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Guidance Characteristics of Two-Dimensionally
Periodic Impedance Surface

Ruey Bing HwangMember, IEEE,and Song Tsuen Pengellow, IEEE

Abstract—In this paper, we present an exact formulation for wave propagation in 2-D periodic structures. In fact, the
the three-dimensional boundary-value problem of waveguiding case of 1-D periodic reactive surface [2] had been employed
by a two-dimensional periodic impedance surface in a uniform successfully as a model for the analysis of wave phenomena

medium. The dispersion characteristics of such a structure are iated with iodic struct - for the first ti Wood’
rigorously analyzed in terms of the complete set of both TE- and associated with periodic structures; for the nirst ime, VWood's

TM-polarized plane waves in the uniform medium. The results anomaly was then explained on a rigorous basis. We have
are systematically expressed in the form of the Brillouin diagram; observed that the case of 2-D periodic impedance surface can

thereby, in comparison to the one-dimensional case, a host of pe formulated rigorously by the method of mode matching as
new and interesting phenomena are identified and physically 5 {hree-dimensional electromagnetic boundary value problem.
explained. . .
The total fields above the planar impedance surface can be
_Index Terms—Bandgap, stopband, surface wave, two-dimen- expressed in the form of double Fourier series, with each space
sional periodic impedance surface, two-dimensional periodic harmonic appearing as a plane wave consisting of both TE and
structures. . y .. .
TM polarized constituent ones. The condition for the existence
of a nontrivial solution in the absence of incident wave yields
|. INTRODUCTION the dispersion relation of the waveguiding structure; thus, this

T HE guiding of waves by periodic structures has long bedtioblem is considered completely solved.
a subject of continuing interest, and extensive theoreticalBased on the exact approach described above, we have

and experimental results are available in the literature [1]-[1§T1€d out extensive numerical results to identify and ex-
While most of the work in the past had been limited tcl?la'” physical phenomena_ assoqated with the.Z-D periodic
the one-dimensional (1-D) case, the class of tvvo-dimensior‘l'&‘lp?dance surface. Th_e dlspers_|on characteristics of .2-D.pe—
(2-D) periodic structures has attracted considerable attentiorf {pdic structures are displayed in the form of the Brillouin
recent years: in some applications, they have been referre ram, with both phase and att_enuatlon constants mcl_uded.
as photonic-bandgap structures [11]-[17]. For example, for nffl Particular, the bound-wave regions are carefully examined,
crowave and millimeter-wave circuit and antenna applicatio§d Very interesting numerical results are obtained, exhibiting
[13]-[17], periodic structures have been utilized for perform2Ome _extraordlnary dlspersloq characteristics that cannot take
ing the key function of suppressing leaky surface waves. Thd¥ace in the case of 1-D periodic structures. In short, the results

structures can be fabricated with relative ease and should fiRiabPlish considerable distinctive characteristics of the 2-D

many applications in practice. Although the special case Bfriodic structures.
bigrating structures has been extensively investigated and well
understood [18]-[21], most of the work had been limited to
experimental studies and simulations using different numericalFig. 1(a) depict the scattering of a plane wave by a planar
methods. While the type of research is needed for developiimgpedance surface that is periodic in two dimensions. The
design rules that are useful for practical considerations,d&persion relation of such an impedance surface can then be
clear physical picture of wave processes is desirable fobtained from the resonance of the scattering problem. This
understanding the wave phenomena in 2-D periodic structurdsfines the relation betwedn andk,, so that if one of them
The goal of this paper is to build up fundamental understandiigggiven, the other is then determined. For example, consider
of waves guided on the 2-D periodic impedance surface andtb@ case shown in Fig. 1(b), where a 2-D periodic impedance
explore new and interesting phenomena that are not realizdface is connected to a uniform impedance surface=at0
in the 1-D case. (along they-axis), and a surface wave is incident obliquely
Specifically, we consider the guiding of waves by afrom the uniform impedance surface at the anglg.. Here,
impedance surface that is periodic in two dimensions. Thiy fixing the incident anglek, is determined for a given
class of structures is intended as a model for the study foéquency and we can look for the dispersion root kgf

