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Abstract

This study presents two sets of translation invariant wavelet transforms for coding an arbitrarily shaped image. Each
set can be viewed as a shape-adaptive discrete wavelet transform (SA-DWT) with the property of translation invariance.
The proposed transform schemes have the following merits: (1) they are translation invariant, (2) no sharp transition
appears at the edges of the image, (3) the number of pixels is maintained constant after transformation, (4) the correlation
of pixels is fully exploited, and (5) the property of self-similarity across scales is preserved. ( 1999 Elsevier Science B.V.
All rights reserved.

Zusammenfassung

Diese Studie praK sentiert zwei translationsinvariante Wavelet-Transformationen fuK r die Kodierung eines beliebig
geformten Bildes. Jede davon kann als eine formadaptive diskrete Wavelet-Transformation (SA-DWT) mit der Eigen-
schaft der Translationsinvarianz angesehen werden. Die vorgeschlagenen Transformationen haben folgende Vorteile: (1)
sie sind translationsinvariant, (2) es erscheint kein scharfer UG bergang an den BildraK ndern, (3) die Pixelanzahl bleibt nach
der Transformation konstant, (4) die Korrelation der Pixel wird vollstaK ndig ausgenutzt, und (5) die Eigenschaft der
SelbstaK hnlichkeit wird fuK r alle Skalen erhalten. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Cette eH tude preH sente deux ensembles de transformations en ondelettes invariantes par translation pour le codage
d'images de forme arbitraire. Chaque ensemble peut e( tre vu comme une transformation en ondelettes discrète adaptive en
forme (SA-DWT) preH sentant la proprieH teH d'invariance par translation. Les meH thodes de transformation proposeH es ont les
avantages suivants: (1) elles sont invariantes par translation, (2) aucune transition abrupte n'apparam( t sur les contours de
l'image, (3) le nombre de pixels est maintenu constant après transformation, (4) la correH lation des pixels est pleinement
exploiteH e, et (5) la proprieH teH d'auto-similariteH au travers des eH chelles est preH serveH e. ( 1999 Elsevier Science B.V. All
rights reserved.
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Nomenclature

a[n] input sequence
a8 [n] extended version of input sequence
d type of a downsampler
g[n] analysis high-pass "lter
g8 [n] synthesis high-pass "lter
h[n] analysis low-pass "lter
hI [n] synthesis low-pass "lter
A[k] low-pass transform coe$cient
A@[k] convolution result in low-pass channel

B[k] high-pass transform coe$cient
B@[k] convolution result in high-pass channel
D distortion measure
Q set of all admissible quantizers
< set of all possible decomposition con-

"guration
R

"
coding budget

j Lagrangian multiplier

1. Introduction

Several algorithms based on the discrete wavelet
transform (DWT) have been suggested to e$ciently
remove the redundancy of an object including ob-
ject wavelet transform (OWT) [5], edge sensitive
wavelet transform (ESWT) [3], region-based sub-
band transform (RBST) [2], arbitrarily shaped
wavelet packets (ASWP) [4], matching pursuit
(MP) [8], and shape-adaptive DWT (SA-DWT)
[6]. Among these algorithms, MP and SA-DWT
have the best transform e$ciency because they
exploit the correlation of pixels completely. More
speci"cally, in addition to its lower computational
complexity than MP, SA-DWT has been applied to
MPEG-4 still image coding. However, DWT is not
a translation invariant transformation, neither is
SA-DWT. A small shift of an object in the space
domain may dramatically change the transform
domain. In this study, we present two sets of trans-
lation invariant DWTs (TI-DWTs) to resolve the
problem of translation sensitivity of SA-DWT cod-
ing. Each set can be viewed as a translation invari-
ant SA-DWT (TI-SA-DWT). One set is for odd
length biorthogonal wavelet "lters, and the other is
for even length biorthogonal wavelet "lters. While
the former is the extension of the transformation
designed for rectangular images in [7], the latter is
initially addressed herein.

