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Gradient weighted filters are locally adaptive weighted mean filters. In this paper, a
general formulation of gradient weighted filters with some characteristic parameters
was derived first from existing gradient weighted filters. Then we propose some
modifications by varying these parameters. We modify gradient inverse weighted
filters, characterize filters into first and second order filters, and propose5 filters.
Moreover, an imposed criterion for second order filters to preserve fine details was
introduced to promote the existing gradient weighted filters. Finally, a criterion to
combine first and second order filters was proposed to remove noise with mixed
types. Throughout this paper, rational analysis and experimental results demonstrate
the efficiency of the proposed methods.C© 1999 Academic Press
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1. INTRODUCTION

Smoothing filter design in image processing basically depends on the types of noise.
Rank order based filters such as median filters are good at removing additive impulsive
noise and linear filters are good at suppressing Gaussian noise. However, most of them
suffer from the trade-off between removing noise and preserving details. Moreover, as the
types and the amount of noise are mixed diversely, noise removal continues to provide a
challenge to smoothing filter designers.

Weighted mean filters are commonly used spatial filters based directly on the local in-
tensity information. They replace the intensity of the pixel to be processed by the weighted
average of the intensities of its neighbors. One major drawback of these filters is that they
will blur the sharpness of edges. Adaptive weighted filters are then proposed to avoid
this drawback; most of them are based on local gradient information. Examples of such
gradient-based filters include gradient inverse weighted filters [8, 9], sigma filters [1], adap-
tive Gaussian weighted filters [10], and rational filters [3–7].
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Gradient inverse weighted filters use the inverses of the absolute gradients formed by
differences between the pixel to be processed and its neighbors as the weighting coefficients.
Sigma filters replace the intensity of the pixel to be processed by the average intensity of
only those neighbors such that the corresponding gradients are within a fixed sigma range. In
adaptive Gaussian weighted filters, the weighting coefficients are determined by a function
of gradients and variances. Then in rational filters, the weighting coefficients are reciprocal
to the squares of gradients formed by the two extremes of directional masks. A common idea
of these filters is that weighting coefficients are chosen to be reciprocal to the corresponding
gradients.

Given a 3× 3 mask centered at a pixelp. The local gradients associated withp are usually
produced by taking the intensity differences ofp from its eight neighbors, respectively.
However, in rational filters [6], taking the intensity differences of two extremes of the four
directional masks produces the employed gradients. To distinguish them, we will call the
formerfirst order local gradientsand the lattersecond order local gradients. Previous works
[1, 8, 10] have shown that filters equipped with first order local gradients are suitable for
suppressing uniform or Gaussian noise while those equipped with second order gradients are
suitable for removing impulsive noise. However, from our observations, filters equipped with
first local gradients preserve lines better than those equipped with second order gradients.
Therefore, it is our purpose in this paper to propose an approach to combine all good features
of the gradient weighted filters.

In Section 2, a general formulation of gradient weighted filters is proposed. According to
this formulation, we characterize such filters by three families of parameters. In Section 3, we
then modify gradient weighted filters by varying these parameters. In Section 4, we propose
a criterion on filters equipped with second order local gradients in order for them to preserve
fine details. In the same section, we also propose a combination of filters equipped with
first and second order local gradients to remove noise of mixed types. Finally, experimental
results are exhibited and discussed in Section 5 and some conclusions are presented in
Section 6.

