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Abstract—A novel vision-based method for the circle pose determi-
nation is addressed. This method is based on two particular projected
— . chords of a circle image. The first one is the projection of a circle chord
Aﬁ+le+1Ak+1 which subtends the largest apex angle of the viewing cone for the circle
image and the second one is the projection of a circle diameter whose
backprojection plane bisects the above largest apex angle. This method
is conceptually simple, since the circle center is the center point of the

In this article, we have presented a unified coordinate-invariagitmeter chord and the circle orientation is given by the cross product of
formulation of the dynamics of multibody open chain manipulatorgese two (directed) chords. We present theorems on the geometry of both
based on standard concepts from geometry and mechanics. Ongw%fllewmg cone and a reprojected circle image which are essential to the

th or b fits of tric f lation is that it .depose determination. We then give a pose determination method which is
€ major benents ol our geometric formulation IS that 1t provi plicable under all viewing conditions. Experimental results illustrate

a single unified framework to express ideas originally introducefle good performance of the method, when compared with other existing

by Silver, Featherstone and Rodrigue al. in a clean, concise, methods.

and Co.ordlnate.-lnvarlant manner. We then showed that the rgsultlngndex Terms—Circular feature, elliptical image, largest apex angle, pose
dynamic equations can be expressed recursively for applications determination, principal axes, viewing cone.
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I. INTRODUCTION G

The circular feature is a popular feature of industrial or man- n
made products. Therefore, estimating the three-dimensional (3-D) Plane P,
location and orientation of a circle with a known radius from its single
perspective image is of fundamental importance. The major and minor b
axes of the ellipse are generally not the projections of any diameter of ‘- w’
the circular object. In addition, the ellipse center is not the projection "ﬂ
of the circle center, so the explicit geometric relations between two- 7
dimensional (2-D) image feature points and the 3-D object pose ’ \)‘// /
parameters are not readily available. Thus, man-made marking feature Plane P iV
such as the circle center [1] or a diameter [2] was utilized in order to 4
set up the equations needed in solving the object pose problem. On

Image

LA4A4

the other hand, there are approximation methods [2]-[3] that make ul’ /™
simplifying assumptions to convert a complex problem to a simple B ; C
one. For instance, an orthographic projection is used to replace the w
perspective projection, or the optical axis of the camera is assumed to /0
pass through the center of the circular object. Recently, SafaeetRad | 4

al. [4] and Kanatankt al. [5] proposed exact methods for the circle_.

pose estimation without using any marking feature or simplifying'd- 1- Viewing geometry of a circular object.

assumptions. These two methods are basically the same in terms
of their problem formulations using the matrix form. In these twds perpendicular to the supporting plane of the circular object. When
methods no explicit geometric relations between 2-D image featuh® camera lens center incidentally lies on the supporting plane of
points and the 3-D object pose parameters were employed. So, tH&secircular object, the perspective projection degenerates to a line
methods are more or less an algebraic method which has no intuitdggment. A viewing cone is depicted in Fig. 1. Here the apex of
geometric interpretation. Besides, these methods break down witie@ viewing cone is the camera lens centgrand the perspective
the viewing cone becomes degenerate, because no ellipse carpriggection of the circular object is denoted B It will be shown
fitted to the line-shaped image. that there exists an apex angle of the viewing cone which is the

We shall present a novel vision-based method for the circle pogégest, called thdargest apex angle(LAA). Let the chord of
determination. The circle pose parameters (i.e., circle center and ciftle ellipse E' subtending the angle LAA be chorgl and let its
orientation) are obtained directly through the determination of the gorresponding chord on the circular object be chBrgl. Next, denote
D positions of two particular chords of the circle from the circléhe supporting plane containing the apéxand chordpg (or PQ)
image. To begin with, it is observed that a fixed viewing cone &S planelLsa. The unit vector along the bisector of the angle LAA
formed jointly by the camera lens cent6rand the projected circle can be found to bei = (uc, + uaq)/|ucy + uaq|, Whereuc,
contour in the image plane. One chord (or its projected chord) dfid iz, are the unit vector of the vectofsp and Gyg, respectively.
defined to be the one which subtends the largest apex angle atth@ unit vector denoting the orientation of plaffess is given by
apexG of the viewing cone. The other chord (or its projected chord) = (a7, x ua,)/|ua, x @wa,|. Furthermore, the plane which is
is defined so that its backprojected plane contains the bisector of figpendicular to the planB. s, and passes through the bisector of
largest apex angle. We present theorems on the viewing geomeHy angle LAA is denoted byi's » . It can be readily shown that the
which are essential to the pose determination. Finally, we givepgrmal vector of the pland, , is given by@ = @ x #. Assume
pose determination procedure which yields the closed form and ex@gdt planePt,, , intersects the ellips& and the circular object on
solution(s). The method is applicable under all viewing conditionghordsie and BC, respectively. Also, let the bisector of the angle
including LAA intersect the image plane at point and the circular object at

