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Gradient weighted filters are locally adaptive weighted mean filters. In this paper, a
general formulation of gradient weighted filters with some characteristic parameters
was derived first from existing gradient weighted filters. Then we propose some
modifications by varying these parameters. We modify gradient inverse weighted
filters, characterize filters into first and second order filters, and profd#eers.
Moreover, an imposed criterion for second order filters to preserve fine details was
introduced to promote the existing gradient weighted filters. Finally, a criterion to
combine first and second order filters was proposed to remove noise with mixed
types. Throughout this paper, rational analysis and experimental results demonstrate
the efficiency of the proposed methods: 1999 Academic Press

Key Wordsgradient weighted filters; rational filters; image smoothifidilters.

1. INTRODUCTION

Smoothing filter design in image processing basically depends on the types of nc
Rank order based filters such as median filters are good at removing additive impu
noise and linear filters are good at suppressing Gaussian noise. However, most of
suffer from the trade-off between removing noise and preserving details. Moreover, a:
types and the amount of noise are mixed diversely, noise removal continues to provi
challenge to smoothing filter designers.

Weighted mean filters are commonly used spatial filters based directly on the loca
tensity information. They replace the intensity of the pixel to be processed by the weigl
average of the intensities of its neighbors. One major drawback of these filters is that
will blur the sharpness of edges. Adaptive weighted filters are then proposed to a
this drawback; most of them are based on local gradient information. Examples of ¢
gradient-based filters include gradient inverse weighted filters [8, 9], sigma filters [1], ac
tive Gaussian weighted filters [10], and rational filters [3—7].
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Gradient inverse weighted filters use the inverses of the absolute gradients forme
differences between the pixel to be processed and its neighbors as the weighting coeffici
Sigma filters replace the intensity of the pixel to be processed by the average intensi
only those neighbors such that the corresponding gradients are within a fixed sigma ranc
adaptive Gaussian weighted filters, the weighting coefficients are determined by a func
of gradients and variances. Then in rational filters, the weighting coefficients are reciprt
to the squares of gradients formed by the two extremes of directional masks. Acommon
of these filters is that weighting coefficients are chosen to be reciprocal to the correspon
gradients.

Given a 3x 3 mask centered at a pixpl The local gradients associated witlre usually
produced by taking the intensity differences mfrom its eight neighbors, respectively.
However, in rational filters [6], taking the intensity differences of two extremes of the fo
directional masks produces the employed gradients. To distinguish them, we will call
formerfirst order local gradientsind the lattesecond order local gradientBrevious works
[1, 8, 10] have shown that filters equipped with first order local gradients are suitable
suppressing uniform or Gaussian noise while those equipped with second order gradien
suitable for removing impulsive noise. However, from our observations, filters equipped v
first local gradients preserve lines better than those equipped with second order gradi
Therefore, itis our purpose in this paper to propose an approach to combine all good fea
of the gradient weighted filters.

In Section 2, a general formulation of gradient weighted filters is proposed. According
this formulation, we characterize such filters by three families of parameters. In Section 3
then modify gradient weighted filters by varying these parameters. In Section 4, we proy
a criterion on filters equipped with second order local gradients in order for them to prese
fine details. In the same section, we also propose a combination of filters equipped
first and second order local gradients to remove noise of mixed types. Finally, experime
results are exhibited and discussed in Section 5 and some conclusions are presen
Section 6.

2. FORMULATION OF GRADIENT WEIGHTED FILTERS

Let f:ZxZ—{0,1,...,255 be a gray-level image. In ax33 window centered at
p, the local gradients are defined as follows. First, we label the eight neighbprman
order as shown below.

