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Investigation of Torsion Springs 
by Considering the Friction and 
the End Effect 
In this study, the nonlinearity in moment and angular displacement of torsion springs is 
studied analytically and experimentally. It is shown that the inclined angles at both ends 
have direct effects on the nonlinearity of a constant-pitch torsion spring. Also, an 
algorithm for determining the friction between the spring coils in close-wound torsion 
springs is proposed. From the comparison to experimental data, it is found that the spring 
rates are different at forward and backward strokes. The dynamic equations for the 
close-wound torsion spring is also derived by considering the friction between the spring 
coils, and two different natural frequencies are found in simulation. 

Introduction 
Helical torsion springs are very common components in me­

chanical systems. In the early years, most of the studies of torsion 
springs focused on stresses, deflections, curvature changes, dia­
metrical contractions and coupling effects. 

Gohner's [1,2] discussed the ideal case of torsion springs for the 
stresses and the displacements with zero pitch. Berry [3] measured 
the angular deflections of many torsion springs and discovered that 
the deflections were considerably larger than those predicted from 
the linear formation. Ancker and Goodier [4, 5] derived equations 
to obtain deformations and stresses by considering both pitch and 
curvature. They also proposed the diametrical contraction of the 
torsion spring. However, those deflection formulation are still 
linear. 

Manos [6] designed a torsion spring with variable spring rate. 
Carlson [7] observed that the compression spring with ends 
squared and ground often tiped several degrees to one side when 
compressed. For this reason, the compression springs will buckle 
much quicker under compression. Recently, Rouch and Bruner [8] 
analysed helical springs under loading which caused large defor­
mations to have nonlinear moment-deflection relation by using the 
helical finite element method. Wu et al. [9] discussed the nonlin­
earity of compression helical springs caused by the coil close and 
the friction due to the damper. 

The torsion spring often exhibits a nonlinear moment-deflection 
relationship even under small deformations. Also, for close-wound 
torsion springs, i.e. the spring coils are in contact with each other, 
the friction between spring coils directly affects the performance 
of torsion springs. Therefore, a nonlinear hysteresis loop in the 
moment-deflection curve of a torsion spring becomes very typical. 

However, the algorithm of determining the friction and nonlin­
earity of moment-deflection curve in torsion springs were not 
discussed in previous literature. In this study, we propose a theo­
retical formulation to obtain the moment-deflection curve in the 
helical torsion springs by considering the friction force due to 
spring coils contact and inclined angles at both ends with experi­
mental verification. Two types of hehcal torsion springs are dis­
cussed, a helical close-wound torsion spring with friction, and a 
torsion spring with constant pitch and inclined ends. 
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Moment-Deflection Relation witli Inclined Ends 
The deflection for a torsion spring from elementary theory is 

ML 
(1) 

where <i> denotes the total angular displacement of the torsion 
spring, M represents the applied torque, E denotes the elastic 
module of the spring material, L represents the total helical length, 
and / is the moment of inertia of the spring wire. 

Berry [3] measured the angular deflections of many torsion 
springs and discovered that the deflections were considerably 
larger than those predicted from Eq. (1) which has been developed 
without taking into account the curvature of the wire. Berry found 
that the angular deflection should be increased slightly. Then, 
Goodier and Ancker [5] proposed the relationship between the 
moment and the angular displacement of the torsion spring as 

ML 

for Poisson ratio v = 0.3, 

(2) 

i/(= 1 - 0 . 0 1 8 ( 2 ^ 1 -I- 1.3 tan^ p-^• (3) 

where d is the wire diameter, and p is pitch angle. Also, R is the 
mean coil radius in loading and is given by: 

R^Ro + 
64MRI 

rrd^E 

-1 + 0.307111 x ^ l + tan^p + . (4) 

where R^ denotes the mean coil radius without loading. 
When there is an inclined angle Br, in iheY ~ Z plane at both ends 

of a torsion spring, the applied torsion moment M^ along Z-axis can 
be divided into a bending moment Mi and a torsion moment M2 as 
shown in Fig. 1. The bending moment M, which is perpendicular to 
the central axis of the spring coil can be expressed as 

M, = Mf. sin do (5) 

Since the bending moment M, is in the Y' — Z' plane, the 
angular deflection 6, caused by the moment Mi will be in the X' 
— Z' plane, as shown in Fig. 2. The moment M| can be separated 
into a torsion component M, cos (p tangent to the spring wire axis 
and a bending component M, sin 9 perpendicular to the spring 
wire axis. It is assumed that the helix angle is small so that the 
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Fig. 1 The inclfned angle 0o at the ends of the torsion spring 

moment vector lies in a plane perpendicular to the center axis of 
the spring coil. For a small element of length Rd(p, the bending 
component produces an angular deflection 