1) right viewing cone; point M. Now, imagine that the camera optical axis is rotated such

2) elliptical viewing cone;
3) degenerate viewing cone.
And, it has a clear geometric interpretation.

that the new optical axis, th&’-axis, is in the direction ofil defined
above. Also let the new'- and y'-axes be so arranged that they
are respectively in the directions @f and #. Then, the perspective

The rest of this paper is organized as follows. Section Il introduc@sojection of the circular object on the image plane specified by
the largest apex angle and the two particular chords. The importént= f (f is the effective focal length) is a new ellipse, call&d.
theorems on the viewing geometry are derived. Section IIl sets (fctually we do not need to physically construct the elligse it is
the geometric equations to find the 3-D positions of endpoints afconceptual ellipse). Notice that the viewing cone associated with
the two chords and their middle points. The closed-form solutions #ae new ellipseE’ is the same as before, since the camera lens center
the pose parameters of the circle are then given. Section IV presetitd the circle remain the same. Assume the new intersection points
the experimental results of the application of the method to the rdmtween optical ray&pP, GqQ., GbB, GeC, GmM, and ellipse
images. Section V is the conclusion. E' are denoted by pointg, ¢, b, ¢/, andm’, respectively (refer to

Fig. 3). We shall show the conditions for existence and uniqueness

Il. THE GEOMETRIC MODEL FOR OBJECT POSE DETERMINATION of the angle LAA and the geometric properties of the new ellipse

The general perspective projection of a circle (i.e., a circuld@tese results will be used in the object pose determination.
object) is an ellipse. However, the general perspective projectionin the following it is assumed that the distance between the
becomes circular if the camera optical axis is rotated such thatappex of the viewing cone and the closest circular object point is

1042-296X/99%$10.0@ 1999 IEEE
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G=(0, -d, h) points N and M, respectively. Since poin}/ is the unique point
which has the shortest distance to the cone afgeamong all the
middle points, soGM| < |GN|. To compare the magnitudes of
angles/ KGL and / PG(Q, we overlap the supporting plane of the

h angle / PGQ with that of the angle K'GL such that points\/ and

A N coincide. Since lineM G < NG, the two lines no longer meet

K A at point(, after we overlap the other two endpointf and N. We

ul redenoteM G by MG, and NG by NG». The coordinates of the

7S/ L f above points can be assigned @ = N = (0,0), G1 = (0,¢),

H=(0,-d, 0) G2 = (0,¢"), P = (1,0), Q = (-1,0), K = (Icosf,lsin6), and
L = (—lcos#,—Isinf), wheref is the angle betweeR L and PQ)
and! > 0, ¢’ > e > 0. Then

Fig. 2. Apex angle subtended by a chord of the circular object and the i 5 5 Y .

relevant geometric entities. cos(LPG1Q) = (-1 +*)/(I* +¢*), and

cos(/KGiL) = (=" + 62)/\/(12 +e2)2 — 4lesin® 6.

0=(0, 0, 0) (0]
7=(0, -, 0)

y'axis
4 Here, e is the distance from the apeX (i.e., G1) to the circular
B object point)M . By assumptiong’ > ¢ > R > 1, socos(/KG2L) >

cos(LKGL) > cos(LPG1Q). Thus/KG2L < /PG.Q. This is
x' axis contradictory to the assumption thafi G L is the largest apex angle.

— g CDP —» Therefore,/ PGQ must be the largest apex angle.

(b) To show the “only if* part:

Assume the chord.J subtends the largest apex angle. If the chord
T.J does not satisfy conditions 1) or 2), then we shall show there is
a contrasiction.