. ) ) ) For simplicity, the space above the surface is taken to be air
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ﬂ\ harmonics in each of the two directions of periodic variations

z is generated. In the air region, each space harmonic appears
as a plane wave, which may be generally represented as
a superposition of the TE- and TM-polarized constituent

XY, plane waves. For thennth harmonics, the tangential-field
4 X > components can be written as
e v
/ < \ Z, X Et"l" (B? Z) = [Q;lnvr;ln(z) + lenvrgn(z)}
X
Z,(xy)Z(x+ay+b) ~exp(—Jkimn - p) (3)
(a) ﬂtrnn (B? Z) = |:Q;nn‘[;nn(z) +len‘lr/7/ln(z):|
: exp(_jktrnn : B) (4)
y . . . In these equations, the single and double primes denote
. . . e the TE- and TM-polarized waves, respectiveystands for
' ' ' the transverse coordinate vector, while thaxis is taken
Qoo . as the longitudinal directiona/,,,, and «!/,, are mutually
perpendicular 2-D unit vectors that are related to the transverse
77777777777 @y @y o «ea propagation vectork;,,, by
d)- > X
mc
Q QD Q - Etrnn
>/ Q;nn = k— (Sa)
. [] ] .o e tmn
YACSISIA : : : len =Zo X Q;nn
Uniform Z(x,yy=L{xta,y+b) Zo X ktmn
impedance 2D periodic impedance = Tk (Sb)
surface surface tmn
with
(b)
Fig. 1. Scattering and guidance of plane wave by a 2-D periodic impedance Etmn = kamZo + kyngo (6a)
surface. (a) Scattering by plane wave. (b) Surface wave obliquely incident. 2mm
kom =kg + —— (6b)
employed as a model for the analysis of wave phenomena 27%
associated with periodic structures; for the first time, the kyn =k, + > (6c)

Wood’'s anomaly was explained on a rigorous basis [2]. As an
extension, we consider here a periodically perturbed surfagere, k,,, and k,, are the propagation constants of the
impedance with the spatial variation given by mth space harmonic in the-direction and thenth space
I x 27y harmonic in they-direction, respectively. It is noted that in the
Z(z, y) =Zs |1+ 26, cos - T 26y cos o expressions above, we have defined the symbg)sy,, and
2z, for the three unit base vectors of the rectangular coordinate
(1) system. Furthermore, th€’s and I's represent the vertical
. b variations of the electric and magnetic fields of the:th
Zs =R; +jX,. (2) harmonics, respectively, and can be written generally as a
Here, Z, is the average surface impedance, with the surfageperposition of the forward and backward traveling waves as
resistancefl;, and the surface reactancég; 6,, é,, andd,, ) _ )
are the modulation indexes; andand b are the periods in Vin(2) = ViEE) exp(—jkomnz) + V) exp(+ikamnz)  (7)
the z- and y-direction, respectively. Such a characterizatior_}lmn(z) =Yn [Vrg;rl) eXp(—jkzng)—V,ng) eXp(—l—jkzmnz)}
may be regarded as the first-order approximation of a Fourier (8)
series for a general 2-D periodic surface impedance; if needed,
more terms may be included and the ensuing analysis caan?e

applied .W'th pnly some S“.ght modifications. We begin th%fackward traveling waves, respectively. It is noted that the
formulation with the scattering of plane waves for the sake of. , . . L
rimes over theV’s and I's are omitted here for simplicity;

generality; the guiding of waves by the structure can then he . : : .
. ese expressions hold for either singly or doubly primed
treated naturally by the technique of transverse resonance, as .. . . . .
. . . guantities, denoting the TE- and TM-polarized fields. Finally,
explained in Section lIl. L .
the longitudinal propagation constait,,. and the wave
admittancey,,,,, of the mnth harmonic in the air region are
defined by
Referring to Fig. 1(a), an incident plane wave is scattered

by the 2-D periodic impedance surface and a set of space k2., + kin + K, =K 9

2 2
+ 46, cos T o 22

re V,g,,ij,) and V,g,;,) are the amplitudes of the forward and

I1l. METHOD OF ANALYSIS



HWANG AND PENG: GUIDANCE CHARACTERISTICS OF 2-D PERIODIC IMPEDANCE SURFACE 2505

and Finally, the numerical data are displayed graphically in the
form of the Brillouin diagram for physical interpretations.
Y/ — kzrnn
_ mn Wito
Youn yr - Yo (10) A. Phase Diagrami,—, Relation)

