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Once ~a and ~b have been computed it can be shown by direct
expansion that (46) is equivalent to the following recursive algorithm.

1) Initialization

�0 = 0; ~a1 ! ~a1 + Ad
f

_V0: (55)

2) Forward recursion: for kkk = 1 to nnn do

�k =Ad
f

�k�1 + ~ak (56)

�k =Dk�k +~bk: (57)

3) Initialization

Pn+1 = 0; �n ! �n + Ad
�

f
ft: (58)

4) Backward recursion: for kkk = nnn to 1 do

Pk =Ad
�

f
Pk+1 + �k (59)

P̂k =A
T
k Pk (60)

�̂k = �k � P̂k: (61)

Once �̂ has been computed it can be shown by direct expansion
that (45) is equivalent to the following recursive algorithm.

1) Initialization

ẑn+1 = 0; �̂n+1 = 0: (62)

2) Backward recursion: for kkk = nnn to 1 do

ẑk =Y k;k+1ẑk+1 +�k;k+1�̂k+1 (63)

ck = �̂k � A
T
k ẑk (64)

ĉk =

�1

k ck: (65)

3) Initialization

�0 = 0: (66)

4) Forward recursion: for kkk = 1 to nnn do

�k =Y
T
k�1;k�k�1 +Ak ĉk (67)

�qk = ĉk ��
T
k�1;k�k�1: (68)

Here

Y k:k+1 =X
T
k+1;k

=Ad
�

f
I �

^
Jk+1Ak+1A

T
k+1

AT
k+1

^
Jk+1Ak+1

and

�k;k+1 =

Ad�
f

^
Jk+1Ak+1

AT
k+1

^
Jk+1Ak+1

:

VII. CONCLUSION

In this article, we have presented a unified coordinate-invariant
formulation of the dynamics of multibody open chain manipulators
based on standard concepts from geometry and mechanics. One of
the major benefits of our geometric formulation is that it provides
a single unified framework to express ideas originally introduced
by Silver, Featherstone and Rodriguezet al. in a clean, concise,
and coordinate-invariant manner. We then showed that the resulting
dynamic equations can be expressed recursively for applications re-
quiring computationally efficient dynamics algorithms, or can be cast
into closed-form for applications requiring high-level manipulation
of the equations of motion. Moreover, the dynamic equations are
formulated in a completely coordinate-invariant manner, and as a
result are not bound to any specific set of local link reference frames
in which to express the kinematic and dynamic parameters of the
robot.
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A Vision-Based Method for the Circle Pose
Determination With a Direct Geometric

Interpretation

Zen Chen and Jen-Bin Huang

Abstract—A novel vision-based method for the circle pose determi-
nation is addressed. This method is based on two particular projected
chords of a circle image. The first one is the projection of a circle chord
which subtends the largest apex angle of the viewing cone for the circle
image and the second one is the projection of a circle diameter whose
backprojection plane bisects the above largest apex angle. This method
is conceptually simple, since the circle center is the center point of the
diameter chord and the circle orientation is given by the cross product of
these two (directed) chords. We present theorems on the geometry of both
the viewing cone and a reprojected circle image which are essential to the
pose determination. We then give a pose determination method which is
applicable under all viewing conditions. Experimental results illustrate
the good performance of the method, when compared with other existing
methods.
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I. INTRODUCTION

The circular feature is a popular feature of industrial or man-
made products. Therefore, estimating the three-dimensional (3-D)
location and orientation of a circle with a known radius from its single
perspective image is of fundamental importance. The major and minor
axes of the ellipse are generally not the projections of any diameter of
the circular object. In addition, the ellipse center is not the projection
of the circle center, so the explicit geometric relations between two-
dimensional (2-D) image feature points and the 3-D object pose
parameters are not readily available. Thus, man-made marking feature
such as the circle center [1] or a diameter [2] was utilized in order to
set up the equations needed in solving the object pose problem. On
the other hand, there are approximation methods [2]–[3] that make
simplifying assumptions to convert a complex problem to a simple
one. For instance, an orthographic projection is used to replace the
perspective projection, or the optical axis of the camera is assumed to
pass through the center of the circular object. Recently, Safaee-Radet
al. [4] and Kanataniet al. [5] proposed exact methods for the circle
pose estimation without using any marking feature or simplifying
assumptions. These two methods are basically the same in terms
of their problem formulations using the matrix form. In these two
methods no explicit geometric relations between 2-D image feature
points and the 3-D object pose parameters were employed. So, these
methods are more or less an algebraic method which has no intuitive
geometric interpretation. Besides, these methods break down when
the viewing cone becomes degenerate, because no ellipse can be
fitted to the line-shaped image.