I Case (i): If condition 1) is not satisfied by the chofd, then
there exists a chor@®(@ which satisfies condition 1). Using the same
reasoning as in part (a) except thistL is replaced byl.J, we can
show that the apex angle subtended by chibfds smaller than that
larger than the object radius. This assumption holds in the practigglbtended by chorfQ. This is a contradiction. Therefore, condition
applications. Furthermore, in Theorem 1 the viewing cone is assumBdmust be satisfied.

to be an elliptical cone, not a circular cone. That is, the cameracase (ii): If condition 2) is not satisfied by chofd/, then there
lens is not right above the circular object center. The circul@ixists a chordPQ whose middle point has the shortest distance
cone will be shown as a special case. We shall also refer to #iethe cone apexi among all middle points of chords in the set
family of all chords of the circular object which have an identica]Chords(27)}. Again, it can be shown that the apex angle subtended
length L as a set denoted bfChords(L)} and the family of the by chord 77 is smaller than that subtended by chaRl). This
apex angles subtended by the chords{@hords(L)} as the set is a contradiction. Therefore, condition 2) must be satisfied. This
{Apex-Angles-Opposite-To-Chordd. ) }. In Fig. 2, a perpendicular completes the proof. O

line, GH is constructed from the cone apékto the circular object  Theorem 2 If the viewing cone is a right circular cone, the largest
plane, where poin# is the intersection point on the object planeapex angle (LAA) is not unique and can be subtended by any diameter
The middle points of the chords in the sgChords(2/)} form a of the circular object. Otherwise, the angle LAA is unique and is not
@centric circle centered at the circular object ceiiferThe line subtended by any diameter of the circular object.

HO generally intersects the concentric circle at two points, denoted Proof: (a) If the viewing cone is a right circular cone, then the
by M andS. Let the chord tangent to the concentric circle at poinipex angles subtended by all diameters are equally large and they
M be denoted by chord’Q). Then, PQ) is perpendicular to line are larger than that subtended by any nondiameter chord. Therefore,
HO and pointM is the middle point ofP@). In addition, PQ) is the angle LAA is not unique and can be subtended by any diameter
perpendicular to the line connecting poirfisand 3. Furthermore, of the circular object.

point M is closest to both pointdl and G among all the middle (b) If the viewing cone is not a right circular cone, namely,
points of chords in the sefChords(27)} and M is unique, if the it is a general elliptical cone. According to Theorem 1, if the
viewing cone is a general elliptical cone. chord PQ subtends the largest apex angle among the chords of a

Theorem 1In a general elliptical viewing cone a chord incertain length, then the lin®7G connecting the middle point/ of
the set {Chords(2!)} subtends the largest apex angle in th@( and the apexG is perpendicular taPQ. In the 3-D object-
set {Apex-Angles-Opposite-To-Chord®l)}, if and only if the centered coordinate system, as shown in Fig. 2, we can assume

Fig. 3. Principal axes of ellips&’.

following conditions hold: O = (0,0,0), M = (0,—vpn,0), P = (/R?> —v3;,—vum,0),
1) the chord is perpendicular to the line connecting the chord = (—/R? — v%,,—vn,0), andG = (0, —d, k), whered > 0,
middle point and the cone apex; v >0, andh > 0. ThenGP = (/RZ — v2,, —vu + d, —h) and

2) the chord middle point has the shortest distance to the cone apex -
among all middle points of chords in the sg€hords(27)}. GQ = (—\/Zi— vi;, —vm + d,—h). The apex angle sutﬁnded
Proof: (a) To show the “if’ part: %theﬂord_PiQ can be determined fromos(/PGQ) = GP -
Assume a chordPQ satisfies conditions 1) and 2). If the chordGQ/(|GP||GQ|) = (2vi; — 2dva + d° + 1* — R?)/(=2dvas +
PQ does not subtend the largest apex angle, then there must exfst- 2* + R?). For the givenR, d, and’, the value ofvy, which
another chord, denoted as chdrd., which subtends the largest apexmaximizes the apex anglePGQ is given byd cos(£PGQ) /vy =
angle /KGL. Denote the middle points of chord§ L and PQ as 0.
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Here d # 0, because ifd = 0, the viewing cone is After substituting the value o, into the equationza - GT' = 0.
a right circular cone. Thusuy = (d° + h* + R*)/2d £ Therefore, the ling7T is parallel to the image plane. Next, to show
V(&2 +h? + R?)/(2d))? — R2. Since(d” + h* + R*)/2d > R that the tangent linet andi» are parallel: assume linds and /-
and0 < vy < R, there is only one solution ofys, i.e., intersect, then their intersection point must lie on the common line