P1 | P2 | P3
Ps | P | Pa
P7 | Pse | Ps

Then, the first order local gradiergg(k). k=1, 2, ..., 8, are defined to be
gp(K)= f(pc) — f(p) )
and the second order local gradieglgk), k=1, 2, ..., 8, are defined to be

9p(K) = 9p(K) — gp((k + 4) mod 8)= f () — f (Pucraymods).- )
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For a sigma filter [1], the output value ptis given by

L Ziaws® f(pd

f =—— — f , 3
s(P) 1+ Zﬁ:lwp(k) ) 1+ Zﬁ:lwp(k) ®)
where
wo(K) = 1, if [gp(k) <A,
P00 i 1gp(K) > A,

for A =20 ando is a priori assumed or estimated Gaussian noise standard deviation.
a gradient inverse weighted filter [8], the output valu@at given by

1 13 awp(K) f (P
fowe(P) =T+ s ==F—— 4)
2 2 Y gwp(k)
where
l .
wo(k) = | 19O it go(k) # 0,
P 2, ifgp(k) = 0.
For an adaptive Gaussian weighted filter [10], the output value is given by
Seawe®Mm) i 2 2
facurlp) = | Sv® 1 0 5)
f(p)s if Gé = Oa

whereo2 =230 | 12(p) — (X b f(P))? andw (k) = exp(—(g2(K))/o2). For a ratio-
nal filter [6], the output is given by

8 8
fre(p) = (1— prao) HP) + D wp) F(P). ®)
k=1 k=1

wherew,(K) = 1/oz(g’p(k))2 + Ay for some positive constanésand

1 k=240638
Y2 k=1,357

In summary, we can formulate the output of a gradient weighted filter as

8
1— ) f Ziawp® P ¢ 8 K
fewr(p) = @=y) TP+ ST | > k=1wp(K) # 0, -

f(p), it Y p_jwp(k) =0,
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for some local constan, and local weight functiom,. This equation can capture entirely
the charactistics of the above gradient weighted filters but it is not unique. Spann
Nieminen [10] and Buf and Campbell [13] also formula gradient weighted filters as

Ykeoa o h(p+ (k1) f(p+ (k1))
Y1 Y h(p+ (k. 1))

f(p) =

)

whereh(p + (k, I)) are weighted functions of local gradients. For instance,

o = Zit(®)
1+ Y8 wp(k)
for sigma filter,yp = % for gradient inverse weighted filtergy = 1 for adaptive Gaussian
weighted filers, and/, = Zszlwp(k) for rational filters. The parametes, reflects the
specific effect of the center pix@l. The local weight functions are functions of either first
order or second order local gradients. If we writg(k) = F(gp(k)) or wp(k) = F(g,(K)),
then such function§& are decreasing with respect to the magnitude of first order or se
ond order local gradients. For instande(x) =1 if |x| <A and O if |x| > A for sigma
filters, F(x) =1/|x| if x40 andF(0)=2 for gradient inverse weighted filter,(x) =
exp(—xz/ag) for adaptive Gaussian weighted filters, afgk) = 1/(ax? + A) for rational
filters.

Therefore, a gradient weighted filter is characterized by the local congigritse local
weight functionsw,, and the global functiof . By varying these parameters, a large variet,
of gradient weighted filters can be obtained. In the following section, we will first modi
the gradient inverse weighted filters by varying the local constant$Second, we will
modify existing gradient weighted filters by varying their local weight functions. If they a
originally equipped with first order local gradients, then we will make them be equipp
with second order local gradients. Then, we will propose a subclass of gradient weigl
filters by usingr functions as the global functions.

3. THE PROPOSED MODIFICATIONS

A. Adaptive Gradient Inverse Weighted Filters

First of all, we will take into account the modification on the characteristic of loc
constanty,. The local weights of a & 3 window are not fixed; they are adaptive anc
reciprocal to the local gradients. For sigma and rational filters [1, 6], {hed@re adaptive
determined by local weighted functions. However, in an adaptive Gaussian weighted f
[10], its yp is equal to 1 Wher[jﬁzlwp(k) # 0 and results in neglect of the effect of the
center pixel. In a gradient inverse weighted filter [8], the weight of the center pixel
equitable fixed tc%. If the center pixebp is corrupted by noise, the total effect of the vicinity
of pixel p should be enlarged and the weight of pipedhould be weakened. The term %,
reflects the importance of the center pixel relying on whether it is a noisy point. Thereft
the gradient inverse weighted filters were modified in such a way that the local const
vp are proportional to the median magnitude of local gradients. The median magnitud
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local gradients is given as, = MED{0, |gp(K)|, 1 <k < 8} to be a noise estimator about
the center poinp. For instance, if the median magnitude is obtained, then the local const
¥p can be chosen to be