We shall present a novel vision-based method for the circle pose
determination. The circle pose parameters (i.e., circle center and circle
orientation) are obtained directly through the determination of the 3-
D positions of two particular chords of the circle from the circle
image. To begin with, it is observed that a fixed viewing cone is
formed jointly by the camera lens centerG and the projected circle
contour in the image plane. One chord (or its projected chord) is
defined to be the one which subtends the largest apex angle at the
apexG of the viewing cone. The other chord (or its projected chord)
is defined so that its backprojected plane contains the bisector of the
largest apex angle. We present theorems on the viewing geometry
which are essential to the pose determination. Finally, we give a
pose determination procedure which yields the closed form and exact
solution(s). The method is applicable under all viewing conditions
including

1) right viewing cone;
2) elliptical viewing cone;
3) degenerate viewing cone.

And, it has a clear geometric interpretation.
The rest of this paper is organized as follows. Section II introduces

the largest apex angle and the two particular chords. The important
theorems on the viewing geometry are derived. Section III sets up
the geometric equations to find the 3-D positions of endpoints of
the two chords and their middle points. The closed-form solutions to
the pose parameters of the circle are then given. Section IV presents
the experimental results of the application of the method to the real
images. Section V is the conclusion.

II. THE GEOMETRIC MODEL FOR OBJECT POSE DETERMINATION

The general perspective projection of a circle (i.e., a circular
object) is an ellipse. However, the general perspective projection
becomes circular if the camera optical axis is rotated such that it

Fig. 1. Viewing geometry of a circular object.

is perpendicular to the supporting plane of the circular object. When
the camera lens center incidentally lies on the supporting plane of
the circular object, the perspective projection degenerates to a line
segment. A viewing cone is depicted in Fig. 1. Here the apex of
the viewing cone is the camera lens centerG, and the perspective
projection of the circular object is denoted byE. It will be shown
that there exists an apex angle of the viewing cone which is the
largest, called thelargest apex angle(LAA). Let the chord of
the ellipseE subtending the angle LAA be chordpq and let its
corresponding chord on the circular object be chordPQ. Next, denote
the supporting plane containing the apexG and chordpq (or PQ)
as planePLAA. The unit vector along the bisector of the angle LAA
can be found to be~w � (�!uGp +

�!uGq)=j
�!uGp +

�!uGqj, where�!uGp

and�!uGq are the unit vector of the vectors
�!
Gp and

�!
Gq, respectively.

The unit vector denoting the orientation of planePLAA is given by
~v � (�!uGp �

�!uGq)=j
�!uGp �

�!uGqj. Furthermore, the plane which is
perpendicular to the planePLAA and passes through the bisector of
the angle LAA is denoted byP?

LAA. It can be readily shown that the
normal vector of the planeP?

LAA is given by~u = ~w � ~v. Assume
that planeP?

LAA intersects the ellipseE and the circular object on
chordsbc andBC, respectively. Also, let the bisector of the angle
LAA intersect the image plane at pointm and the circular object at
point M . Now, imagine that the camera optical axis is rotated such
that the new optical axis, theZ 0-axis, is in the direction of~w defined
above. Also let the newx0- and y0-axes be so arranged that they
are respectively in the directions of~u and~v. Then, the perspective
projection of the circular object on the image plane specified by
Z 0 = f (f is the effective focal length) is a new ellipse, calledE0.
(Actually we do not need to physically construct the ellipseE0; it is
a conceptual ellipse). Notice that the viewing cone associated with
the new ellipseE0 is the same as before, since the camera lens center
and the circle remain the same. Assume the new intersection points

between optical rays
��!
GpP ;

��!
GqQ;

��!
GbB;

��!
GcC;

���!
GmM , and ellipse

E0 are denoted by pointsp0; q0; b0; c0, andm0, respectively (refer to
Fig. 3). We shall show the conditions for existence and uniqueness
of the angle LAA and the geometric properties of the new ellipseE0.
These results will be used in the object pose determination.