of planesPGT and QGT which is the lineGT. However, the line
GT is parallel to the image plane on which linesand!; lie, so

it is contradictory to the assumption that lingsand!, intersect on
Nne GT'. Thus, linesl; andl, must be parallel. This completes the
I‘?éOOf of the theorem. |

op = onr = (d> 40+ R?)/2d—\/((d% + h? + R?)/(2d))? — R®.

Becausevys # 0, PQ is not a diameter of the circular object. O

Theorem 3 Let the optical axis of the camera be realigned wit
the bisector of the angle LAA, then the intersection line between t
ellipse E' and the plane®, , is a principal axis ofE’.

Proof: The planeP{, » passes through the circle center of the lll. CIRCLE POSE ESTIMATION BASED ON SPATIAL

circular object). Therefore, the plan&, , cuts the circular object RELATIONS BETWEEN 2-D AND 3-D FEATURE POINTS
into two symmetrical halves. And the two symmetric halves of the gased on Theorem 4, it is easy to find that the chpfg
circular object are evenly projected onto the new image plane Wilyhiending the largest apex angle is the major axis of the new
line G'M being the camera optical axis. Therefore, the intersectifiiptical image E'. On the other hand, the choide is the minor
line between the ellips&’ and the pland™’, 4 is a principal axis of axis of E' (see Fig. 3). Thus, in the camera coordinate system

E' by definition. S _ LU the 2-D feature points of the two principal axes of ellipf#
Theorem 4 The intersection line between the ellipd2 and the g0y — (0.vp. f). @ = (0.—vo. ). p' = (up.0,f), and
plane P24 is the second principal axis of ellipsg’. "= (—uy,0,f), where vy = v = ftan(/b'Gc'/2) and

q
Proof: The intersection line between the ellipgéand the plane wy = uy = ftan(Zp'Gq'/2). Based on the geometric properties

Praa, denoted by the ling’q’, is the projection of the chorff@ of  of the viewing cone, the 3-D feature points on the circle can be
the circular object that subtends the angle LAA. specified asB = ab’ = (0,avy, af), C = fc’ = (0, =B, Bf),

Case (1): If the viewing cone is a right cone, by Theorem 2, thg _ ' = (yup 0,7f), Q :/ﬁ,,q/ _ (—{u ,.()m,f), and M =
chord () subtending the largest apex angle is a circle diameter. TPP—i—Q)/Z _ (0,p0;qr/f'/). Also, O = (B+C)/2q; (’0,1)b,<a —3)/2,
ellipse E' becomes circular and the perspective projectionP¢j (a + B)f/2), andG = (0,0,0).
is a diameter of the circular ellipse’. Therefore, it is a principal 1o find the coordinates of the above 3-D feature points, we need
axis of E'. o ) ) ___ three equations for the three unknownsg3, and~ which are given

Case (2): If the viewing cone is not a right cone, the ch&@ by (a) [0B| = [OC| = R; (b) [OP| = |0Q| = R; (c) and
subtending the angle LAA is not a diameter of the circular object By /|G| = B3| /[CM| whereR is the given radius.
Theorem 2. We shall show below that the projection of the clid@d — The first two equations are obtained from the properties of the
p'q’, is the longest chord o perpendicular to the first principal axis gjrcle and the third equation is stated in the following theorem.

b'c’ of E' stated in Theorem 3. That is]q’ is the second principal  Thegrem 5 The lengths ofi B, GC, B, andC T are related by
axis of E'. ’

