighboring directions to be considered on
each side of directionm.

The example shown in Fig. 4 reveals that although the obstacle will
be measured in the(m�1) direction, it is predicted in them direction.
The fact thatem�1 is smaller thanem andem+1 accounts for why it is
regarded as the APPEm. Notably,k is one for using ultrasonic sensors
and four for using fused data; so they cover the same angle span.
Table III presents the APPE comparison for predicting fast obstacles
(140–200 cm/s). In this table, the APPE using current data indicates
no prediction applied to the sensors. This finding indicates that the
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APPE using the fused sensor data is markedly decreased from 24.8 to
15.9 cm. The fused data have less false data and a better prediction,
thereby making their prediction results more useful for mobile robot
navigation.

III. REACTIVE NAVIGATION AMONG MULTIPLE MOVING OBSTACLES

We first consider an application task space in which both mov-
ing and stationary obstacles may present. Among multiple moving
obstacles, the robot’s safety is difficult to guarantee because

1) it may not detect an obstacle until the last second;
2) obstacles may behave carelessly or in a hostile way;
3) a moving obstacle may somehow simply lose control at the

instant when it approaches the robot.

Owing to the above reasons, the following navigation principles are
considered to prevent from collision with multiple moving obstacles.

1) The robot should move toward a place which is predicted to
be safe.

2) The robot should control its speed according to the predicted
positions of moving obstacles so that it can handle unexpected
situations.

3) In addition, the robot should have no speed component toward
an obstacle if it is already near the obstacle. This feature also
guarantees its safety among static obstacles.

A reactive navigation method is developed herein for guiding a
mobile robot among stationary and moving obstacles. The proposed
method assumes that the goal and future positions of obstacles exert
virtual forces on the robot. The subsequent virtual force changes
the robot’s motion so that it is more appropriate for the predicted
environment. The subsequent force produces an acceleration, which
is thereby transferred to the robot’s velocity change for the next
time interval. Note that in this system the future relative positions
of obstacles are used for virtual force calculation.

A. Selection of Virtual Force

A rational choice of virtual force is critical in designing the navi-
gation system for the robot among moving and stationary obstacles.
With respect to such a choice, the following considerations must be
made.

1) To cause the robot to move toward its destination, the goal
has an attractive force associated with it. This is like a string
which ties the robot and pulls it toward the goal. When there
is an obstacle blocking the way to the goal, the string has to
go around the obstacle. Consequently, a temporary virtual goal
is set besides the obstacle.

2) A person decreases his speed of motion when he encounters
obstacles to avert dangers caused by accidental changes in the
obstacle’s motion. If a sudden danger actually occurs, humans
then quickly move away from the obstacle as if being pushed
outward from it. Therefore, two zones around an obstacle are
required: an outer deceleration zone that decreases the robot
speed for relative safety, and an inner push-away zone that
causes the robot to move away from the obstacle when it is
too close to an obstacle.

3) In the deceleration zone, viscous force is applied because it
decreases the robot’s rate of movement in proportion to its
speed. If the range for a viscous force is sufficiently large,
the robot can achieve a stable speed owing to the balance
between this force and the goal force. Therefore, this force
can be included to control the robot’s speed. Notably, even
the robot is at a place covered by deceleration zones of many
obstacles; it is sufficient to count only the one with the largest

Fig. 5. Virtual goal and virtual obstacle forces.

viscous force. The viscous force, however, cannot force the
robot to stop because an attractive force is still exerted on it.

4) In the push-away zone, a larger force can hopefully be exerted
on the robot as it approaches an obstacle, ultimately causing the
force to be sufficiently large to drive the robot away from the
obstacle. For such a purpose, a virtual spring installed between
the robot and obstacle is appropriate because the spring force
exerted on the robot is directed away from the object. The
exerted force increases as the robot penetrates deeper into the
push-away zone. With an adequate amount of spring constant,
this force guarantees that the robot never collides with a static
obstacle.