2. Overview of proposed transform scheme

To reduce computational complexity, this work
performs the wavelet decomposition separately to
the rows and columns of an arbitrarily shaped im-

age. Moreover, the decomposition is only applied to
object regions. Restated, if a row or column of a re-
gion is split into M unconnected segments, each
segment is "ltered and downsampled separately.

Symmetric extension on both boundaries of each
segment is used to reduce edge e!ects. Among the
four symmetric structures, i.e. whole-point sym-
metry (WS), half-point symmetry (HS), whole-point
anti-symmetry (WA), and half-point anti-symmetry
(HA) } the WS structure is used for odd length
"lters and the HS structure for even length "lters.

Without loss of generality, each segment can be
relocated to a new starting position 0 or 1, depend-
ing on its original starting position being even or
odd, respectively. According to the starting posi-
tion (0 or 1) and the length (even or odd) of a
segment, there are four cases of processing. An
SA-DWT is designed to deal with the four cases.
Because the "lter length is either even or odd, there
are two types of SA-DWT.

2.1. SA-DWT for both analysis xlters being of
odd length

In a two-band, perfect reconstruction "lter bank,
[1] indicated that the "lters should satisfy

g[n]"(!1)nhI [1!n] and g8 [n]"(!1)nh[1!n],
(1)

where g[n], h[n], g8 [n] and hI [n] represent the anal-
ysis high-pass "lter, the analysis low-pass "lter, the
synthesis high-pass "lter and the synthesis low-pass
"lter, respectively.

Assume that a pair of symmetric odd length
"lters (h, hI ) is given and de"ned in the following
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Fig. 1. Sequences involved in computing a discrete convolution.
(a) and (b) The sequences a8 [k!n] and h[n] as a function of n for
di!erent values of k. (c) Corresponding output sequence as
a function of k. (d) Even downsampling output. (e) Odd down-
sampling output.

intervals: h[n] for !p)n)p and hI [n] for !q)
n)q. From (1), we can obtain the values: g[n] for
!q#1)n)q#1 and g8 [n] for !p#1)n)
p#1. According to the de"nition of discrete convo-
lution, we have the following situation:

A@[k]"
p
+

n/~p

h[n]a8 [k!n] and

B@[k]"
q`1
+

n/~q`1

g[n]a8 [k!n], (2)

where A@[k] and B@[k] represent the convolution
results, and a8 [n] the extended version of input se-
quence a[n]. Notably, a8 [n] is of WSWS structure
herein because the WS structure is applied to both
the left and the right sides of a[n].

After the convolution, a downsampler with
a downsampling factor of 2, follows in order to
remove redundancy. Depending on the retained in-
dex terms of a convolution result, whether it is even
or odd, we have even downsampling (ED) and odd
downsampling (OD), respectively. For simplicity, we
de"ne that

A[k]"A@[2k#d] and B[k]"B@[2k#d], (3)

where d represents the type of the downsampler. For
ED, d"0. For OD, d"1. Fig. 1 illustrates se-
quences involved in computing a discrete convolu-
tion. The input sequence a[n] is assumed to be of
even length (2K). The extended samples of a[n] are
denoted with dashed lines. The symmetric axes of
sequences are also shown.

Table 1 lists the symmetric structures of A[k] and
B[k] when "ltering the four cases. Each sequence
(A[k] or B[k]) has two symmetric axes, and we only
need to retain the samples that fall into the axes. For
example, if the symmetric axes of A[k] are
(0, K!1/2), we retain A[k] for 0)k)K!1. As
can be easily veri"ed, the total length of retained
samples for each of the pair A[k] and B[k] is equal
to the length of input sequence a[n].