2. FORMULATION OF GRADIENT WEIGHTED FILTERS

Let f : Z× Z→{0, 1, . . . ,255} be a gray-level image. In a 3× 3 window centered at
p, the local gradients are defined as follows. First, we label the eight neighbors ofp in an
order as shown below.

p1 p2 p3

p8 p p4

p7 p6 p5

Then, the first order local gradientsgp(k), k= 1, 2, . . . ,8, are defined to be

gp(k)= f (pk)− f (p) (1)

and the second order local gradientsg′p(k), k= 1, 2, . . . ,8, are defined to be

g′p(k)= gp(k)− gp((k+ 4) mod 8)= f (pk)− f (p(k+4) mod 8). (2)
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For a sigma filter [1], the output value atp is given by

fSF(p)= 1

1+∑8
k=1wp(k)

f (p)+
∑8

k=1wp(k) f (pk)

1+∑8
k=1wp(k)

, (3)

where

wp(k) =
{

1, if |gp(k)| ≤1,
0, if |gp(k)|>1,

for 1= 2σ andσ is a priori assumed or estimated Gaussian noise standard deviation. For
a gradient inverse weighted filter [8], the output value atp is given by

fGIWF(p) = 1

2
f (p)+ 1

2

∑8
k=1wp(k) f (pk)∑8

k=1wp(k)
, (4)

where

wp(k) =
{ 1
|gp(k)| , if gp(k) 6= 0,

2, if gp(k) = 0.

For an adaptive Gaussian weighted filter [10], the output value is given by

fAGWF(p) =

∑8

k=1wp(k) f (pk)∑8
k=1wp(k)

, if σ 2
p 6= 0,

f (p), if σ 2
p = 0,

(5)

whereσ 2
p= 1

8

∑8
k=1 f 2(pk)− 1

64(
∑8

k=1 f (pk))2 andwp(k)= exp(−(g2
p(k))/σ 2

p). For a ratio-
nal filter [6], the output is given by

fRF(p) =
(

1−
8∑

k=1

wp(k)

)
f (p)+

8∑
k=1

wp(k) f (pk), (6)

wherewp(k) = 1/α(g′p(k))2+ Ak for some positive constantsα and

Ak =


1
ω

k = 2, 4, 6, 8
andω = 0.16.√

2
ω

k = 1, 3, 5, 7

In summary, we can formulate the output of a gradient weighted filter as

fGWF(p) =
(1− γp) f (p)+ γp

∑8
k=1wp(k) f (pk)∑8

k=1wp(k)
, if

∑8
k=1wp(k) 6= 0,

f (p), if
∑8

k=1wp(k) = 0,
(7)
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for some local constantγp and local weight functionwp. This equation can capture entirely
the charactistics of the above gradient weighted filters but it is not unique. Spann and
Nieminen [10] and Buf and Campbell [13] also formula gradient weighted filters as

fÄ (p) =
∑1

k=−1

∑1
l=−1 h(p+ (k, l )) f (p+ (k, l ))∑1

k=−1

∑1
l=−1 h(p+ (k, l ))

,

whereh(p+ (k, l )) are weighted functions of local gradients. For instance,

γp =
∑8

k=1wp(k)

1+∑8
k=1wp(k)

for sigma filter,γp= 1
2 for gradient inverse weighted filters,γp= 1 for adaptive Gaussian

weighted filers, andγp=
∑8

k=1wp(k) for rational filters. The parameterγp reflects the
specific effect of the center pixelp. The local weight functions are functions of either first
order or second order local gradients. If we writewp(k)= F(gp(k)) orwp(k)= F(g′p(k)),
then such functionsF are decreasing with respect to the magnitude of first order or sec-
ond order local gradients. For instance,F(x)= 1 if |x| ≤1 and 0 if |x|>1 for sigma
filters, F(x)= 1/|x| if x 6= 0 and F(0)= 2 for gradient inverse weighted filters,F(x)=
exp(−x2/σ 2

p) for adaptive Gaussian weighted filters, andF(x)= 1/(αx2 + A) for rational
filters.

Therefore, a gradient weighted filter is characterized by the local constantsγp, the local
weight functionswp, and the global functionF . By varying these parameters, a large variety
of gradient weighted filters can be obtained. In the following section, we will first modify
the gradient inverse weighted filters by varying the local constantsγp. Second, we will
modify existing gradient weighted filters by varying their local weight functions. If they are
originally equipped with first order local gradients, then we will make them be equipped
with second order local gradients. Then, we will propose a subclass of gradient weighted
filters by usingπ functions as the global functions.