In the following it is assumed that the distance between the
apex of the viewing cone and the closest circular object point is

1042–296X/99$10.00 1999 IEEE
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Fig. 2. Apex angle subtended by a chord of the circular object and the
relevant geometric entities.

Fig. 3. Principal axes of ellipseE0.

larger than the object radius. This assumption holds in the practical
applications. Furthermore, in Theorem 1 the viewing cone is assumed
to be an elliptical cone, not a circular cone. That is, the camera
lens is not right above the circular object center. The circular
cone will be shown as a special case. We shall also refer to the
family of all chords of the circular object which have an identical
lengthL as a set denoted byfChords(L)g and the family of the
apex angles subtended by the chords infChords(L)g as the set
fApex-Angles-Opposite-To-Chords(L)g. In Fig. 2, a perpendicular
line, GH is constructed from the cone apexG to the circular object
plane, where pointH is the intersection point on the object plane.
The middle points of the chords in the setfChords(2l)g form a
concentric circle centered at the circular object centerO. The line
HO generally intersects the concentric circle at two points, denoted
by M andS. Let the chord tangent to the concentric circle at point
M be denoted by chordPQ. Then, PQ is perpendicular to line
HO and pointM is the middle point ofPQ. In addition,PQ is
perpendicular to the line connecting pointsG andM . Furthermore,
point M is closest to both pointsH andG among all the middle
points of chords in the setfChords(2l)g andM is unique, if the
viewing cone is a general elliptical cone.

Theorem 1 In a general elliptical viewing cone a chord in
the set fChords(2l)g subtends the largest apex angle in the
set fApex-Angles-Opposite-To-Chords(2l)g, if and only if the
following conditions hold:

1) the chord is perpendicular to the line connecting the chord
middle point and the cone apex;

2) the chord middle point has the shortest distance to the cone apex
among all middle points of chords in the setfChords(2l)g.

Proof: (a) To show the “if” part:
Assume a chordPQ satisfies conditions 1) and 2). If the chord

PQ does not subtend the largest apex angle, then there must exist
another chord, denoted as chordKL, which subtends the largest apex
angle 6 KGL. Denote the middle points of chordsKL andPQ as

pointsN andM , respectively. Since pointM is the unique point
which has the shortest distance to the cone apexG among all the
middle points, sojGM j < jGN j. To compare the magnitudes of
angles6 KGL and 6 PGQ, we overlap the supporting plane of the
angle 6 PGQ with that of the angle6 KGL such that pointsM and
N coincide. Since lineMG < NG, the two lines no longer meet
at pointG, after we overlap the other two endpointsM andN . We
redenoteMG by MG1 andNG by NG2. The coordinates of the
above points can be assigned asM = N = (0; 0); G1 = (0; e);
G2 = (0; e0); P = (l; 0); Q = (�l; 0); K = (l cos �; l sin �), and
L = (�l cos �;�l sin �), where� is the angle betweenKL andPQ
and l > 0; e0 > e > 0. Then

cos(6 PG1Q) = (�l2 + e2)=(l2 + e2); and

cos(6 KG1L) = (�l2 + e2)= (l2 + e2)2 � 4le sin2 �:

Here, e is the distance from the apexG (i.e., G1) to the circular
object pointM . By assumption,e0 > e > R � l, socos(6 KG2L) >
cos(6 KG1L) � cos(6 PG1Q). Thus 6 KG2L < 6 PG1Q. This is
contradictory to the assumption that6 KGL is the largest apex angle.
Therefore,6 PGQ must be the largest apex angle.

(b) To show the “only if” part:
Assume the chordIJ subtends the largest apex angle. If the chord

IJ does not satisfy conditions 1) or 2), then we shall show there is
a contrasiction.

Case (i): If condition 1) is not satisfied by the chordIJ , then
there exists a chordPQ which satisfies condition 1). Using the same
reasoning as in part (a) except thatKL is replaced byIJ, we can
show that the apex angle subtended by chordIJ is smaller than that
subtended by chordPQ. This is a contradiction. Therefore, condition
1) must be satisfied.