2(Te)? if 0<my <,
Vp = 1—2(%—1)2 if 3 <mp<a,
1 if @ <mp,

for some constant. The parameter can be regarded as a conditional threshold about noi
and depends on the amount of noise. The resulting filters will be catlagtive gradient
inverse weighted filterAGIWF). We observe that the constanshould be proportional
to the local variance formed by, k=1, 2,...8. Thus, in our experiment, we choose

a=sqrt@ Y0, 2(p) — & f(p)D).

B. Second Order Gradient Weighted Filters

Most aforementioned gradient weighted filters are equipped with first order local ¢
dients. Exceptions are rational filters [4—6]. They are equipped with second order I
gradients and perform more comfortably than the others. Here, we will further investic
filters such as GIWF and AGWF by equipping them with second order local gradiel
For convenience, gradient weighted filters equipped with second order local gradients
be calledsecond order gradient weighted filtefBhat is, gradient inverse weighted filters
equipped with second order local gradients will be called second order gradient inv
weighted filters (abridged as GIWF2) and adaptive Gaussian weighted filters equipped
second order local gradients will be referred to as second order adaptive Gaussian wei
filters (abridged as AGWF2), etc.

C. II Filters

Let f(xy), f(x2), f(X3),... F(Xn_k), ... F(Xn), ... F(Xnak), ... f(Xm) be a sequence of
a 1-D signal. A generalized 1-D adaptive gradient weighted filter derived from [6] can
expressed as

n41 n+1
f’(xn)z(l— Y OF@) )+ Y F(gXi)f(xi)) ®)
i=n—1,i#0 i=n—1,i#0

wheregy, = f(x;) — f(xn) are the local gradients arfél is the weighted function. In gra-
dient weighted filters, a common characteristic of the global functins that the val-
ues of F(x) are reciprocal tgx| for noise removing. There are many possible candidat
for such functions such as those mentioned in Section 2. As a ggiotossed on an
edge with heightH delineated in Fig. 1 wher&\ is the window size,f (x,_;) =a for
—1<l<k—-2;f(Xyyr)=bfor2<r <N —-k+1; andb—a=H. The filtered output is
a+ ﬁ%) H for the mean filter. The resultant value amplif‘@ﬁ—k) H result; therefore, sig-
nal points crossed on edges are blurred. By way of responding zero or small weigfs tc
neighbors with large local gradients, adaptive gradient weighted filters would be effec
for edge preserving. Thus, the advantage of the adaptive gradient weighted filters is
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FIGURE 1

they are able to smooth a noisy signal whilst maintaining sharp transitions in the sig
Our purpose is to design a function that is reciprocal to the gradients for removing nc
and preserving edges. In our approactfunctions are chosen to substitute the weighte
function F(x). The reasons for choosingfunctions are that (1) they match our purposes
(2) they are simple, only second degree with respegt {8) the parametear provides the
adaptability for the filters. In this paper, we propose to use the following one-paramete
functions,

1-2(%)? if x| <a/2
) =12(%-1)° ifa/2<|x|<a

0 if |X| > a,

for some constant.
The resulting gradient weighted filters will be simply callEdfilters. More precisely,
the output value of a first ordét filter is given by

8 8
f(p) = (1— pr(k)> FP) + D wp) (P, ©)
k=1 k=1

wherew,(K) = F(gp(K)) = %n(gp(k)). Similarly, the output value of a second ordefilter
is given by

8 8
fri2(p) = (1 - wp(k)) () + Y wp(k) f(po), (10)
k=1 k=1

wherew, = F(g,(K) = 7 (g,(K).