First of all, planes’.aa and Py 4 are perpendicular to each other. |GB|/|GC| = |BM|/|CM]|.
Since their intersection line which is the bisector of the angle LAA is
the optical axis for the elliptical imagE’. The projected line of any Proof: Consider the trianglé& BGC'. Line GM (or Gm’) is the
line on planeP.sa including PQ is perpendicular to the projectedbisector ofZBGC' (or £b'Gc'). Obviously, the distance from point
line of any line on planePis, » including BC. That is, the chord M to line GB is equal to that from poinfi/ to line GC. Denote
p’q’ is perpendicular to the first principal axié:’ of the elliptical this distance a%;. Also denote the distance from poifit to line

image E'. BC ashs. Then,Area(ABGM) = |GB|h/2 = |BM|h2/2, and
Next, let linesPT and QT be two tangent lines to the circular Area(ACGM) = |GClhi/2 = |CM|h2/2. Thus|GB|/|GC| =
object at pointsP” and @, where pointT' is the intersection point |BM|/|C'M]. O

of these two tangent lines, as shown in Fig. 2. The projection of theWe can rewrite (a)—(c), in terms of, 3, and~, as(« + B8)2vi +
tangent linePT on the elliptical imageF’ is a tangent line o8’ at  (a—3)*f* = 4R, 47%uy, + (B —a)’vi +(2y—a—B)* f* = 4R?,
pointp’, denoted by liné; (refer to Fig. 3). Similarly, the projection and~y = 2a8/(a+ 3). By eliminatingy and after some rearranging,
of the tangent lin€)T on E' is another tangent line & at pointg’,  we obtaina 4 3 = i?R\/(ui, + £2)/(v2 + £2)/uy anda — 3 =
denoted by:. To show the chorg’q’ has the longest length among 2 > 2 5 ) , )
all the chords perpendicular to the principal aig is equivalent to i2]"%\/('”19’ — f2)/(vy + f?)/upr. Sincea + 3 > 0, the negative
showing that lines; and!, are parallel. As in the proof of Theorem Value ofa+ 3 is discarded. From these equations, there are two final
2, on the 2-D circular object’s supporting plane, paints denoted solutions fora, 3, and

as the origin(0,0), and the middle poinfi/ of the chordPQ has
the coordinateg0, —var), where

w1
= R(\J(u2 + 12) /(03 + £2) + 3 (2 = £2) (03, + 12)) [,
B

Also, the coordinates of poinf? are (\/R? —j,f, ;MJ) Let — R(\/(”Z' + fZ)/(’“fr + fz) _ \/(u;, — f2)/(v§, + fz))/up,,
the coordinates of poinfl" be (0,—t). Since PO - PT = 0,
so (/R? — 1)?”)2 4+ vm (v —t) = 0. It yields ¢t = RZ/I'M.

op = vur = (d> 404+ R%)/2d—\/((d% + h? + R?)/(2d))? — R?.

Now, in the 3-D object-centered spac®, = (0,0,0), M = =218/ (ay + B3) = R(\/(u'ﬁ,+f2)/(vi,—|—f2)/u‘p/.
(0, —vn,0), G = (0,—d,h), P = (v/R? — Uij,—v‘m/jg()),
) = R?> —v3,, —vum,0), andT = (0,—¢,0). So And

GM-GT =d° — (v + R*Jou)d + R* + 1%, =81, fa=a1, =

(&)
Il
2
-
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Fig. 4. (a)-(c) Three different images of a CD. The contour of the CD found in each image is marked in white color.

TABLE |
THE COMPARISON OF THE POSE PARAMETERS OBTAINED BY THREE DIFFERENT METHODS FOR ACD
Image] Circle center position of }?osmon Surface normal of Orientation
Method . Difference ) R
type the circle (mm) the circle Difference (deg)
(a) | (-14.86,31.54, 902.38) (-0.00, -0.97, -0.24)
Our method (b) | (-3.58,41.95,93547) - (-0.01, -1.00, -0.02) -
(c) | (-14.86,31.54,902.38) (-0.01,-0.97,-0.24)
(a) | (-14.91, 31.66, 902.46) 0.15 (-0.01, -0.97, -0.25) 0.43
K and L’s method | (b) § (-3.53,41.16, 916.66) 18.83 (-0.01, -1.00, -0.02) 0.15
(c) § (-18.61,28.88, 919.65) 17.87 (0.02, -0.95,-0.31) 4.15
(a) | (-14.44,31.57,872.42) 29.96 (-0.01, -0.96, -0.28) 245
K and A’s method} (b) | (-3.42,39.97, 886.66) 48.85 (-0.01, -1.00, -0.07) 2.68
(c) | (-18.05,29.05, 888.96) 14.02 (0.01, -0.94, -0.34) 5.88