Fzmn In the analysis of the guiding characteristics of the 2-D
where k,, 1., and e, are, respectively, the wavenumberF_’e”OdiC impedance surface at a gi_ven frequency, we may
permeability, and permittivity of the free space. For th#X one component of the propagation vector, say and
scattering of a plane wave by the 2-D periodic impedané’@term'”e the othe_ky or vice versa. Before_ embarking on
surface .. andk, in (6) are supposed to be known. Up to thi€laborate computations, we first present a simple perturbation

point, the amplitudes of the forward and backward travelirﬁ{)ocedure to obtain approximate results with ease. In the
wavesV. P and v for m.m=---. —1.0. 1. --.. are the apsence of the periodic perturbations in (1), we have a uniform

only unknown quantities remaining to be determined. impedance surface for which the guiding characteristics are

The total electromagnetic fields in the air region can paell known. In particular, for a lossless reactive surface, the
represented as a superposition of those of the space harmoRf@9agation constant of the surface wave is given explicitly by

given in (3) and (4), and they are required to satisfy the

2 _ 1.2 2 _ 1.2 2
boundary condition at the periodic impedance surface at the Fow = ks +ky = kongy (13)
_ 1 .
plane z = 0 ) 1+ —, for TE mode withX, < 0
n2, = X (14)
2o X E(p, 0) = Zs(x, y)H (p, 0). (11) 14+ X2, for TM mode with X, > 0

In the Appendix, it is shown in mathematical details that in thehere X, is the surface reactance normalized to the free-space
absence of incident wave, the boundary condition above yieltave impedance, = 1207 Q. n,, may be interpreted as the
a set of vector recurrence relations for the Fourier amplitudeective refractive index of the surface wave. It is noted that
as the TE surface wave exists only for capacitive surface, and the
TM surface wave for inductive surface. In such a special case,
A1l ¥ D ln(z)+ Ay 1lm 1(2)=0 (12) the dispersion curve representing the relationship betvitgen
andk, is a circle of the radiug:,.,.
where theA’s are matrices related to the structural as well In the presence of the periodic perturbations on the surface
as the incident parameters, and tHe are unknown vectors impedance, all the space harmonics are generally excited
containing the amplitudes of the plane waves. The conditigvith the propagation constants,,, and k., for m, n =
for the existence of nontrivial solutions of the last equation-, -2, —1, 0, 1, 2, ---, as defined in (6b) and (6c). From
requires the vanishing of the coefficient matrix, and thiA19) and (A20), it is straightforward to show that in the limit
defines the dispersion relation of the waveguiding structuif. vanishing perturbation, every space harmonic must satisfy
Such a three-term recurrence relation may be analyzed by #pproximately the same dispersion relation
method of continued fractions with matrix elements. We have
implemented a computer code for such a method; thus, the <k +m2_7r>2 4 <k i 2_7r)2
numerical analysis for the present problem can be carried * a v b
out efficiently, and the results thus obtained are given in
Section V. where k,, IS, again, the propagation constant of the surface
wave. Equation (13) represents a circle of the radiys,
centered af—2mw /a, —2nw /b), for any set of integers: and
n ranging from the negative to positive infinity. For simplicity,
Based on the exact formulation described in Section llthese circles will be referred to as the unperturbed dispersion
we are now in a position to carry out both qualitative andurves.
guantitative analyses of guiding characteristics of the 2-D According to the theory of mode coupling, the dispersion
periodic impedance surface. First, we shall invoke the concepbt of the periodically perturbed structure may differ only
of small perturbation to develop approximation techniques Isjightly from that of the unperturbed one, but the propagation
which the first-order solutions can be constructed convenientbharacteristics may change qualitatively from a propagating
This allows us to identify in an easy manner various physiced a decaying wave in the stopband region. To illustrate the
effects associated with the structure in hand, and this will leéfect of the periodic modulation on the guiding characteristics
particularly useful for practical design considerations. Secoraf,the reactive surface, we have carried out a parametric study
for a numerical analysis, the infinite system of equations foin the dispersion curves under various operating conditions.
the Fourier amplitudes has to be truncated to a finite order,Fig. 2 shows the dispersion curves for the case of the
and the numerical accuracy has to be carefully studied. AftenpedanceZ, = jZ,; the periodsea = b = 0.4243\, where
the numerical accuracy is assured, extensive numerical datiés the free-space wavelength; and the modulation indexes
are systematically obtained to identify all possible physical, = 6, = ¢é,, = 0.05. Fig 2(a) shows the computed
processes associated with the structure under investigatipropagation constark, for a given realk,, while Fig. 2(b)