LetX:ZxZ—{0,1,...,255 be agray-scale image ang, « be a translation oK
alongthe direction of local gradiegg (k) within a 3x 3 window. To quantify the distribution
of gp(k) k=1,2,...,8in X, the meang(Xq, — X) and the variances Vaxg,x — X)
fork=1,2,...,8 can be evaluated. The observations concerpif¥y,« — X) are close
tozeroforalk=1,2, ..., 8. According to the termg(Xg, ) — X) and VarXg,« — X), we
can roughly estimate the occurrence of local gradigptk). Most of gradieng, (k) occurs
within the range of-2a, wherea = £ ZE:1Var(Xgp(k) — X). Thus, we choose = 2a in the
definition ofr function. Thisx provides some information about edge heights of an imag
and the amount of corrupted noise.
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150 | 150 | 150| | 150 50 | 50
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150 | 150 | 150 50 | 50 | 150
(a) (b)

FIG. 2. (a) Animpulsive noise pattern. (b) A line pattern.

4. DETAIL PRESERVING AND MIXED TYPE NOISE REMOVING

A. Detail Preserving

Consider the situation shown in Fig. 2a, where the center pixel is corrupted by impul:
noise. At this pixel, the output value of a GIWF is

1 13 /1
= x50+ = — x 150) = 100
¥t 5 Xl: (8 x )

and the output value of an AGIWF is

8
1
1-1)x50+) <§ x 150) =150
1

when the parameter is chosen to be less than or equal to 100. For rational filters, t
output value is 150 only whea = 4;1& ~ 0.1036. In rational filters [6], parameteris
fixed at 0.16. Under such conditions, a bias result yielded. For a secondloffdtar, the
output value is 150 as well, but a first ordefilter retains impulsive noise as< 100. Now
consider the other situation, shown in Fig. 2b, where a line passes through the center |
A first orderTl filter produces the right output value, 150, but a second order one produ
the wrong output value, 75, at that pixel where 100. In other words, a second ordér
filter will smear fine details. To preserve fine details, we slightly modify any second or

gradient weighted filter (GWF2) as follows,

if 1mlin 4{|gp(k) + gp((k + 4) mod 8)} < B, then outputf (p);
otherwise, outpufewrA p) as usual,

where g is a threshold of a small integer. For Gaussian and uniform noise, the case
Fig. 1 scarcely happen. Empirically, as previous works [1, 8, 10] have shown, first or
local gradients are suitable for Gaussian and uniform noise removals. Therefore, we &
first orderTl filters in cases of Gaussian and uniform noise and apply second order ong
cases of impulsive noise.

B. Mixed Type Noise Removing

Noise types commonly used for testing noise removals include long tail noise (impuls
and short tail noise (Gaussian and uniform). Most smoothing filters do well on either
of them. In this subsection, we propose a method which combines first and seconH orc
filters so that the associated filters are nonsensitive to noise distributions. First, we lo
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classify noise types according to the siip= Zﬁzlwp(k) of local weights in a first order
IT filter. We regard pixelp as being corrupted by short tail noise if the stiip is larger
than a threshold value; otherwise, we regard it as being corrupted by long tail noise. T
we combinelT filters by the following rule,
If p> A, then outputfr(p);
Otherwise, outpufz(p),

whereA is a predefined threshold value.