The formula corresponding to (2) for reconstruc-
tion is

a[n]"
q
+

k/~q
k`n~d>%7%/

hI [k]AC
k#n!d

2 D
#

p`1
+

k/~p`1
k`n~d>%7%/

g8 [k]BC
k#n!d

2 D. (4)

2.2. SA-DWT for both analysis xlters being of even
length

In this case, assume that the given symmetric "lter
pair (h, hI ) is de"ned at h[n] for !p) n)p#1,
and hI [n] for !q)n)q#1. From (1), we have
the following values: g[n] for !q) n)q#1, and
g8 [n] for !p)n)p#1. Herein, both g[n] and
g8 [n] are of HA structure. Replacing the boundaries
of summation index n in (2) and using HSHS struc-
ture to a8 [n] allow us to obtain the output symmetric
structures of A[k] and B[k] as listed in Table 2.
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Table 1
Output symmetric structures when both analysis "lters are of odd length and symmetric

Input sequence a[n] Convolution results
(symmetric axes)

Even downsampling output
(symmetric axes)

Odd downsampling output
(symmetric axes)

Length Starting
point

A@[k] B@[k] A[k] B[k] A[k] B[k]

2K 0 WSWS WSWS WSHS HSWS HSWS WSHS
(0, 2K!1) (1, 2K) (0, K!1/2) (1/2, K) (!1/2, K!1) (0, K!1/2)

2K 1 WSWS WSWS HSWS WSHS WSHS HSWS
(1, 2K) (2, 2K#1) (1/2, K) (1, K#1/2) (0, K!1/2) (1/2, K)

2K!1 0 WSWS WSWS WSWS HSHS HSHS WSWS
(0, 2K!2) (1, 2K!1) (0, K!1) (1/2, K!1/2) (!1/2, K!3/2) (0, K!1)

2K!1 1 WSWS WSWS HSHS WSWS WSWS HSHS
(1, 2K!1) (2, 2K) (1/2, K!1/2) (1, K) (0, K!1) (1/2, K!1/2)

Table 2
Output symmetric structures when both analysis "lters are of even length; one is symmetric and the other is antisymmetric

Input sequence a[n] Convolution results
(symmetric axes)

Even downsampling output
(symmetric axes)

Odd downsampling output
(symmetric axes)

Length Starting
point

A@[k] B@[k] A[k] B[k] A[k] B[k]

2K 0 WSWS WAWA WSWS WAWA HSHS HAHA
(0, 2K) (0, 2K) (0, K) (0, K) (!1/2, K!1/2) (!1/2, K!1/2)

2K 1 WSWS WAWA HSHS HAHA WSWS WAWA
(1, 2K#1) (1, 2K#1) (1/2, K#1/2) (1/2, K#1/2) (0, K) (0, K)

2K!1 0 WSWS WAWA WSHS WAHS HSWS HAWA
(0, 2K!1) (0, 2K!1) (0, K!1/2) (0, K!1/2) (!1/2, K!1) (!1/2, 2K!1)

2K!1 1 WSWS WAWA HSWS HAWA WSHS WAHS
(1, 2K) (1, 2K) (1/2, K) (1/2, K) (0, K!1/2) (0, K!1/2)

Of particular interest are some pairs of A[k]
and B[k] in Table 2, preserving all the
samples that fall into the symmetric axes
would violate critical sampling. Fortunately,
the sample value at the symmetric axis of a
WA structure is always 0. This sample can be
omitted to achieve critical sampling. At decoder
side, as long as this zero value is added to
the sequence, perfect reconstruction is still
available.

3. Design of TI-SA-DWT for arbitrarily shaped
image coding

Owing to that a two-band "lter bank downsam-
pled by 2 is shift-invariant with respect to even shifts
and an SA-DWT is based on such a "lter bank, an
SA-DWT is also shift-invariant with respect to even
shifts. In addition, the role of an ED-type SA-DWT
is equivalent to the role of an OD-type SA-DWT
with odd shifts (see Fig. 1). Therefore, search for the