MiR sin ipd<p 

and the torsion component produces a rotation 

M| R cos cpdcp 

(6) 

(7) 

The central axis of the spring coil deflects in a plane perpen­
dicular to the resultant moment vector M,. Other deflection tends 
to cancel out. Taking the components of the deflection contribu­
tions in that plane and integrating over the entire spring, we obtain 

= M,R 

= M/t sin doR 

sin ID cos ip\ 
+ ~^]d<p EI 

EI 

GJ, 

sin 4«i r «17-(-j sin 4n7r\ 
+ ~r ) (8) 

G7, 

where / represents the moment of inertia of the wire cross section, 
7,, represents the polar moment of inertia for spring wire cross 
section, n is the number of active coils, and G denotes the shear 
module of the spring material. 

Because of the angular deflection 0, and the inclined angle 9o 
are in the different planes, the resultant bending moment Mg (Fig. 
3) becomes 

Mfl = M« ^sin^ 6| + sin^ QQ 

and the resultant torsion component My is 

Mr= {Ml-MlY"-

= M/e(cos2 e, - sin^ 6 0 ) ' " 

(9) 

(10) 

Then from Eq. (2), the torsion moment MT produces an angular 
displacement <^ as 

<^ ^ (11) 

From Eq. (10) and (11), it can be seen that the relation between 
4> and M„ is nonlinear. 

Friction Force 

Since the angular displacement (f> can not be very large for the 
close-wound torsion spring, the effect caused by the inclined angle 
60 is negligible in that case. However, spring coils are in contact 
with each other for a close-wound torsion spring, therefore, fric­
tion force must be considered. 

In order to formulate the friction force in a close-wound torsion 
spring, we must derive the normal force between the spring coils. 
The vertical displacement Si of a point on the spring helix under 
a torsion moment M-r proposed by Ancker and Goodier [5] is 

S, = 
XlSMjR^n trnipv 

(12) 

where v denotes the Poisson ratio, p is the pitch angle, and spring 
coils are not necessarily in contact. 

When spring coils are in contact, the torsion spring will wind up 
and the number of active coils increases. Because the spring coils 
are still in contact with one another for a close-wound torsion 
spring, a vertical displacement Sj will be formed due to the 
wind-up phenomenon as 

Nomenclature 

d = diameter of the spring wire 
E — elastic module of the spring mate­

rial 

"/ the total frictional force 
G = shear module of the spring mate­

rial 
I = moment of inertia for spring wire 

cross section 
J = polar moment of inertia of the disk 

7, = polar moment of inertia for spring 
wire cross section 

K = tensional spring rate 
k, = torsional spring rate 
L = total helical length 

M = the applied torque 
MB = resultant bending moment 
Mc — constant frictional torque in the 

system 

Mf = 
M, = 
M, = 

MT = 
M, = 
M2 = 

N = 
N, = 

P 
R 

total frictional torque 
applied torque along Z axis 
friction torque due to the testing 
system 
resiiltant torsion moment 
bending moment resulted from MR 
torsion moment resulted from M„ 
total normal force on spring wires 
initial normal force on spring 
wires due to preload 
number of the active coils 
increasing number of the active 
coils 
pitch angle 
mean coil radius in loading 
initial mean coil radius 

60 = inclined angle at spring ends 
61 = deflection angle due to moment 

M, 
4> = angular displacement of the tor­

sion spring 
4>o = initial angular displacement 
i// = correction factor for angular dis­

placement due to pitch angle 
ip = angular position of the spring wire 

S| = vertical displacement resulted from 

Mr 
82 = vertical displacement resulted from 

wind-up 
ju, = dynamic friction coefficient 
V = poisson ratio 

a)„i = the frequency in the load increas­
ing stroke of the torsion spring 

ftj„2 = the frequency in the load decreas­
ing stroke of the torsion spring 
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^ ^ ^ 

Fig. 2 The angular deflection 0i caused by the moment Mi 

82 = ripX d = 
(/) X d 

2Tr 
(13) 

where rip denotes the increasing of the number of the active coils 
when loaded, d is the diameter of the spring wire, and cj) is the 
angular deflection of the spring in radian. 