5. EXPERIMENTS AND DISCUSSIONS

In this section, we will compare the performances of proposed filters with some ot
gradient weighted filters. Many quantitative evaluations of the filtering performance h:
been shown, such as spatial measurement on natural images (MSE, MAE, NMSE,
PSNR) and predefined spatial measurement on artificial images (edge preserving cr

MSE —a—SF MSE —a—SF
—*— AGWF 430 —— AGWF
350 —+—RF 400
300 - GIWF 350 | —+—RF
200 - —— 250 | D
150 + ol 200 o o,
i el 150
100 g;-’iko_o—o—o-o—ﬂw 100
500 f 50
0 : : - - 0
0 5 10 15 Loop 20 0
(a)
MSE —a—8F MSE —a—SF
800 i 800 —— AGWF
0 | Rt —+—RF 700 e 3 —+—RF
600 | GIWE 600 .
500 [ 500 GIWF
400 —e— AGIWF 400 —e— AGIWF
300 f 300
200 | / 200 | o o o
100 r ——ie o 100
0 | L I I : 0 \ L ' '
0 5 10 15 Loop 20 0 5 10 15 Loop 20
(© (d)
MSE MSE —a—SF
—=e=5F 700 —w— AGWF
500 —+— AGWF 600 —+RF
400 | ——RF 500 | GIWF
300 | GIWE ;gg —e— AGIWF
—o— AGIWF
200 200
1000 100
0 - 0 : :
0 5 10 15 Loop 20 0 5 10 15 Loop 20
() (H

FIG. 3. The merit assessments of AGIWF and GIWF on Lena images damaged by different type noi
(a) Gaussian noise varianeel5, (b) Gaussian noise variane€5, (c) impulse noise rate 15%, (d) impulse
noise rate= 25%, (e) uniform noise varianee32%, (f) uniform noise variance 48%.
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FIG. 4. The comparison between AGIWF and GIWF: (a) Gaussian noisy imageowitl20; (b) Impulse
noisy image with ratio 20%; (c, d) The results of GIWF with loef0 for Figs. 4a and 4b: (c) MSE 66.48,
PSNR=29.90, andf -statistic= 183931, (d) MSE=114.19, PSNR=27.55, andf -statistic= 84465; (e, f) The
results of AGIWF with loop= 10 for Figs. 4a and 4b: (e) MSE38.51, PSNR= 32.27, andf -statistic= 35147;
(f) MSE=32.12, PSNR=33.06, andf -statistic=286811.

[13] and f-statistic [8]). In our experimental results, MSE, PSNR, andtatistic are
considered for demonstration. In the following, we first compare adaptive gradient inve
weighted filters with original ones to demonstrate the efficiency of the first modificati
on local constany,. Two testing images are investigated. The natural Lena image un
consideration is of size 256256 and the other artificial image is of size 12828 with
eight bits of resolution.

The MSE measures the discrimination between the original images and correspor
filtered images. Thd -statistic [8] is based on the fact that the more the uniformity insic
eachregion, the greater the discrimination between regions. Both measurements are th
commonly used and famous quantitative evaluations on smoothing and edge presel
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FIG. 5. (a, b) The results of rational filter with loep3 and 6: (a) MSE=18.19, PSNR=35.53, and
f -statistic=492234; (b) MSE=29.57, PSNR= 33.42, andf -statistic= 404250; (c—g) The results di filter
by first local gradient on Fig. 4a with loep3, 4, 5, 6, 10, respectively. (¢) MSE18.31, PSNR=35.50, andf -
statistic=442659; (d) MSE=11.86, PSNR= 37.39, andf -statistic= 764373; (e) MSE= 10.70, PSNR=37.84,
and f-statistic=1020329; (f) MSE=11.17, PSNR=37.65, and f-statistic=1233819; (g) MSE=19.65,
PSNR= 35.20, andf -statistic= 1832383.