312 B.-F. Wu, C.-Y. Su / Signal Processing 79 (1999) 309}314



Fig. 2. A simple example used to explain the translation invariant property of the proposed transform. (a) An image with an object;
(b)}(e) the binary alpha planes of the four possible DCs in a one-stage decomposition for (a); (f) the object shifted image; (g)}(j) the alpha
planes of the four possible DCs in a one-stage decomposition for (f).

best combination of EDs and ODs for an S-stage
decomposition would allow us to obtain the most
e$cient representation of an object region regardless
of how the object shifts. Brie#y, each combination of
EDs and ODs is denoted as a decomposition con"g-
uration (DC). In an S-stage decomposition, the num-
ber of all possible DCs is 4S because each stage
contains two SA-DWTs: one is for the rows of an
image and the other is for the columns. In addition,
each SA-DWT can use ED or OD. For a typical
application, S is often limited to be 4 or 5. Thus, the
searching space is not very large.

In [7], some cost functions are listed for "nding
the best DC for an object. In this study, we use the
separable rate-distortion cost function. Our problem
can be stated simply as

min
v|V

min
q|Q

D(v, q) subject to R(v, q))R
"
, (5)

where D is an unweighted mean-squared error dis-
tortion measure,< is the set of all possible DCs at an
S-stage decomposition, Q is the set of all admissible
quantizers, and R

"
is the coding budget. Introducing

the Lagrangian cost ¸(v, q)" D(v, q)#jR(v, q), the
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constrained optimization problem of (5) can be con-
verted to

max
j

min
v|V

min
q|Q

[D(v, q)#jR(v, q)]. (6)

To solve this equation, the "rst step is to search the
optimal quantizer qH for a "xed v and a "xed j. The
next step is to "nd the best vH that minimizes the
Lagrangian cost. Finally, a fast convex recursion in
j using the bisection algorithm is applied to obtain
the optimal constant slope value jH [9].

4. Example

A simple example used to explain the translation
invariant property of the proposed transform is
shown in Fig. 2. Fig. 2(a) is an image with an object
in which the total number of pixels is 25. We use 9/3
tapes "lter pair [1] to "lter the object. In a one-stage
decomposition, the number of all possible DCs is 4.
Figs. 2(b)}(e) depict the binary alpha planes for the
four DCs. Herein, the white region denotes the ob-
ject region and the black region represents the back-
ground. Each of the "gures consists of four object
regions. The object regions are separately located in
di!erent frequency bands. Fig. 2(f) contains the same
object as shown in Fig. 2(a) but the object is shifted
towards southeast by one pixel. The corresponding
alpha planes of Fig. 2(f) are shown in Fig. 2(g)}(j).
Comparing the shapes of object regions in
Fig. 2(g)}(j) with those in Fig. 2(b)}(e), it is found that
Fig. 2(b) is related to Fig. 2(j), Fig. 2(c) to Fig. 2(i),
Fig. 2(d) to Fig. 2(h), and Fig. 2(e) to Fig. 2(g). In
each pair of related "gures, all the transform coe$-
cients on the same object region are equivalent.
Therefore, the searching space for Fig. 2(a) is identi-
cal to that for Fig. 2(f). Restated, if the alpha plane
of the most e$cient representation for Fig. 2(a) is
as shown in Fig. 2(e), Fig. 2(g) will be the alpha plane
of the most e$cient representation for Fig. 2(f).
Therefore, the transform coe$cients we obtained
are equal regardless of how the object shifts. This
accounts for why the proposed transforms are trans-
lation invariant.

5. Conclusion

This study develops two sets of translation invari-
ant wavelet transforms for coding an arbitrarily
shaped image. Each set can be viewed as a transla-
tion invariant SA-DWT. The proposed scheme is
e$cient and outperforms other relevant object-
based transforms, but it is limited only in that it
takes more encoding time than the SA-DWT [6].
However, this drawback is acceptable since DWT is
quite fast. Moreover, the computational complexity
of our proposed scheme in decoding time is compa-
rable to the SA-DWT. Thus, the proposed scheme
is highly promising for browsing images from
a database and MPEG-4 video player.
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