3. THE PROPOSED MODIFICATIONS

A. Adaptive Gradient Inverse Weighted Filters

First of all, we will take into account the modification on the characteristic of local
constantγp. The local weights of a 3× 3 window are not fixed; they are adaptive and
reciprocal to the local gradients. For sigma and rational filters [1, 6], theirγp are adaptive
determined by local weighted functions. However, in an adaptive Gaussian weighted filter
[10], its γp is equal to 1 when

∑8
k=1wp(k) 6= 0 and results in neglect of the effect of the

center pixel. In a gradient inverse weighted filter [8], the weight of the center pixelp is
equitable fixed to1

2. If the center pixelp is corrupted by noise, the total effect of the vicinity
of pixel p should be enlarged and the weight of pixelp should be weakened. The term 1−γp

reflects the importance of the center pixel relying on whether it is a noisy point. Therefore,
the gradient inverse weighted filters were modified in such a way that the local constants
γp are proportional to the median magnitude of local gradients. The median magnitude of
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local gradients is given asmp=MED{0, |gp(k)|, 1≤ k≤ 8} to be a noise estimator about
the center pointp. For instance, if the median magnitude is obtained, then the local constant
γp can be chosen to be

γp =


2
(mp

α

)2
if 0≤mp<

α
2 ,

1− 2
(mp

α
− 1

)2
if α

2 ≤mp<α,

1 if α≤mp,

for some constantα. The parameterα can be regarded as a conditional threshold about noise
and depends on the amount of noise. The resulting filters will be calledadaptive gradient
inverse weighted filters(AGIWF). We observe that the constantα should be proportional
to the local variance formed bypk, k= 1, 2, . . .8. Thus, in our experiment, we choose
α= sqrt(18

∑8
k=1 f 2(pk)− 1

64(
∑8

k=1 f (pk))2).

B. Second Order Gradient Weighted Filters

Most aforementioned gradient weighted filters are equipped with first order local gra-
dients. Exceptions are rational filters [4–6]. They are equipped with second order local
gradients and perform more comfortably than the others. Here, we will further investigate
filters such as GIWF and AGWF by equipping them with second order local gradients.
For convenience, gradient weighted filters equipped with second order local gradients will
be calledsecond order gradient weighted filters. That is, gradient inverse weighted filters
equipped with second order local gradients will be called second order gradient inverse
weighted filters (abridged as GIWF2) and adaptive Gaussian weighted filters equipped with
second order local gradients will be referred to as second order adaptive Gaussian weighted
filters (abridged as AGWF2), etc.

C. 5 Filters

Let f (x1), f (x2), f (x3), . . . f (xn−k), . . . f (xn), . . . f (xn+k), . . . f (xm) be a sequence of
a 1-D signal. A generalized 1-D adaptive gradient weighted filter derived from [6] can be
expressed as

f ′(xn) =
(

1−
n+1∑

i=n−1,i 6=0

F(gxi ) f (xn)+
n+1∑

i=n−1,i 6=0

F(gxi ) f (xi )

)
, (8)

wheregxi = f (xi ) − f (xn) are the local gradients andF is the weighted function. In gra-
dient weighted filters, a common characteristic of the global functionsF is that the val-
ues ofF(x) are reciprocal to|x| for noise removing. There are many possible candidates
for such functions such as those mentioned in Section 2. As a pointxn crossed on an
edge with heightH delineated in Fig. 1 whereN is the window size,f (xn−l )=a for
−1≤ l ≤ k − 2; f (xn+r )= b for 2≤ r ≤ N− k+ 1; andb−a= H . The filtered output is
a+ (N− k)