_ 1.2
- ksw

(15)

IV. NUMERICAL RESULTS AND DISCUSSIONS
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Fig. 3. Dispersion curves for the caseXf = jZo, 6> = 6, = 65, = 0.05
anda = b = 0.5657\. (a) Computation ok, for givenk,. (b) Computation
of k, for given k,..

Fig. 2. Dispersion curves for the case¥f = jZg, 6. = 6y = 6zy = 0.05
anda = b = 0.424264X. (a) Computation ofk, for given k,. (b)
Computation ofk, for given k.

the circles centered along the diagonal directions. In Fig. 3,
shows the computed propagation constanfor a given real the radius of the circles is increased to allow the interactions
k,. For the low-frequency operation, the normalized radius ektween (0, 0) and<1, —1) harmonics and also betweenX,
each circle(k,,,a/2r) is intentionally set to be smaller thanQ) and (0,—1) harmonics to occur. Here, the four stopbands in
1/v/2 so that the intersections occur only between the circlése central portion are the same as those in the low-frequency
centered along either thé,- or k,-axis, but not between case shown in Fig, 2, while the four extra stopbands that are
those along the diagonal directions. The implication of thestanted at an angle with respect to fheaxis are generated. As
diagrams is that the 2-D periodic structure behaves like a 1vidll become clearer later on, these extra stopbands are mainly
one in either thez- or y-directions. due to the cross modulation term containifig. Inside these

On the other hand, at higher frequenciés,, becomes slanted stopbands;, is complex for a given reak,, and
larger, and additional interactions may take place betwesa is k, for a given realk,. These extra stopbands provide
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to have large modulation indexes, and this may explain the
wide-angle suppression of surface wave by using the class
of metal structures.

B. Brillouin Diagram

Another useful way of investigating the waveguiding phe-
nomenon is to plot the relationship betweknandk, for a
givenk, or betweenk, andk, for a givenk,. As an example,
consider the case where a 2-D periodic impedance surface is
connected to a uniform impedance surface at 0 (along the
y-axis), and a surface wave is incident obliquely at the incident
angle ¢y, from the uniform impedance surface, as shown in
Fig. 1(b). Here, by fixing the incident angle, is determined
for a given frequency and we can look for the dispersion root
of k. This is done over a range of frequency to construct the
k,—*k, diagram or the Brillouin diagram. In the case of a 1-
D periodic structure that is uniform along thedirection, we
have only a fixed,; on the other hand, in the 2-D case, there
exist many harmonics with different wavenumbgys for any
positive or negative integer. From (15), the unperturbed
dispersion curves are plotted in Figs. 5(a) and 6 for two
different incident angles. It is noted that the unperturbed
dispersion curves for the fundamental £ 0) harmonic are
straight lines, as in the case of 1-D periodic structure, while
the new ones fom # 0 are hyperbolic curves, which are
present only in the case of 2-D periodic structures. Again, from
the coupled-mode theory, the dispersion curves for the case
of small perturbation should follow these unperturbed curves,
except in the vicinities of the intersection points, as circled and
marked byA, B, C, etc., in Figs. 5(a) and 6. Here, the number
in the parentheses after each character stands for the frequency
at which the intersection occurs. Looking at Fig. 5(a), we can
identify two types of wave interactions: co-flow interaction at