Case (ii): If condition 2) is not satisfied by chordIJ , then there
exists a chordPQ whose middle point has the shortest distance
to the cone apexG among all middle points of chords in the set
fChords(2l)g. Again, it can be shown that the apex angle subtended
by chord IJ is smaller than that subtended by chordPQ. This
is a contradiction. Therefore, condition 2) must be satisfied. This
completes the proof.

Theorem 2 If the viewing cone is a right circular cone, the largest
apex angle (LAA) is not unique and can be subtended by any diameter
of the circular object. Otherwise, the angle LAA is unique and is not
subtended by any diameter of the circular object.

Proof: (a) If the viewing cone is a right circular cone, then the
apex angles subtended by all diameters are equally large and they
are larger than that subtended by any nondiameter chord. Therefore,
the angle LAA is not unique and can be subtended by any diameter
of the circular object.

(b) If the viewing cone is not a right circular cone, namely,
it is a general elliptical cone. According to Theorem 1, if the
chord PQ subtends the largest apex angle among the chords of a
certain length, then the lineMG connecting the middle pointM of
PQ and the apexG is perpendicular toPQ. In the 3-D object-
centered coordinate system, as shown in Fig. 2, we can assume
O = (0; 0; 0); M = (0;�vM ; 0); P = ( R2 � v2

M
;�vM ; 0);

Q = (� R2 � v2
M
;�vM ; 0), andG = (0;�d; h), whered � 0;

vM � 0, andh > 0. Then
�!
GP = ( R2 � v2

M
;�vM + d;�h) and

�!
GQ = (� R2 � v2

M
;�vM + d;�h). The apex angle subtended

by the chordPQ can be determined fromcos(6 PGQ) =
�!
GP �

�!
GQ=(j

�!
GP jj

�!
GQj) = (2v2M � 2dvM + d2 + h2 � R2)=(�2dvM +

d2 + h2 + R2). For the givenR; d, andh, the value ofvM which
maximizes the apex angle6 PGQ is given by@ cos(6 PGQ)=@vM =
0.
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Here d 6= 0, because if d = 0, the viewing cone is
a right circular cone. ThusvM = (d2 + h2 + R2)=2d �
((d2 + h2 +R2)=(2d))2�R2. Since(d2 + h2 + R2)=2d � R

and0 � vM � R, there is only one solution ofvM , i.e.,

vM = vM = (d2+h2+R2)=2d� ((d2 + h2 +R2)=(2d))2�R3:

BecausevM 6= 0; PQ is not a diameter of the circular object.
Theorem 3 Let the optical axis of the camera be realigned with

the bisector of the angle LAA, then the intersection line between the
ellipseE0 and the planeP?

LAA is a principal axis ofE0.
Proof: The planeP?

LAA passes through the circle center of the
circular object,O. Therefore, the planeP?

LAA cuts the circular object
into two symmetrical halves. And the two symmetric halves of the
circular object are evenly projected onto the new image plane with
line GM being the camera optical axis. Therefore, the intersection
line between the ellipseE0 and the planeP?

LAA is a principal axis of
E0 by definition.

Theorem 4 The intersection line between the ellipseE0 and the
planePLAA is the second principal axis of ellipseE0.

Proof: The intersection line between the ellipseE0 and the plane
PLAA, denoted by the linep0q0, is the projection of the chordPQ of
the circular object that subtends the angle LAA.

Case (1): If the viewing cone is a right cone, by Theorem 2, the
chordPQ subtending the largest apex angle is a circle diameter. The
ellipse E0 becomes circular and the perspective projection ofPQ
is a diameter of the circular ellipseE0. Therefore, it is a principal
axis of E0.

Case (2): If the viewing cone is not a right cone, the chordPQ
subtending the angle LAA is not a diameter of the circular object by
Theorem 2. We shall show below that the projection of the chordPQ;
p0q0, is the longest chord ofE0 perpendicular to the first principal axis
b0c0 of E0 stated in Theorem 3. That is,p0q0 is the second principal
axis of E0.

First of all, planesPLAA andP?
LAA are perpendicular to each other.

Since their intersection line which is the bisector of the angle LAA is
the optical axis for the elliptical imageE0. The projected line of any
line on planePLAA includingPQ is perpendicular to the projected
line of any line on planeP?

LAA including BC. That is, the chord
p0q0 is perpendicular to the first principal axisb0c0 of the elliptical
imageE0.