N H for the mean filter. The resultant value amplifies(N− k)
N H result; therefore, sig-

nal points crossed on edges are blurred. By way of responding zero or small weights toxn’s
neighbors with large local gradients, adaptive gradient weighted filters would be effective
for edge preserving. Thus, the advantage of the adaptive gradient weighted filters is that
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FIGURE 1

they are able to smooth a noisy signal whilst maintaining sharp transitions in the signal.
Our purpose is to design a function that is reciprocal to the gradients for removing noise
and preserving edges. In our approach,π functions are chosen to substitute the weighted
function F(x). The reasons for choosingπ functions are that (1) they match our purposes;
(2) they are simple, only second degree with respect tox; (3) the parameterα provides the
adaptability for the filters. In this paper, we propose to use the following one-parameterπ

functions,

π (x) =


1− 2

(
x
α

)2
if |x| ≤α/2

2
(

x
α
− 1

)2
if α/2≤ |x| ≤α

0 if |x| ≥α,

for some constantα.
The resulting gradient weighted filters will be simply called5 filters. More precisely,

the output value of a first order5 filter is given by

f5(p) =
(

1−
8∑

k=1

wp(k)

)
f (p)+

8∑
k=1

wp(k) f (pk), (9)

wherewp(k)= F(gp(k))= 1
8π (gp(k)). Similarly, the output value of a second order5 filter

is given by

f52(p) =
(

1−
8∑

k=1

wp(k)

)
f (p)+

8∑
k=1

wp(k) f (pk), (10)

wherewp= F(g′p(k))= 1
8π (g′p(k)).

Let X : Z× Z→{0, 1, . . . ,255} be a gray-scale image andXgp(k) be a translation ofX
along the direction of local gradientgp(k) within a 3× 3 window. To quantify the distribution
of gp(k) k= 1, 2, . . . ,8 in X, the meansµ(Xgp(k) − X) and the variances Var(Xgp(k) − X)
for k= 1, 2, . . . ,8 can be evaluated. The observations concerningµ(Xgp(k)− X) are close
to zero for allk= 1, 2, . . . ,8. According to the termsµ(Xgp(k)−X) and Var(Xgp(k)−X), we
can roughly estimate the occurrence of local gradientsgp(k). Most of gradientgp(k) occurs
within the range of±2a, wherea= 1

8

∑8
k=1Var(Xgp(k)− X). Thus, we chooseα= 2a in the

definition ofπ function. Thisα provides some information about edge heights of an image
and the amount of corrupted noise.
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FIG. 2. (a) An impulsive noise pattern. (b) A line pattern.

4. DETAIL PRESERVING AND MIXED TYPE NOISE REMOVING

A. Detail Preserving

Consider the situation shown in Fig. 2a, where the center pixel is corrupted by impulsive
noise. At this pixel, the output value of a GIWF is

1

2
× 50+ 1

2

8∑
1

(
1

8
× 150

)
= 100

and the output value of an AGIWF is

(1− 1)× 50+
8∑
1

(
1

8
× 150

)
= 150

when the parameterα is chosen to be less than or equal to 100. For rational filters, the
output value is 150 only whenω= 1

4+ 4
√

2
≈ 0.1036. In rational filters [6], parameterω is

fixed at 0.16. Under such conditions, a bias result yielded. For a second order5 filter, the
output value is 150 as well, but a first order5 filter retains impulsive noise asα≤ 100. Now
consider the other situation, shown in Fig. 2b, where a line passes through the center pixel.
A first order5 filter produces the right output value, 150, but a second order one produces
the wrong output value, 75, at that pixel whenα≤ 100. In other words, a second order5
filter will smear fine details. To preserve fine details, we slightly modify any second order
gradient weighted filter (GWF2) as follows,

if min
1≤ k≤ 4

{|gp(k)+ gp((k+ 4) mod 8)|} ≤β, then outputf (p);

otherwise, outputfGWF2(p) as usual,

whereβ is a threshold of a small integer. For Gaussian and uniform noise, the cases in
Fig. 1 scarcely happen. Empirically, as previous works [1, 8, 10] have shown, first order
local gradients are suitable for Gaussian and uniform noise removals. Therefore, we apply
first order5 filters in cases of Gaussian and uniform noise and apply second order ones in
cases of impulsive noise.