Fig. 5 illustrates the concept of virtual goal and force zones. Two
deceleration zones,D1 andD2 will be described in Section IV. The
strengths and ranges of each force zone are the parameters to be
determined. They must be carefully checked to achieve the desired
behavior. The navigation system using these virtual forces fulfills the
principles introduced previously.

B. Kinematic Constraints

The virtual force approach assumes a velocity controlled robot and
provides motion speed commandsv[k] and steering angles�[k]. For
a mobile robot with two independent drive wheels, a transformation
to the speeds of the two drive wheels is required. The formula is
as follows:

vr[k] = 2v[k] +
W�[k]

Ts

2

vl[k] = 2v[k]�
W�[k]

Ts
2

(10)
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where

vr speed of right wheel;
vl speed of left wheel;
W distance between the two drive wheels;
Ts sampling period.

Although kinematic constraints are considered during the parameter
design, the reaction speed may still exceed the bounds. Therefore,
the commands must be checked and modified before passed on to
the wheel motors. Wheel speed constraints are absolute limits. If
the speed of one wheel reaches the bound, the other wheel’s speed
is also adjusted accordingly to keep the robot on the desired path.
When necessary, speed difference between the two drive wheels is
adjusted such that the robot moves quickly on a gently curving path,
rather than slowly on a sharply curving one.

These constraints obviously affect navigational performance.
Herein, we employ a heuristic approach to resolve such constrained
motion planning problems because efficiency is considered more
important in this case. Although there is still small navigation
difference due to kinematic and dynamic constraint, our reactive
navigation scheme can resolve it by continually adjusting the robot’s
motion according to updated sensory information. On the other
hand, previous investigations have demonstrated that planning robot
motion in a dynamic environment with complete information is
computationally difficult, even with only a bounded-velocity module
[3], [20]. Importantly, deriving exact solutions would be even more
difficult if there are other kinematic constraints and only incomplete
information is available.

IV. NAVIGATION DESIGN

The kinematic constraints on our experimental robot, which has
two independent drive wheels, include the maximum wheel speeds
(vmax), the maximum speed change (�vmax) during a sampling period
(Ts), and the maximum speed difference between the two drive
wheels (�vd;max). Herein, we adopt those constraints as references
when designing the virtual force system.

As mentioned earlier, the goal force together with the viscous force
in the deceleration zone can be used to control the robot speed when
dealing with a moving obstacle. The closer the robot to an obstacle
implies the larger viscosity that the virtual force system should have
at that place. As Fig. 5 indicates, we divide the obstacle force zone
into three areas. The two deceleration zones exist in front of the robot
because the robot is assumed to move only forward using a single
camera. The most distant area is deceleration zoneD1, in which we
expect the robot to be able to move at the desired speed at any place
in this area. The middle area is the deceleration zoneD2. This area
is already near the obstacle; the robot in this area is expected to slow
down. The closest inner area is the push-away zone, in which a spring
force in addition to the viscous force is exerted on the robot to keep
it away from the obstacle.

In the following, we describe the method of determining force
related parameters for implementing the navigation system. The
parameters include the ranges of three force zones, the strength of the
goal force, the viscosity coefficients, and the spring constant. Notably,
the range of each zone is expressed in terms of thepredicted distances
between the robot and obstacles. Expected navigation behaviors are
transformed into equations to find the parameters. However, there are
more variables than the equations. Therefore, numerical procedures
are utilized to find the solutions.

A. Goal Force

To determine the virtual force strength, the goal force and the
viscosity should be considered simultaneously so that the robot speed

in D1 can be controlled. We expect that even when the robot moves
at its maximum speedvmax toward an obstacle, it can immediately
decrease to the desired speedvD1; 0 when coming to the inner bound
of D1. This can be expressed as

vmax �
vmax � �D1; 0

m
� Ts +

Fg
m
� Ts = vD1; 0 (11)

where

�D1; 0 viscosity at the most inner place inD1;
m robot’s mass;
Fg rated goal force when there is an obstacle in the goal’s

direction.