Next, let linesPT andQT be two tangent lines to the circular
object at pointsP andQ, where pointT is the intersection point
of these two tangent lines, as shown in Fig. 2. The projection of the
tangent linePT on the elliptical imageE0 is a tangent line ofE0 at
point p0, denoted by linel1 (refer to Fig. 3). Similarly, the projection
of the tangent lineQT onE0 is another tangent line ofE0 at pointq0,
denoted byl2. To show the chordp0q0 has the longest length among
all the chords perpendicular to the principal axisb0c0 is equivalent to
showing that linesl1 andl2 are parallel. As in the proof of Theorem
2, on the 2-D circular object’s supporting plane, pointO is denoted
as the origin(0; 0), and the middle pointM of the chordPQ has
the coordinates(0;�vM), where

vM = vM = (d2+h2+R2)=2d� ((d2 + h2 +R2)=(2d))2�R2:

Also, the coordinates of pointP are ( R2 � v2
M
;�vM). Let

the coordinates of pointT be (0;�t). Since
�!
PO �

�!
PT = 0,

so ( R2 � v2
M
)2 + vM(vM � t) = 0. It yields t = R2=vM .

Now, in the 3-D object-centered space,O = (0; 0; 0); M =
(0;�vM ; 0); G = (0;�d; h); P = ( R2 � v2

M
;�vM ; 0);

Q = (� R2 � v2
M
;�vM ; 0), andT = (0;�t; 0). So

GM �GT = d2 � (vM +R2=vM)d+R2 + h2:

After substituting the value ofvM into the equation,
��!
GM �

�!
GT = 0.

Therefore, the lineGT is parallel to the image plane. Next, to show
that the tangent linesl1 and l2 are parallel: assume linesl1 and l2
intersect, then their intersection point must lie on the common line
of planesPGT andQGT which is the lineGT . However, the line
GT is parallel to the image plane on which linesl1 and l2 lie, so
it is contradictory to the assumption that linesl1 and l2 intersect on
line GT . Thus, linesl1 and l2 must be parallel. This completes the
proof of the theorem.

III. CIRCLE POSE ESTIMATION BASED ON SPATIAL

RELATIONS BETWEEN 2-D AND 3-D FEATURE POINTS

Based on Theorem 4, it is easy to find that the chordp0q0

subtending the largest apex angle is the major axis of the new
elliptical imageE0. On the other hand, the chordb0c0 is the minor
axis of E0 (see Fig. 3). Thus, in the camera coordinate system
the 2-D feature points of the two principal axes of ellipseE0

are b0 = (0; vb ; f); c
0 = (0;�vc ; f); p

0 = (up ; 0; f), and
q0 = (�uq ; 0; f), where vb = vc = f tan(6 b0Gc0=2) and
up = uq = f tan(6 p0Gq0=2). Based on the geometric properties
of the viewing cone, the 3-D feature points on the circle can be
specified asB = �b0 = (0; �vb ; �f); C = �c0 = (0;��vc ; �f);
P = 
p0 = (
up ; 0; 
f); Q = 
q0 = (�
uq ; 0; 
f), andM =
(P +Q)=2 = (0; 0; 
f). Also,O = (B+C)=2 = (0; vb (���)=2;
(� + �)f=2), andG = (0; 0; 0).

To find the coordinates of the above 3-D feature points, we need
three equations for the three unknowns�; �, and
 which are given
by (a) jOBj = jOCj = R; (b) jOP j = jOQj = R; (c) and
jGBj=jGCj = jBM j=jCM j whereR is the given radius.

The first two equations are obtained from the properties of the
circle and the third equation is stated in the following theorem.

Theorem 5 The lengths ofGB; GC; BM , andCM are related by

jGBj=jGCj = jBM j=jCM j:

Proof: Consider the triangle4BGC. LineGM (orGm0) is the
bisector of 6 BGC (or 6 b0Gc0). Obviously, the distance from point
M to line GB is equal to that from pointM to line GC. Denote
this distance ash1. Also denote the distance from pointG to line
BC ash2. Then,Area(�BGM) = jGBjh1=2 = jBM jh2=2, and
Area(�CGM) = jGCjh1=2 = jCM jh2=2. Thus jGBj=jGCj =
jBM j=jCM j.