the point marked byD and the contra-flow interaction at all
other points. The locations of these intersections will be used
as the reference points for our numerical as well as physical
analysis.
It is well known that in the case of a 1-D periodic structure
[3], there exist bound-wave regions in the form of a triangle,
() known as the bound-wave triangle. Physically, if a dispersion
Fig. 4\-7 StoPZbangl beh%vior V\(/]ith the (Tgfkllati%nbind%xgga parémeter for tbarve falls within the triangles in a frequency range, the wave
?:asleéa?t Efk]\lv l?c;r griv;nk?y.?b) 7C:Cén1_pufe ima%ri]nary_par.t df\l,.f(oi)givoersz:jt.e guided by the, structureg is always bound Qver ,the freque_ncy
range; otherwise the guided wave may radiate its energy into

additional incident conditions for the suppression of surfaége air region. The bou'ndjwave region is a.simple triangle for
waves. if needed. the case of a 1-D periodic structure, but it may be changed

To further understand the characteristics of the extia the 2-D case.

(slanted) stopbands, Fig. 4 shows the change in the bandwi%tﬁo better understand the bound-wave region, we recall

as the modulation inde&,,, is increased. Fig. 4(a) shows th at the. Io_ngnudmgl prqpag_athn constant,,,, of the mnth
. armonic in the air region is given by

real part ofk, as a function ofk, for two values ofé,,,

while Fig. 4(b) shows the imaginary part for seven values of

62y Evidently, the bandwidth of each of the four stopbands

increases with increasing,,; eventually, they merge togetherwith

to become two large ones. From the valuegoandk, at the o\ 2 97\ 2

band edges for the case &f, = 0.1, it is estimated that the = <kx +m 7) + <ky +n T) . a7

guided wave stays within the stopband for the incident angle

ranging from 6.2 to 48.4, as measured from theaxis. Asa For k2, smaller thark3, the space harmonic will propagate

conjecture, a 2-D periodic array of metal patches is expectigdm the impedance surface in the air region and a guided wave

dobiaa e )
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Fig. 5. (@) Brillouin diagram of an impedance surface: unperturbed dispersion curves. (b) Brillouin diagram of a 2-D periodic impedance suafiaagoiic)
of the attenuation parameter with normalized frequehgy/ 2= for the same impedance surface as that in Fig. 5(b). (d) Variation of the attenuation parameter
with normalized frequencyt.a/2x for the same impedance surface as flat in Fig. 5(b).

will lose its energy as it propagates. Therefore, the boundaryFig. 5(b) shows the Brillouin diagram for a modulated
of the bound-wave region is defined by inductive surface for a TM guided wave for the case of
the impedanceZ, = jZ,, the periodsa/b = 0.9, and the
_s 2\ 2 ) modulation indexs, = &, = 0.1 and 6., = 0.05. Evidently,
<k,; +m;> + <ky +”T> = k- (18) the diagram is horizontally symmetrical with respect to the
middle line (k,a/27); therefore, we may concentrate on the
With &, = kons il ine, the bound-wave region is shownsecond half of the diagram. Comparing Fig. 5(a) and (b), we
with a highlighted area in Fig. 5(b) fopi.. = 30° and in Observe that the actual dispersion curves closely follow the
Fig. 6 for ¢inc = 50°. It is noted that in the latter case,unperturbed ones, and strong interactions or couplings take
we havek, always greater thar,; thus, the bound-wave place around the intersection points marked by circles in both
region is determined by the higher harmonic,= —1, not diagrams. Also shown in Fig. 5(b) is the highlighted area for
the fundamental one. the bound-wave region. Inside the bound-wave region, we
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wave region and falls in the bound-wave region over a range
of frequency, before entering again into another leaky-wave
region. An interesting phenomenon is that in the range of co-
flow interactions, as marked hi, the decay constant here is
very much different from that in the corresponding range in
Fig. 5(c), even though the coupling between the two modes
is very strong.

To see the effect of the incident angle on the guidance
characteristics, we consider here the case of the incident angle
¢inc = 50°. The results are shown in Fig. 6. In this casg,
is about equal to 1.083, always larger thark,; therefore,
for the fundamental harmonic in thgdirection,n = 0, the
space harmonic#, 0) is always below cutoff. In this case, the
bound-wave region is dictated by the second space harmonic
in the y-direction, as determined by (18). For completeness,
the dispersion curves of the lowest three space harmonics in
the y-direction are shown here, together with the highlighted

k.a/2n

o Al drsanhc i ponned i beneabommdine il o (IYETIR area for the bOUnd-Wave region. The genera| behaViOfS Of the
9] 01 0.2 03 0.4 0.5 0.6 0.7 a8 09 1 . . ..

attenuation constant as a function of frequency are similar to

Re[kxa/zﬁ] those in Fig. 5(c) and (d) and, for succinctness, are not shown.