The free-body diagram of the coil segment of a close-wound 
torsion spring is shown in Fig. 4, where N, is the initial normal 
force acting on the spring wires due to the preloading, and K is the 
tensional spring rate of the close-wound torsion spring, p is the 
pitch angle, and Fi denotes the force supplied by the input torsion 
moment Mr. Then the total normal force acting on the spring wire 
becomes 

N = Fisinp + Ni + K{8i + Sj) cos p 

Mr Gd'* 

R '^ 64R'{n + rip) 

llSMrR'^n tmpv 

Ed* 
+ ripX d] cosp (14) 

WpsinSi 

Fig. 3 Moment analysis diagram for M„ MB, and Mr 
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The total friction force Ff between spring coils then becomes 

Ff= ^lN{n + np-l) (15) 

where ju, is the friction coefficients between spring coils. 
So the total friction torque can be expressed as 

Mf= RX Ffcosp + M, (16) 

where M, is a constant friction torque due to the testing system. 
Then from Eq. (11) and (16), the moment-deflection relation 

including the coulomb friction becomes 

M = Ms + Mf = 
^EI 

' l//L^/(cos Q\- smQl) 

-t-M, sgn(4)) +/? X F/Cosp sgn((/)) (17) 

where M denotes the total input moment required to have angular 
deflection 4>. The last term of friction moment exists only for the 
close-wound torsion spring, where the coils are in contact with 
each other. 

Static Experimental Verification 
A schematic diagram of the test facility is shown in Fig. 5. The 

test setup consists of the input shaft with the torsion spring, the 
fixed shaft, the power screw, and the rack and pinion. 

In the experimental setup, the torsion spring is placed between 
the input shaft and fixed shaft, and the input shaft is driven by the 

Fig. 4 The free body diagram of the middle region of the closed-wound 
torsion spring 
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Fixed Shaft 

Rack 

Angular ̂ t^ntiometer 

Fig. 5 The torsion spring experimentai setup 

pinion. The rack will drive the pinion when the handle is rotated. 
The load cell is used to measure the force acting on the rack, and 
the angular potentiometer mounted on the end of the input shaft 
can measure the angular displacement of the input shaft. Then the 
moment-deflection curve for the torsion spring can be obtained. 

4.1 Constant-Pitch Torsion Spring. Here a constant-pitch 
torsion spring is tested to verify Eq. (17). Since the spring coils are 
not in contact with each other, the last term in Eq. (17) is set to 
zero. The parameters of the torsion spring are calibrated and listed 
in Table 1. 

The experimental and simulated results for the constant-pitch 
torsion spring are shown in Fig. 6. The torsion spring is rotated 
forward first, then released slowly back to the initial position. 

Table 1 Parameters for the constant-pitch torsion spring 

Symbol Description Value 

n 
E 
V 

R« 
d 

e. 

Number of the active coil 
Elastic module of spring material 
Poisson ratio 
Initial mean coil radius 
Spring wire diameter 
Inclined angle at spring ends 

9.8 
180 Gpa 

0.3 
5.595 mm 
1.38 mm 
6.8 deg 

Since there are inclined angles at both ends, the effect of an 
angular deflection 9, due to the bending moment must be consid­
ered. Fig. 6 reveals an evident nonlinearity at large rotation angles. 
The gap between forward and backward curves comes from the 
friction between spring wires and supporting shaft, and this fric-
tional torque is almost constant. The maximum error between 
simulation and experimental results is about 2.083 Kg-mm. If the 
end effect is ignored, shown in Fig. 7, a large error (about 19.8177 
Kg-mm) can be found between the linear model and experimental 
data. It indicates that the torsion spring with inclined ends can 
provide a larger stiffness, together with friction, then the maximum 
stress in the spring wire will be elevated, especially at large 
rotation angles, which may reduce the life of the spring. 

4.2 Close-Wound Torsion Spring. Parameters of a close-
wound torsion spring are calibrated and listed in Table 2. Since the 
coils are in contact here, the friction force becomes very important. 

To determine the friction coefficient between the spring coils. 
Two identical torsion springs are placed on a horizontal plate by 
placing one spring above another at rest. Then the plate is tilted 
slowly until the top spring slides down at the tilt angle a. Then the 
friction coefficient ti between the spring wires in contact is tan a. 
With this rough approximation, here the friction coefficients is 
found to be 0.28 without lubricating. 