In this equation, the second term on the left side means the speed
change in a sample interval due to the viscous force. The third term
on the left side means the speed change in a sample interval due to
the goal force. On the other hand, because the robot is also expected
to maintain this speed, then

vD1; 0 � �D1; 0 = Fg (12)

which means at this speed the viscous force can cancel out the goal
force. HerevD1; 0 and the range ofD1 can be determined by the
designer, so these two equations can be used to determineFg and
�D1; 0.

When an obstacle is detected between the robot and its goal, a
virtual goal is selected by the following principles.

1) The virtual goal should be at a distance from any obstacle by
a safe margin.

2) The virtual goal should be close to the real goal.
3) If there are two virtual-goal candidates nearly as close to the

real goal as each other, then select the one that has more free
space around.

4) If no appropriate virtual goal can be set at the direction that
differs from the goal direction by less than 90�, then use the
original goal. In this case, the robot slows down, and replanning
is invoked.

When obstacles are at directions other than the goal’s direction, the
goal force can be larger to make the robot approach more quickly.
However, the components of this force toward obstacles at different
directions cannot exceedFg so that in the following we can find
force parameters by considering only one obstacle (explained later).
Therefore, the effective goal forcefg is

fg = Fg=cos(�) (13)

where� is the angle between the robot’s heading and the direction
of the obstacle that is closest to the heading.

B. Deceleration ZoneD1

At D1’s outer bound, the robot is expected to travel with its
maximum speed. We prefer that the robot can decrease its speed
from here on. At this place, the viscous force can just cancel the goal
attraction, and the viscosity,�D1; 1, can be determined by

vmax � �D1; 1 = Fg: (14)

At other places inD1, the viscosity is linearly interpolated between
�D1; 0 and�D1; 1. As long as the range ofD1 is sufficiently large,
the robot speed can be controlled approximately to

vd =
Fg
�p

(15)
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Fig. 6. Simulation result of navigation among multiple moving obstacles. All obstacles started to move at sample instant 0. The speeds of Mo1, Mo2,
Mo3, Mo4, and Mo5 are, respectively, 80, 60, 72, 92, and 80 (cm/s).

wherevd is the desired speed, and�p is the viscosity at the robot’s
locationp. However, it is preferred that the robot moves fast and thus
D1 should be as small as possible. Because the goal force,�D1; 0 and
�D1; 1 are already known, given an initial speed, the robot’s speed
and position can be calculated for every sample instant. To find the
smallest range ofD1, we assume the robot is at its highest speed
before enteringD1. Then a numerical routine is utilized to iteratively
check different ranges forD1 to see if the robot’s speed is controlled
approximately to (15). Notably, here (and later on) we consider the
case of only one obstacle, and assume that the goal is at the same
direction of the obstacle. In practical situations, multiple obstacles
may present and the robot may turn toward another obstacle when
traveling to the goal. Since the projection of goal force in any other
obstacle’s direction is not larger than the above assumption for one
obstacle case, the robot’s speed is still suitable for the other obstacles.
Therefore, this design is valid for the case of multiple obstacles.

C. Deceleration ZoneD2

The viscosity at the outer bound ofD2 is actually the same as
�D1; 0. Because the possible highest speed just outsideD2 can be
calculated and the desired speed before entering push-away zone is
predetermined, the robot’s speed and position at every sample instant
can be calculated. A numerical routine is employed to iteratively
check different viscosity at inner bound ofD2, �D2; 0, and to find
the smallest�D2; 0 that can achieve the desired speed before entering
push-away zone.

D. Push-Away Zone

The robot in push-away zone must be closely controlled so
that there is no speed component toward the obstacle before the
clearance between the robot and obstacle is smaller than the minimum
detectable range of the sensor. The range of this zone depends on the
robot’s mobility and can be set by the designer. Because all other
parameters are known, the spring constant can be determined using
a numerical procedure. Here we require a spring constant that makes
the robot slow down to a stop just before it passes this zone.

V. SIMULATIONS

Computer simulations have been performed to verify the nav-
igational performance of a mobile robot among multiple moving
obstacles using the proposed method. In the simulation, the robot
was cylindrical in shape with a diameter of 60 cm. It was equipped
with a camera and a ring of 24 ultrasonic rangefinders, each having
a beam opening angle of 22.5� and effective range of 30–600 cm.
The sampling time was 500 ms.