However, Fig. 6 contains a very important message that the

Fig. 6. Brillouin diagram of a 2-D periodic impedance surface. .. N . . el
periodic variation may give rise to unexpected radiation.

have three distinct stopbands, as marked4yy3, andC. In
comparison with Fig. 5(a), we see that the stopband marked V. CONCLUSIONS
by A is due to the interactions between the space harmonic
in the z-direction, o = 0, » = 0) and ¢n = —1, n = 0).
Similarly, the one marked by’ is due to the interactions
between the space harmonies € 0, » = —1) and (n = —1,
n = —1). On the other hand, the one marked Byis due to
the interactions between space harmonics in bothzthend
y-directions (n = 0, n = 0) and n = —1, n = —1). In the
portion outside the bound-wave region in Fig. 5(b), a stro

?Ne have presented a rigorous treatment of guided waves on
the planar 2-D periodic impedance surface. Numerical results
are systematically carried out and are displayed in the form of
the Brillouin diagram to identify the types of wave interactions
and to show the stopband structure of the dispersion curves.
Particular attention is paid to the new phenomena that arise
in the case of 2-D periodic structures, but not in the 1-
qlg case. At a sufficiently high frequency, there exist extra

co-flow interaction is evident in the area marked by The . ;
) . . ) . ; stopbands that provide more degrees of freedom for the design
intersection points of the dispersion curves with the boundaries ™ . . =

of microwave and millimeter-wave circuits and antennas, such

of the bound-wave region are enclosed by a square. These .
: ) 2 . asf the suppression of leaky surface waves. In the case of
boundary points physically means the beginning and ending,0

. .IarIge modulation indexes, we have observed for the first time
the leaky-wave phenomenon, and are convenient for physica

. . . ) . a drastic change within the stopband, including the merge
interpretations of the numerical results obtained herein. : . . o
: : . . ) of neighboring stopbands. Most importantly, the additional
Still referring to Fig. 5(b), we follow the dispersion curve eriodicity in they-direction may results in unexpected leak
of the fundamental harmonicr{ = 0, n = 0), starting b y Y y P y

. . waves in 2-D periodic structures. The practical implication
from the pomtO through 4, B, Q, I, then o the pomtD._ of these new phenomena remains to be explored for new
The attenuation constahin[k.a/2x] against the frequency is lications
plotted in Fig. 5(c), with the range of bound-wave highlighteda}pp '
Inside the bound-wave region, there are two distinct stopbands
marked by A and B, as in Fig. 5(b). These stopbands in
the low-frequency range are surrounded by pure passbands in
which the attenuation constant vanishes. Beyond the ggint  Since the tangential electric and magnetic fields in the air
the dispersion root is generally complex because the frequesépuld be expressed as a superposition of (3) and (4), we have
is so high that the fundamental harmonic is radiating. It is

APPENDIX

interesting to note that the poitit is at the onset of radiation [ / 1 " 1 }

H Zo ’ zZ)= arnn ) Vrnn z arnn ) Vrnn z T¥mn
of the harmonic# = —1, n = —1); thus, a second beam starts™ E(p, 2) ;L S (2) + G w(2)] ¢
to appear and the attenuation constant increases substantially. ’ (A1)

In the region of co-flow interaction, as indicated by, no

substantial change in the attenuation constant occurs. Similar H(p, z) = Z |:Q;nn L (2) + G 'Igm(z)} * Pmn
results are obtained for the other branch of the dispersion ™, n

curves, as marked by the poinis B’, C, S, andT, and as (A2)
plotted in Fig. 5(d). In contrast, the branch starts in a leaky- Omn = exXP(—Kimn - p)-
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By substituting (A1) and (A2) into (11), we obtain

Z |:Vr;ln( )—rnn Vrgn( )—Zln:| exp(_kt"ln : B)