B. Mixed Type Noise Removing

Noise types commonly used for testing noise removals include long tail noise (impulsive)
and short tail noise (Gaussian and uniform). Most smoothing filters do well on either one
of them. In this subsection, we propose a method which combines first and second order5

filters so that the associated filters are nonsensitive to noise distributions. First, we locally
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classify noise types according to the sum6p=
∑8

k=1wp(k) of local weights in a first order
5 filter. We regard pixelp as being corrupted by short tail noise if the sum6p is larger
than a threshold value; otherwise, we regard it as being corrupted by long tail noise. Then
we combine5 filters by the following rule,

If 6p>1, then outputf5(p);

Otherwise, outputf52(p),

where1 is a predefined threshold value.

5. EXPERIMENTS AND DISCUSSIONS

In this section, we will compare the performances of proposed filters with some other
gradient weighted filters. Many quantitative evaluations of the filtering performance have
been shown, such as spatial measurement on natural images (MSE, MAE, NMSE, and
PSNR) and predefined spatial measurement on artificial images (edge preserving criteria

FIG. 3. The merit assessments of AGIWF and GIWF on Lena images damaged by different type noises.
(a) Gaussian noise variance= 15, (b) Gaussian noise variance= 25, (c) impulse noise rate= 15%, (d) impulse
noise rate= 25%, (e) uniform noise variance= 32%, (f) uniform noise variance= 48%.
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FIG. 4. The comparison between AGIWF and GIWF: (a) Gaussian noisy image withσ = 20; (b) Impulse
noisy image with ratio 20%; (c, d) The results of GIWF with loop= 10 for Figs. 4a and 4b: (c) MSE= 66.48,
PSNR= 29.90, andf -statistic= 183931; (d) MSE= 114.19, PSNR= 27.55, andf -statistic= 84465; (e, f ) The
results of AGIWF with loop= 10 for Figs. 4a and 4b: (e) MSE= 38.51, PSNR= 32.27, andf -statistic= 35147;
(f ) MSE= 32.12, PSNR= 33.06, andf -statistic= 286811.

[13] and f -statistic [8]). In our experimental results, MSE, PSNR, andf -statistic are
considered for demonstration. In the following, we first compare adaptive gradient inverse
weighted filters with original ones to demonstrate the efficiency of the first modification
on local constantγp. Two testing images are investigated. The natural Lena image under
consideration is of size 256× 256 and the other artificial image is of size 128× 128 with
eight bits of resolution.

The MSE measures the discrimination between the original images and corresponding
filtered images. Thef -statistic [8] is based on the fact that the more the uniformity inside
each region, the greater the discrimination between regions. Both measurements are the most
commonly used and famous quantitative evaluations on smoothing and edge preserving.



SOME MODIFICATIONS OF GRADIENT WEIGHTED FILTERS 345

FIG. 5. (a, b) The results of rational filter with loop= 3 and 6: (a) MSE= 18.19, PSNR= 35.53, and
f -statistic= 492234; (b) MSE= 29.57, PSNR= 33.42, andf -statistic= 404250; (c–g) The results of5 filter
by first local gradient on Fig. 4a with loop= 3, 4, 5, 6, 10, respectively. (c) MSE= 18.31, PSNR= 35.50, andf -
statistic= 442659; (d) MSE= 11.86, PSNR= 37.39, andf -statistic= 764373; (e) MSE= 10.70, PSNR= 37.84,
and f -statistic= 1020329; (f ) MSE= 11.17, PSNR= 37.65, and f -statistic= 1233819; (g) MSE= 19.65,
PSNR= 35.20, andf -statistic= 1832383.