Fig. 6 shows the capability to avoid multiple moving obstacles that
move straightforward without paying any attention to the robot. The
robot smoothly avoids the first three moving obstacles as expected.
At the fifth sampling instant, the robot predicts Mo1 approaching and
sets a virtual goal in its front-left. At the tenth sampling instant, the
robot predicts Mo2 approaching and sets a virtual goal in its front-
right. At the fifteenth sampling instant, the robot adjusts its heading
to the center. It does so because it attempts to move toward the goal.
At the seventeenth sampling instant, Mo3 is predicted to approach
the robot; therefore, the robot turns left to avoid it. At the twentieth
sampling instant, the robot predicts Mo4 approaching and turns right.
At the twenty-seventh sampling instant, the robot decelerates (which
is less apparent elsewhere) since, under this circumstance, the robot is
in a more or less cluttered environment. Notably, Mo4 is already close
in the robot’s left side, Mo5 is predicted to approach from the front,
and a wall is in its front-right. The robot cannot choose an absolutely
safe place to locate the virtual goal. Only a relatively safe virtual
goal is set; therefore, the robot must slow down its speed. At the
twenty-ninth sampling instant, Mo4 is no longer a threat and, thus,
the robot turns left and then accelerates to avoid Mo5 and moves
toward the real goal.

Fig. 7 reveals that the mobile robot can travel smoothly among
multiple moving and static obstacles. At the tenth instant, the robot
sets the virtual goal in its front-left to avoid Ob1. Its speed also
decreases because of the wall. At the twenty-seventh instant, it turns
right to avoid Ob3. At the forty-fourth instant, the robot turns left
to avoid Mo1. The appearance of Ob2 narrows the passage and,
consequently, the robot attempts to move safely in between the two
obstacles. After the robot turns to the vertical corridor, two obstacles
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Fig. 7. Environment and the recorded trajectories. Mo1 started to move at the beginning with a speed of 80 cm/s; Mo2 started to move at the forty-fifth
instant with a speed of 100 cm/s; and Mo3 started to move at the forty-fifth instant with a speed of 80 cm/s.

approach from the front. At the ninety-fourth instant, the robot begins
to turn right slightly to keep a safe distance from Mo2. Then, at the
101st instant, it turns left quickly to avoid Mo3 coming head-on.
Finally, it reaches the goal safely.

Fig. 8 presents a simulation result of multiple robots, which are
identical in locomotion and sensing capacity. We assume that their
ultrasonic sensors do not interfere with each other. Each robot wants
to move to their individual goals. At the fourteenth sampling instant,
both robots 3 and 4 predict that robot 1 will block their way and,
therefore, set virtual goals on their right hand side because of their
goal positions. As we see in Fig. 8, robot 3 begins to turn left at
the fifteenth sampling instant despite the fact that robot 1 still blocks
its way. This action confirms the merit of predicting environment
configuration. Robot 1 does not avoid robot 3 because robot 3 does
not block its way. Robot 3 cannot approach its goal quickly since, at
that time, robot 2 also blocks its way. For robot 4, after it turns
right to avoid robots 1 and 3, it can travel smoothly toward its
goal. The average speeds of the four robots are 125, 132, 121, and
127 cm/s, respectively. This simulation demonstrates that the robot
using prediction and the proposed reactive navigation scheme can
satisfactorily move among multiple mobile robots.

In practice, when the mobile robot is near a movable obstacle, it
must react even more responsively to take care of a sudden motion
change of the obstacle. Therefore, we recommend to decrease the
control sampling time when the robot enters the deceleration zone
D2. The neural network predictor can be skipped in this mode
because the advantage of prediction is much less when using a very
short sampling time, and thus the computation load is decreased,
which helps to achieve a quicker reaction.