Figures 3a—3f evaluate the MSE of an AGIWF and the existing four methods unde
diversified noise environment on the Lena image, respectively. The assessments in F
show that the AGIWF needs a lower iteration number than the GIWF to achieve optir
MSE values. Observe that optimal MSE values of the AGIWF are also smaller than
corresponding values of the GIWF in all experimental cases. We also assess each me
sigma filter (SF), AGWF, and RF. The MSE evaluations in Figs. 3c and 3d disclose t
AGWF and SF are the most sensitive to impulsive noise. Over all, RF and AGIWF perfc
better than GIWF and AGWF. AGIWF performs better than RF for the case in Figs.
3c, 3d and RF performs better than AGIWF for the case in Figs. 3b, 3e, 3f. To simpl
on an artificial image, Figs. 4c—4f show the visual effectiveness, PSNR, and correspon
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FIG. 6. (a) Gaussian noise (= 10); (b) Uniform noise (20%); (c) Impulsive noise (10%); (d), (e), and (f) are
the corresponding smoothing result of their left image.
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TABLE 1

Algorithms Noise Parameters MSE

a. Gaussian noise

a-tr. filter [2] o=10 3x 3, cut=3/9,1 =2 76.92
AGWF [10] 3x3,1=2 57.64
GIWF [8] 3x3,1=2 50.91
RF [6] 0=0.16,0=0.01, =2 59.40
I a=48,1=2 35.48
a-tr. filter [2] =20 3x 3, cut=3/9,1 =2 103.62
AGWF [10] 3x3,1=4 145.31
GIWF [8] 3x3,1=3 105.62
RF [6] 0=0.16,0=0.01,1 =3 99.01
I a=72,1=3 89.46
b. Uniform noise
a-tr. filter [2] 32% 3x 3, cut=2/9,1 =2 120.75
AGWF [10] 3x3,1=6 152.91
GIWF [8] 3x3,1=6 152.96
RF [6] ®w=0.16,0=0.01,l =3 95.75
1 a=80,1=3 75.80
a-tr. filter [2] 48% 3x 3, cut=2/9,1 =2 164.99
AGWF [10] 3x3,1=10 249.40
GIWF [8] 3x3,1=10 278.07
RF [6] 0=0.16,0=0.01,1 =3 141.79
I a=96,1=3 120.53
I1 a=96,l=4 115.85
c. Classical gradient weighted filters for impulsive noise
AGWF [10] 10% 3x3,1=2 439.60
GIWF [8] 3x3,1=6 72.74
RF [6] 0=0.16,0=0.01, =2 72.54
AGWF [10] 20% 3x3,1=3 785.44
GIWF [8] 3x3,1=10 163.94
RF [6] 0=0.16,0=0.01, =3 104.57
d. Second order filters with impulsive condition
AGWF2 10% 3x3,1=2,=12 53.19
GIWF2 3x3,1=6,=12 54.17
RF2 »w=0.16,0 =0.01,1 =2, 49.36
g=12

2 a=76,1=2,=12 49.0

AGWF2 20% 3x3,1=38,=12 73.79
GIWF2 3x3,1=10,=12 78.57
RF2 ®w=0.16,0 =0.01,1 =3, 72.72

B=12
2 «=100,1=3,8=12 73.70

f -statistic. Here, images corrupted by short tail (Gaussian) and long tail (impulse) noise
considered. Figures 4a and 4b expose the damaged images. The results of original C
are shown in Figs. 4c and 4d, and Figs. 4e and 4f show the results of AGIWF. Obviou
AGIWF smoothes noise in a uniform region better than GIWF and preserves edges as
as GIWF.

Second, we take care of the modification about the weighted functions. By compari
with the rational filter [6], we investigate whether thefilters equipped with first local
gradient do better than the second gradient in short tail noise such as Gaussian and un
noise. We suggest that the parametdor the z function is set to be twice as large as the
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standard deviation of local gradient in the corrupted image. Figures 5a and 5b shov
results employed with three and six times the rational filter on Fig. 4a. As the loop nun
increases, the rational filter diffuses the smoothing effect on uniform regions but res
in blurred edges. However, tha filter with first local gradient will not. Figures 5¢c-5g
exhibit the results of thél filter with first local gradient for loop numbers 3, 4, 5, 6, anc
10, respectively. The difference between Figs. 5¢-5f and 59 is only the smoothing e
on the uniform region. Actually, in our case of Fig. 5a, the rational filter possesses a b
smoothing effect than GIWF [6], but AGIWF performs as well as the rational filter in Fig. 4
Among them, thdT filter equipped with first local gradient yields the best result. Image
shown in Figs. 6d—6f are the smoothing results when applyifdier to corrupted images

by different kinds of noise in Figs. 6a—6c¢ for natural images.