After we obtain the 3-D feature points on the circle, we can readily in the experiments. We shall compare three different methods for
compute the 3-D circle pose parameters as follows. First, the twlee circle pose determination:

solutions to the circle centad are given by 1) our method (a geometric method);
5 3 3 2 2) Kanatani and Liu’s method (an algebraic method);
o, = |o, Ruy \/ug ~ 1'2’7 Rf \/"12’ + f2 3) Kabuka and Arenas’ method (an approximation method).
C I A Three input images of a CD are shown which correspond to a general
=(0x,0y,0z) and O; = (0x,-0y,0z) view in Fig. 4(a), an elongated view in Fig. 4(b), and a view with an
outlier (due to object touching) in Fig. 4(c). We obtain the contour
Next, the two solutions to the circle orientation are given by map data for each image using a method based on the edge/border
- (0 \/“2, 0 f— 2, + fz'vb’) coincidence information described in [8]. In order to select the desired
= ﬂ x % _ vV v P elliptical contour, the pre-specified length intervals of the two ellipse
|PQ x BC| \/(u;, - ) f2+ (u;, + £2)v, principal axes are used to examine the contour shape. The selected

contours, which are marked in white color, are superimposed onto
the original images. Due to the page limit, we cannot go through the
s = (nx,—ny,nz). details; one may refer to [9] for the details. After the contours are
It is trivial to show that when the viewing cone is a right coneseleCted’ the ellipse fitting program [6] was used t.o’fmd the ellipse
—= g from the selected contour for the Kanatani and Liu’s method. Our
Upr = Vpr = ftan(LAA/?) = fR/|GO| anda; = az = 1 = . . L
_ _ S T T S . pose determination method and the other two exiting methods are
Be = v =7 = R/u, = |GO|/f. Therefore, there is only one lied to the ellintical " wracted f hi Th
solution to the circle pose problem. On the other hand, when tRRP1E ot Ie € IIE[) 'C? tr(]:or:hours extracte rcim eat(_: Tnage. thz
viewing cone is degenerated as a line segmasit= 0, 0 < u,s < expenmental results ot the three pose parameter estimation methods
, . — — are listed in Table I. The position and surface orientation differences
R, Oy = Oy = (0,0, Rf /14 (u,/f)?)/up, ni = (0,1,0), and . .
= — (0.—1.0). Theref h luti ith hare calculated relative to our results. In the case of a general view, the
2 f_ ( f’ T ): e(:eﬂ?re’t; ere are 'ml(:hso utl;)ns, fon_e W'(tj stimation results obtained by our method and the Kanatani and Liu’'s
surface facing up and the other one wi € surface facing down o hod are roughly the same. This is so because both methods yielded
the exact solutions. However, the Kabuka and Arenas’ method yields
IV. EXPERIMENTAL RESULTS a larger estimation error. This is due to the approximations made in
The experimental setup contains an ELMO SE320 CCD camdil®e method. In the case of an elongated ellipse, the experimental
and a 512x 480 frame grabber with a 8-bit resolution. The size ofesult shows some differences among the methods. The error of
pixels is 0.01 mm. The camera aspect ratid.z12: 1; the effective the Kanatani and Liu’s method is caused by the inaccuracy in the
focal length is 31.6 mm. The object is kept at a distance of aboutellipse fitting. This confirms the finding in [7]; namely, an ellipse

= (nx,ny,nz) and
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fitting method generally has the effects of over- or under-estimated A Technique for Analyzing Constrained
eccentricity of the fitted ellipse. Meanwhile, the Kabuka and Arenas’ Rigid-Body Systems, and its Application
method, which are based on the lengths of the major and minor axes, to the Constraint Force Algorithm
yields the less accurate results again. In the case of a view with

an outlier, the outlier causes the error in the ellipse fitting in the Roy Featherstone and Amir Fijany

Kanatani and Liu's method and hampers their estimation accuracy.