VI. EXPERIMENTAL RESULTS

Fig. 9 illustrates the experimental mobile robot developed in our
laboratory. Its diameter is 60 cm and it is about 105 cm tall. It
has two independent drive wheels and two casters for balance. Its
maximum speed is 40 cm/s. A ring of 16 Polaroid ultrasonic sensors
was installed around it at alternating heights of 30 and 75 cm with

Fig. 8. Simulation result of multiple-robot navigation.

equal angle spans. The effective range of each sensor is 43–320
cm. These sensors are fired sequentially in four groups. Herein, we
adopt the error-eliminating-rapid-ultrasonic-firing (EERUF) method
proposed by Borenstein and Koren [2], a complete set of 16 sensor
measurements takes about 140 ms. The robot has a CCD camera
installed at a height of 123 cm. A 3.7 mm wide-angle lens is used.
The lens views downward and can cover distances from 12 cm to over
400 cm within 120� span. The image data are preprocessed by a real-
time image processing board developed in our laboratory [23]. Using
the method described in Section II, it takes 50–80 ms to obtain 16
distance measurements covering 120�. Next, dead-reckoning position
estimation is performed by fusing shaft-encoders and a gyroscope.
The sampling time for a navigation command is 560 ms normally and
100 ms for a dangerous mode. The control and computational tasks
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Fig. 9. Experimental mobile robot in this study.

Fig. 10. Experiment confirming the capability of avoiding multiple moving as well as static obstacles. Mo1 started to move at the twentieth instant with
a speed of 25 cm/s; and Mo2 started to move at the thirtieth instant with a speed of 25 cm/s.

are distributed among two HCTL-1100’s (for servo motor control),
an Intel 8751 (for ultrasonic sensor measurements), and an Intel
Pentium-133 (for other tasks).

The experiments were conducted in our laboratory building. A
portion of the floor (33 m� 21 m) was used in the experiments.
The experimental results presented in Fig. 10 reveals that the robot
can effectively handle multiple moving and stationary obstacles in
an unstructured environment. There were a table, two chairs, seven
cartons, a passing person, and another person pulling a cart in this
experiment. The robot smoothly passed through three cartons in
front of it. Then, it encountered the walking person with the cart.

At the twentieth instant, it predicted that they were approaching,
so the virtual goal was set to the right to cause the robot to
avoid the obstacle. Immediately after it passed the obstacles, another
approaching person was predicted near; therefore, the virtual goal
moved to the left. At the forty-first instant, the actual goal became
active in guiding the robot.

VII. CONCLUSION

We have presented in this paper a precautionary navigation system
for an intelligent mobile robot in dynamic environments. Sensory data
from a CCD camera and 16 ultrasonic rangefinders are successfully
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fused into an uniform representation for distance measurement to the
robot’s immediate surroundings. On the issue of reactive control, we
proposed the neural network based obstacle-configuration predictor
exploiting multiple sensors. This neural network is trained off-line us-
ing the relative-error-backpropagation algorithm. It is then employed
to predict on-line in real-time the obstacle positions in next sample
instant. We have presented a novel reactive navigation scheme to
enable the robot make use of the predicted environmental information.
The main advantage of this method is that the robot’s speed as
well as its moving direction can be determined simultaneously. It
is more efficient in dealing with multiple moving obstacles than
traditional potential field approaches. The proposed methods have
been implemented and tested on a real mobile robot constructed in the
laboratory. Simulation and experimental results confirm that the navi-
gation system can cope with unstructured and dynamic environments.
To the best of our knowledge, there are no reported experimental
results of mobile robots that have better reactive performance in a
dynamic unknown environment than the result presented in this paper.
There are many directions for future investigation of autonomous
navigation of mobile robots. For practical realization of reactive
control based on sensory information, the reliability of the perceptual
sensors affects the navigation performance. Further investigation will
focus primarily on improving on-board perceptual performance. One
direction is to use two or more cameras for improving the scene
understanding and cover more surroundings. Adding knowledge to
the system can also enhance the perception capability. Some false
sensory data could be eliminated using the learned knowledge. The
reactive control presented in this paper can only handle the local
situations. Another future work is the integration with a higher level
world model and task planner. More knowledge about the global
environment can improve robot motion planning, thereby resulting
in better navigation.
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