The moment-deflection data are also taken on the static torsion 

120 

gl—i 
50 100 150 

Deflection (degrees) 
200 

Fig. 6 Tlie ioad-deflection curve of torsion spring of constant pitch witfi 
inciined ends 
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Fig. 7 The linearity of ioad-detlectlon curve of torsion spring with con­
stant pitch 
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Symbol Description Value 

Table 2 Parameters for the close-wound torsion spring where k, represents the torsion stiffness of the torsion spring, J is 
the moment of inertia of the disk, and M^ + c<l> represent the 
friction torque. Also the initial position 4> = 4>o and initial velocity 
(̂ 0 — 0 are specified. Where M^ is constant, and neglect the 
radial contraction the increase of the number of the active coil 
are neglected, and 

n Number of the active coils 5.6 
E Elastic modules of spring material 180 Qpa 
V Poisson ratio 0.3 
i?o Initial mean coil radius 9.7 mm 
d Spring wire diameter 1.6 mm 
p Pitcii angle 4 deg 
IX Friction coefficient between the spring wires 0.28 

IJiR 
EI sin p Gd* 

RLip 64R^n 

128/^^n tmpv d 
d*L\^ " ' ' 2 ^ 

= constant 

( n - 1 ) 

test station which records the applied moment under the given 
angular displacement. Fig. 8 summarizes the results of Eq. (17) 
and experimental data for the close-wound torsion spring. It is 
found that the friction force due to the spring wires dramatically 
changes the spring torque. Also the gap between upper and lower 
curves increases with the angular deflection, which can be found in 
both simulation and experimental data. The upper curve in simu­
lation is almost identical to the experimental data, however even 
the trend is similar, the maximum difference between simulation 
and calibrated data at lower curves is about 7 kg-mm. It is found 
that the spring rates are different at forward and backward strokes. 

Dynamic Equation for A Close-Wound Torsion Spring 
In a close-wound torsion spring, the direction of the friction 

torque depends on the angular velocity of spring coils. Therefore, 
for the model shown in Fig. 9, the equation of motion is equivalent 
to the following two linear equations: 

(/) > 0: 7^) + it,<^ = -M, - ccj) 

<|) < 0 : 7 ^ -f- k,(f> = M, + c<i> 

(18) 

(19) 

for the constant-pitch torsion spring, c = 0. 
Then the general solution becomes 

<i) S: 0: ^ = A+ cos a)„i? + B+ sin a)„i; - fl+ 

(/) s 0: (j) = A- cos (i)„2t + B_ sin ct)„2f + o_ 

where 

k, + c % • 

and fit- = 

J 

k, — c' 

(20) 

(21) 

It is found that the natural frequency may vary due to the 
frictional torque. For example, if the initial condition ^o = 0.349, 
Afc = 10 kg-mm, and J = 0.01 mm* are specified, the solution 
of first 2 cycles for the close-wound torsion spring in Table 2 
becomes 

4" — (<^o ~ <^-) c o s (i>„2t + a-

</> = -{^0 - a-)<xi„2 s in to„2/ 

(22) 

(23) 
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Fig. 8 The moment-deflection curve of the ciose-wound torsion spring 

Close-wound Torsion Spring 

Disk 

Fig. 9 Vibration mode of the torsion spring 

632 / Vol. 121, DECEMBER 1999 

for 0 < t s — 

4) = (—<̂ o + 2a_ -I- 0+) cos 
(^n2 

w„,f - a + (24) 

(/> = (—</)o + 2a_ -(- fl+)ftj„i sin 
Wn2 

w„if (25) 
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Fig. 10 Vibration of the close-wound torsion spring 
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Fig. 11 The angular velocity versus time 

17 TT TT 
for — < r < — + — 

w„2 w„2 a)„i 

the friction torque is dependent on the deflection angle, the fre­
quency co„i = 350.2825 (rad/sec) in the load increasing stroke is 
larger than the frequency a)„2 = 305.2907 (rad/sec) in the load 
decreasing stroke. 

Conclusions 
In the past, the moment-deflection relation was mostly assumed 

to be linear and the algorithm of determining the friction force for 
close-wound torsion spring was not discussed. Here a moment-
deflection relationship is proposed and verified statically. 

For the constant-pitch torsion spring without coil contact, it is 
found that only if the angular deflection is small, the linear theory 
is still acceptable. If the angular deflection is large, the effects of 
the inclined ends must be considered. It is found that the current 
theory can predict a larger stiffness by considering end effects, 
which is verified by experimental results, where the linear theory 
can not provide. For the close-wound torsion spring, the friction 
between the spring coils is critical to the performance of the 
torsion spring which has different spring rates between forward 
and backward stokes. Thus the natural frequency in the load 
increasing stroke is different from the natural frequency in the load 
decreasing stroke. 
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