We can rewrite (a)–(c), in terms of�; �, and
, as(�+ �)2v2b +
(���)2f2 = 4R2; 4
2u2p +(���)2v2b +(2
����)2f2 = 4R2,
and
 = 2��=(�+�). By eliminating
 and after some rearranging,

we obtain�+� = �2R (u2
p
+ f2)=(v2

b
+ f2)=up and��� =

�2R (u2
p
� f2)=(v2

b
+ f2)=up . Since� + � > 0, the negative

value of�+� is discarded. From these equations, there are two final
solutions for�; �, and 
:

�1

= R u2
p
+ f2 v2

b
+ f2 + u2

p
� f2 v2

b
+ f2 up ;

�1

= R u2
p
+ f2 v2

b
+ f2 � u2

p
� f2 v2

b
+ f2 up ;


1 = 2�1�=(�1 + �) = R u2
p
+ f2 v2

b
+ f2 up :

And

�2 = �1; �2 = �1; 
2 = 
1:
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(a) (b) (c)

Fig. 4. (a)–(c) Three different images of a CD. The contour of the CD found in each image is marked in white color.

TABLE I
THE COMPARISON OF THEPOSE PARAMETERS OBTAINED BY THREE DIFFERENT METHODS FOR A CD

After we obtain the 3-D feature points on the circle, we can readily
compute the 3-D circle pose parameters as follows. First, the two
solutions to the circle centerO are given by

O1 = 0;
Rvb
up

u2
p
� v2

b

v2
b
+ f2

;
Rf

up

u2
p
+ f2

v2
b
+ f2

= (OX ; OY ; OZ) and O2 = (OX ;�OY ; OZ)

Next, the two solutions to the circle orientation are given by

�!n1 =
PQ�BC

jPQ�BCj
=

0; u2
p
� v2

b
f;� u2

p
+ f2vb

u2
p
� v2

b
f2 + u2

p
+ f2 v2

b

= (nX ; nY ; nZ) and
�!n2 = (nX ;�nY ; nZ):

It is trivial to show that when the viewing cone is a right cone,
up = vb = f tan(LAA=2) = fR=jGOj and�1 = �2 = �1 =
�2 = 
1 = 
2 = R=up = jGOj=f . Therefore, there is only one
solution to the circle pose problem. On the other hand, when the
viewing cone is degenerated as a line segment.vb = 0; 0 < up <

R; O1 = O2 = (0; 0; Rf 1 + (up =f)2)=up;
�!n1 = (0; 1; 0), and

�!n2 = (0;�1; 0). Therefore, there are two solutions, one with the
surface facing up and the other one with the surface facing down.

IV. EXPERIMENTAL RESULTS

The experimental setup contains an ELMO SE320 CCD camera
and a 512� 480 frame grabber with a 8-bit resolution. The size of
pixels is 0.01 mm. The camera aspect ratio is1:212 : 1; the effective
focal length is 31.6 mm. The object is kept at a distance of about 1

m in the experiments. We shall compare three different methods for
the circle pose determination:

1) our method (a geometric method);
2) Kanatani and Liu’s method (an algebraic method);
3) Kabuka and Arenas’ method (an approximation method).

Three input images of a CD are shown which correspond to a general
view in Fig. 4(a), an elongated view in Fig. 4(b), and a view with an
outlier (due to object touching) in Fig. 4(c). We obtain the contour
map data for each image using a method based on the edge/border
coincidence information described in [8]. In order to select the desired
elliptical contour, the pre-specified length intervals of the two ellipse
principal axes are used to examine the contour shape. The selected
contours, which are marked in white color, are superimposed onto
the original images. Due to the page limit, we cannot go through the
details; one may refer to [9] for the details. After the contours are
selected, the ellipse fitting program [6] was used to find the ellipse
from the selected contour for the Kanatani and Liu’s method. Our
pose determination method and the other two exiting methods are
applied to the elliptical contours extracted from each image. The
experimental results of the three pose parameter estimation methods
are listed in Table I. The position and surface orientation differences
are calculated relative to our results. In the case of a general view, the
estimation results obtained by our method and the Kanatani and Liu’s
method are roughly the same. This is so because both methods yielded
the exact solutions. However, the Kabuka and Arenas’ method yields
a larger estimation error. This is due to the approximations made in
the method. In the case of an elongated ellipse, the experimental
result shows some differences among the methods. The error of
the Kanatani and Liu’s method is caused by the inaccuracy in the
ellipse fitting. This confirms the finding in [7]; namely, an ellipse
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fitting method generally has the effects of over- or under-estimated
eccentricity of the fitted ellipse. Meanwhile, the Kabuka and Arenas’
method, which are based on the lengths of the major and minor axes,
yields the less accurate results again. In the case of a view with
an outlier, the outlier causes the error in the ellipse fitting in the
Kanatani and Liu’s method and hampers their estimation accuracy.
Nevertheless, our method still yields the same good result, since the
outlier part is not used in our computing the 2-D and 3-D feature
points.