Then, we comparél filters with some other gradient weighted filters. Filters unde
comparison include GIWF [8], AGWF [10§-trimmed filters [2], and RF [6]. Note that SF
was excluded due to the similar MSE behavior with RF and bad performance by contrast
RF. All filters in the current study are iterative and paramktinotes the loop nhumber in
each experiment. Tables 1a and 1b quantize the optimal performance measures of rern
noise by first order filters with different amounts of Gaussian and uniform noise. The res
exhibit thatIT filters are more nonsusceptible to noise than other competitors. Table:
and 1d compare the performances of classical gradient weighted filters with their se

?ﬁgE —+— (Gaussian Noise
o=10+Impulse
120 — Noise 10%
#— (Gaussian Noise
100 w o=10+Impulse
- \ Noise 20%
‘-I‘-. #— (Gaussian Noise
60 N y o=20+Impulse
i ‘ : e . Noise 10%
W Gaussian Noise
20 e e '/. ——  g=20+Impulse
Noise 20%

0 — 1828 38 48 5B 68 78 88 A
(a)

MSE . .
140 —— Uniform Noise
10%-+Impulse
120 —— Noise 10%
—#— {Iniform Noise
100 — 10%-+Impulse
%0 | ‘\ Noise 20%
\ &— [niform Noise
60 .‘.' 7 20%-+Impulse
\ A ¥ Noise 10%
40 e, e - ; :
e y Uniform Noise
20 ————- 20%-+Impulse
Noise 20%

0 /8 28 38 48 S8 68 T8 88 A
(®

FIG. 7. The testing about threshold on mixed noise with artificial image.
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TABLE 2
Mixed Noise (A =3/8)
Algorithms Noise Parameters MSE
a-tr. filter Implusive 10%+ 3x3,cut=2/9,1=2 89.58
RF [6] Uniform 10% 0=0.16,0=0.01, =3 84.49
I a=62,1=2,=12 66.26
a-tr. filter Implusive 10%+ 3x3,cut=2/9,1=2 102.78
RF [6] Uniform 20% 0=0.16,0=0.01, =3 92.40
I a=90,1=2,=12 80.61

order counterparts. Note that in this comparison all considered filters impose a conditi
operator for preserving fine detail with=12.

In summary, from the results shown in Tables 1a—1d, we find that first order filters
more suitable for removing Gaussian and uniform noise while second order filters are n
suitable for removing impulsive noise. That is because the second order gradients co
information which will be insensitive to impulsive noise in gray-scale image filtering. Und
mingled conditions, we also apply combinBdfilters which utilized the characteristics of
our observation to remove mixed types noise whris obtained empirically and set to
3/8. Figures 7a and 7b investigate the MSE criteria with differeth mixed types noise.
By our experiment, ifA ranges from 38 to 5/8, we obtain a lower MSE error and a larger
PSNR andf -statistic. Finally, Table 2 shows our experimental results.

6. CONCLUSIONS

Inthis paper, we first characterize gradient weighted filters by three families of paramet
local constants, local weight functions, and a global function. Then we propose sc
modified gradient weighted filters by varying these parameters. For instafciter is a
gradient weighted filter usingza function as the global function. Moreover, we propose :
criterion for second order filters to preserve fine details and a criterion to combine first
second order filters in order to remove noise of mixed types. Most of our proposed fill
have very satisfactory performances.

Note thatz functions are very commonly used membership functions for fuzzy se
[11, 12]. Therefore, it should be interesting to apply fuzzy theoretical techniques to fi
tune the parameters for a gradient weighted filter in order to achieve better performan
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