Figures 3a–3f evaluate the MSE of an AGIWF and the existing four methods under a
diversified noise environment on the Lena image, respectively. The assessments in Fig. 3
show that the AGIWF needs a lower iteration number than the GIWF to achieve optimal
MSE values. Observe that optimal MSE values of the AGIWF are also smaller than the
corresponding values of the GIWF in all experimental cases. We also assess each merit of
sigma filter (SF), AGWF, and RF. The MSE evaluations in Figs. 3c and 3d disclose that
AGWF and SF are the most sensitive to impulsive noise. Over all, RF and AGIWF perform
better than GIWF and AGWF. AGIWF performs better than RF for the case in Figs. 3a,
3c, 3d and RF performs better than AGIWF for the case in Figs. 3b, 3e, 3f. To simplify,
on an artificial image, Figs. 4c–4f show the visual effectiveness, PSNR, and corresponding
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FIG. 6. (a) Gaussian noise (σ = 10); (b) Uniform noise (20%); (c) Impulsive noise (10%); (d), (e), and (f) are
the corresponding smoothing result of their left image.
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TABLE 1

Algorithms Noise Parameters MSE

a. Gaussian noise
α-tr. filter [2] σ = 10 3× 3, cut= 3/9, l = 2 76.92
AGWF [10] 3× 3, l = 2 57.64
GIWF [8] 3× 3, l = 2 50.91
RF [6] ω= 0.16,α= 0.01, l = 2 59.40
5 α= 48, l = 2 35.48

α-tr. filter [2] σ = 20 3× 3, cut= 3/9, l = 2 103.62
AGWF [10] 3× 3, l = 4 145.31
GIWF [8] 3× 3, l = 3 105.62
RF [6] ω= 0.16,α= 0.01, l = 3 99.01
5 α= 72, l = 3 89.46

b. Uniform noise
α-tr. filter [2] 32% 3× 3, cut= 2/9, l = 2 120.75
AGWF [10] 3× 3, l = 6 152.91
GIWF [8] 3× 3, l = 6 152.96
RF [6] ω= 0.16,α= 0.01, l = 3 95.75
5 α= 80, l = 3 75.80

α-tr. filter [2] 48% 3× 3, cut= 2/9, l = 2 164.99
AGWF [10] 3× 3, l = 10 249.40
GIWF [8] 3× 3, l = 10 278.07
RF [6] ω= 0.16,α= 0.01, l = 3 141.79
5 α= 96, l = 3 120.53
5 α= 96, l = 4 115.85

c. Classical gradient weighted filters for impulsive noise
AGWF [10] 10% 3× 3, l = 2 439.60
GIWF [8] 3× 3, l = 6 72.74
RF [6] ω= 0.16,α= 0.01, l = 2 72.54

AGWF [10] 20% 3× 3, l = 3 785.44
GIWF [8] 3× 3, l = 10 163.94
RF [6] ω= 0.16,α= 0.01, l = 3 104.57

d. Second order filters with impulsive condition
AGWF2 10% 3× 3, l = 2,β = 12 53.19
GIWF2 3× 3, l = 6,β = 12 54.17
RF2 ω= 0.16,α= 0.01, l = 2, 49.36

β = 12
5 2 α= 76, l = 2,β = 12 49.0

AGWF2 20% 3× 3, l = 3,β = 12 73.79
GIWF2 3× 3, l = 10,β = 12 78.57
RF2 ω= 0.16,α= 0.01, l = 3, 72.72

β = 12
5 2 α= 100,l = 3,β = 12 73.70

f -statistic. Here, images corrupted by short tail (Gaussian) and long tail (impulse) noise are
considered. Figures 4a and 4b expose the damaged images. The results of original GIWF
are shown in Figs. 4c and 4d, and Figs. 4e and 4f show the results of AGIWF. Obviously,
AGIWF smoothes noise in a uniform region better than GIWF and preserves edges as well
as GIWF.