We also test the sensitivity of our method against the noise due
to the data acquisition and image processing error. Thex and y
coordinates of feature points are added with a Gaussian noise with
zero mean and a standard deviation of 1, 2, or 3 pixels to simulate
the effect of the noise on our method. Each perturbation simulation
is repeated for 1000 times. For the given three Gaussian noise
distributions the standard deviations of the circle center location and
the surface orientation are 6.29, 12.91, and 18.63 mm and 1.63, 3.10,
and 4.61 degrees, respectively. Therefore, the estimation method is
fairly robust.

V. CONCLUSION

We describe a circle pose determination method which is directly
based on two particular chords of the circular object. The corre-
sponding 2-D feature chords can be defined through the use of two
particular planes related to the 3-D viewing cone constructed from
the image of the circular object. One plane is the supporting plane
PLAA of the largest apex angle of the viewing cone, and the other is
the planeP?LAA which is perpendicular to planePLAA on the bisector
of the largest apex angle. Based on the geometric properties of the
2-D and 3-D feature points of the circular object, we can derive the
closed-form solution to the circle pose problem. The generality of
the proposed method is also shown for all three types of viewing
conditions. Experimental results on the real data illustrate a better
performance of the method.
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A Technique for Analyzing Constrained
Rigid-Body Systems, and its Application

to the Constraint Force Algorithm

Roy Featherstone and Amir Fijany

Abstract—The constraint force algorithm, as originally described by
Fijany et al., calculates the forward dynamics of a system comprisingN
rigid bodies connected together in an unbranched chain with joints from
a restricted class of joint types. It was designed for parallel calculation
of the dynamics, and achievesO(log N ) time complexity on O(N )
processors. This paper presents a new formulation of the Constraint Force
Algorithm that corrects a major limitation in the original, and sheds
new light on the relationship between it and other dynamics algorithms.
The new version is applicable to systems with any type of joint, floating
bases, and short branches off the main chain. It is obtained using a new
technique for analysing constrained rigid-body systems by means of a
change of basis in a dual system of vector spaces. This new technique is
also described.

Index Terms—Constrained dynamics, dual vector space, robot dynam-
ics algorithm.

I. INTRODUCTION

THE constraint force algorithm (CFA) was the first algorithm to
calculate the forward dynamics of anN -body robot manipulator

in O(logN) time on a parallel computer withO(N) processors.
The original version, as described in [1], was applicable to a system
comprising a fixed base andN rigid bodies, connected together in
an unbranched chain by joints from a restricted class of joint types.
This was subsequently extended to floating bases in [2].

This paper presents a new formulation of the CFA that corrects a
major limitation in the original formulation, and sheds new light on
the relationship between the CFA and other dynamics algorithms. It
also presents an improved method for dealing with floating bases that
is easier and more efficient than the method described in [2]; and it
extends the CFA to branched kinematic trees consisting of a single
main chain and any number of short side-branches. Floating bases
are implemented by means of a 6-DoF joint, and short branches are
implemented using articulated-body techniques.

The original formulation, as described in [1], includes an incorrect
usage of orthogonal complements. Specifically, the inner product that
is used to define orthogonality is noninvariant and dimensionally
inconsistent. See [3] for a full explanation of the problem. In [1], the
problem is finessed by observing that if the algorithm is restricted
to certain types of joint then it is possible to formulate the affected
(6) and (7) in such a way that the coefficients of the dimensionally-
inconsistent terms are zero. The new formulation removes the source
of the problem by avoiding orthogonal complements altogether. The
immediate result is to remove all restrictions on joint type.
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