Nevertheless, our method still yields the same good result, since the

outlier part is not used in our computing the 2-D and 3-D feature Abstract—The constraint force algorithm, as originally described by

points. Fijany et al, calculates the forward dynamics of a system comprisingV
We also test the sensitivity of our method against the noise dligid bodies connected together in an unbranched chain with joints from

to the data acquisition and image processing error. Fhand y

a restricted class of joint types. It was designed for parallel calculation
of the dynamics, and achievesO(log N) time complexity on O(N)

coordinates of feature points are .added with a Gaulssian noise WitBcessors. This paper presents a new formulation of the Constraint Force
zero mean and a standard deviation of 1, 2, or 3 pixels to simulatgorithm that corrects a major limitation in the original, and sheds

the effect of the noise on our method. Each perturbation simulatiggw light on the relationship between it and other dynamics algorithms.

is repeated for 1000 times. For the given three Gaussian nojs
distributions the standard deviations of the circle center location

7@@ new version is applicable to systems with any type of joint, floating
es, and short branches off the main chain. It is obtained using a new
hnique for analysing constrained rigid-body systems by means of a

the surface orientation are 6.29, 12.91, and 18.63 mm and 1.63, 3d{finge of basis in a dual system of vector spaces. This new technique is
and 4.61 degrees, respectively. Therefore, the estimation methoalé® described.

fairly robust.

We describe a circle pose determination method which is directly I
based on two particular chords of the circular object. The corr
sponding 2-D feature chords can be defined through the use of t
particular planes related to the 3-D viewing cone constructed fro
the image of the circular object. One plane is the supporting pla
Pr.aa of the largest apex angle of the viewing cone, and the other
the planel’,, » which is perpendicular to plang, . » on the bisector
of the largest apex angle. Based on the geometric properties of
2-D and 3-D feature points of the circular object, we can derive th
closed-form solution to the circle pose problem. The generality o
the proposed method is also shown for all three types of viewi
conditions. Experimental results on the real data illustrate a be
performance of the method.

(1]
(2]

(3]

(4]

(5]

(6]
(7]
(8]
(9]

Index Terms—Constrained dynamics, dual vector space, robot dynam-
ics algorithm.

V. CONCLUSION

INTRODUCTION

HE constraint force algorithm (CFA) was the first algorithm to
calculate the forward dynamics of an-body robot manipulator
in, O(log N) time on a parallel computer witli?(N) processors.
'{ e original version, as described in [1], was applicable to a system
comprising a fixed base an¥ rigid bodies, connected together in
unbranched chain by joints from a restricted class of joint types.
?’j—%s was subsequently extended to floating bases in [2].
¢ This paper presents a new formulation of the CFA that corrects a
ajor limitation in the original formulation, and sheds new light on
&EP relationship between the CFA and other dynamics algorithms. It
also presents an improved method for dealing with floating bases that
is easier and more efficient than the method described in [2]; and it
REEFERENCES extends the CFA to branched kinematic trees consisting of a single
main chain and any number of short side-branches. Floating bases
M. H. Han and S. Rhee, “Camera calibration for three-dimensionalre implemented by means of a 6-DoF joint, and short branches are
measurement Patern REC?”iI-VOLHZF?' no- 2, PP 155-164, 1992 implemented using articulated-body techniques.
'r\g‘b;‘ u};i?lgus;r?dnard battérﬁ§225+ran2§Ié%rg)o\;.ellﬁgr:”lo;tlgl. ; Art',;,)’ " The original formulation, as described _in [1], inclu_des an incorrect
pp. 505-516, Dec. 1987. usage of orthogonal complements. Specifically, the inner product that
B. Hussain and M. R. Kabuka, “Real-time system for accurate threés used to define orthogonality is noninvariant and dimensionally
gf%efzsfnfﬂ l;?Sitir)HG dEtegﬂiingiOE SncligggfificaﬁO”EEE Trans. inconsistent. See [3] for a full explanation of the problem. In [1], the
P Teobtaney €S and B Genhabi, ThveP1ODII 15 inessed by obsening that If e algori s reirted
dimension of circular features for machine visiotEEE Trans. Robot. © certain types of joint then it is possible to formulate the affected
Automat, vol. 8,pp. 624-640, Oct. 1992. (6) and (7) in such a way that the coefficients of the dimensionally-
K. Kanatani and W. Liu, “3-D interpretation of conics and othogonality,'inconsistent terms are zero. The new formulation removes the source
Comput., Vis., Graph., Image Process: Image Understaral. 58, no.  of the problem by avoiding orthogonal complements altogether. The

3, pp. 286-301, 1993. . - . o o
R. M. Haralick and L. G. ShapircComputer and Robort Vision New immediate result is to remove all restrictions on joint type.
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