Second, we take care of the modification about the weighted functions. By comparison
with the rational filter [6], we investigate whether the5 filters equipped with first local
gradient do better than the second gradient in short tail noise such as Gaussian and uniform
noise. We suggest that the parameterα for theπ function is set to be twice as large as the
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standard deviation of local gradient in the corrupted image. Figures 5a and 5b show the
results employed with three and six times the rational filter on Fig. 4a. As the loop number
increases, the rational filter diffuses the smoothing effect on uniform regions but results
in blurred edges. However, the5 filter with first local gradient will not. Figures 5c–5g
exhibit the results of the5 filter with first local gradient for loop numbers 3, 4, 5, 6, and
10, respectively. The difference between Figs. 5c–5f and 5g is only the smoothing effect
on the uniform region. Actually, in our case of Fig. 5a, the rational filter possesses a better
smoothing effect than GIWF [6], but AGIWF performs as well as the rational filter in Fig. 4e.
Among them, the5 filter equipped with first local gradient yields the best result. Images
shown in Figs. 6d–6f are the smoothing results when applying a5 filter to corrupted images
by different kinds of noise in Figs. 6a–6c for natural images.

Then, we compare5 filters with some other gradient weighted filters. Filters under
comparison include GIWF [8], AGWF [10],α-trimmed filters [2], and RF [6]. Note that SF
was excluded due to the similar MSE behavior with RF and bad performance by contrast with
RF. All filters in the current study are iterative and parameterl denotes the loop number in
each experiment. Tables 1a and 1b quantize the optimal performance measures of removing
noise by first order filters with different amounts of Gaussian and uniform noise. The results
exhibit that5 filters are more nonsusceptible to noise than other competitors. Tables 1c
and 1d compare the performances of classical gradient weighted filters with their second

FIG. 7. The testing about threshold1 on mixed noise with artificial image.
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TABLE 2
Mixed Noise (∆ = 3/8)

Algorithms Noise Parameters MSE

α-tr. filter Implusive 10%+ 3× 3, cut= 2/9, l = 2 89.58
RF [6] Uniform 10% ω= 0.16,α= 0.01, l = 3 84.49
5 α= 62, l = 2,β = 12 66.26

α-tr. filter Implusive 10%+ 3× 3, cut= 2/9, l = 2 102.78
RF [6] Uniform 20% ω= 0.16,α= 0.01, l = 3 92.40
5 α= 90, l = 2,β = 12 80.61

order counterparts. Note that in this comparison all considered filters impose a conditional
operator for preserving fine detail withβ = 12.

In summary, from the results shown in Tables 1a–1d, we find that first order filters are
more suitable for removing Gaussian and uniform noise while second order filters are more
suitable for removing impulsive noise. That is because the second order gradients convey
information which will be insensitive to impulsive noise in gray-scale image filtering. Under
mingled conditions, we also apply combined5 filters which utilized the characteristics of
our observation to remove mixed types noise where1 is obtained empirically and set to
3/8. Figures 7a and 7b investigate the MSE criteria with different1 on mixed types noise.
By our experiment, if1 ranges from 3/8 to 5/8, we obtain a lower MSE error and a larger
PSNR andf -statistic. Finally, Table 2 shows our experimental results.

6. CONCLUSIONS

In this paper, we first characterize gradient weighted filters by three families of parameters:
local constants, local weight functions, and a global function. Then we propose some
modified gradient weighted filters by varying these parameters. For instance, a5 filter is a
gradient weighted filter using aπ function as the global function. Moreover, we propose a
criterion for second order filters to preserve fine details and a criterion to combine first and
second order filters in order to remove noise of mixed types. Most of our proposed filters
have very satisfactory performances.

Note thatπ functions are very commonly used membership functions for fuzzy sets
[11, 12]. Therefore, it should be interesting to apply fuzzy theoretical techniques to fine-
tune the parameters for a gradient weighted filter in order to achieve better performances.
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