=73 {[ (0 + L (0),, ]

m,n

+ 51:[ RN (0) I S A n(O)lefl,n}
+ 6, |:I;n+1,n(0) NI N Ay n(O)agl—i—l,n}
+ 6y |:I;n ne1(0)ar, oy + 17 1 (0)ay, n—l:|
+ by |:I;n, w1 (0, i + I, n+1(0)ng,n+1}

+6$y m—1,n— 1( Qo— 1,n—1
+ m—1,n— )—rn 1,n— 1:|
m—1,n+1

1
+Irn 1,n+1 O)an 1, n+1:|

)@,
1(0
+ Oay I,’n 1, nr1(0)g;
(
)a

+6l’y Ir/n-i—l n— 1(

1 1
+ Irn-l—l, n—l(O)QnH—l, n—1:|

!
rn-l—l n—1

/
+ 61‘1! |: m—+1,n+1 (O)an+l,n+l

+ Izl—l—l, n+1 (O)le—l—l, n—|—1:| }
° exp(_kt,rnn ° P) (A3)

Taking the inner product af;,, ,,
and current amplitude has the following relation:

=2, Z { man |:Kr(71 11) - 1,2(0)

m,n

rnn

+ 6 |:Kr(7}+11) nIlm-I—l n (0) + Kr(r}-i—Ql) nI/r/n-i—l n (0

)

)
+ 6, |:Kr(71 i) 1L, n=1(0) + Kr(i 2) Lo e 1(0)}
8y [ B L 0+ KD L (0)]
+ by |:Kr(71 ll)n 1ln1,n-1(0)

S SR Y AR ()]
+ bay |:Kr(7}7—11) a1l 1, nt1(0)

+ K5 s b, na (0)]
by [ K s Tt 1 0)

+ KD a1 D01 (0)]

1,1
6 |:Kr(n+l) n—l—l‘[:n—l—l n+1 (0)

1,2
+ Kr(n,-l—l), n—l—lIn/H—l n+1(0):| } (A4)

with both sides, the voltage D) =
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with m, n = —co -+ - + oo, Where
1,1
Kr(nzl:l) nktl — < ;n,,n|Q;n:|:1,n:|:1> (AS)
and
1,2
Kr(nzl:l) ntl — < :n,n|ggz:|:1,n:|:1>' (A6)

We may now fix the integern and group the harmonics
according to the index to form the new vector relationship

Y,V (0) =DV 1 (0) + Ko N1, 1 (0)
F KN (0)+ X217 (0)
+ K£711-1—21)17n+1( ) + Kgrll 2]?Irn 1(0) (A7)

Taking the inner product o&m » 1N (A3) with both sides and
performing the same process as the above, we obtain

Y,V (0) =D 2 17,(0) + Ko I 11 (0)
+ KA1, (0)+ X5V, (0)

m—1
+KEH1, (0).

+ KN L0+ KEY (A8)

where V! (0), 1/,,(0), and I//,(0) are column vectors with
Vi (0) and I,,,,,(0) as theirnth elements respectively, and
1

matricesDS Y, X2, K(5Y | and K42 may be defined as
1§k 0
6 kr(:; Q+1 1 6 kr(:;Jn) 1 (A9)
0 6yk£:l7 Jn)-i—l 1
0 kDD 0
XGD=| 6k 0 kDI (A10)
0 kDD 0
639 kfr?:lii,n 6Wyk£:17ji?n,—1 0
KS{:QL = 63911167(7113!%,71—1—1 61:]{7(;7:{:%,71, 6wykr(:w,’:|]:%,n—1
0 67321167(:132,71,—1—1 67’167(71133,71

(A'll)

wherei, j = 1, 2.
Equations (A7) and (A8) could be rearranged and expressed
as a super matrix and vector form with the following notations:

Y;Krn(o) = Arn,—l—llrn—l—l (0) + Drnlrn(o) + Arn—llrn—l (0)
(A12)
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where [13] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh,” Novel 2-D photonic

bandgap structure for microstrip linedEEE Microwave Guided Wave

K&D g&2 Lett., vol. 8, pp. 6971, Feb. 1998.
Appy = mtl mtl (A13) [14] Y. Qian, V. Radisic, and T. ltoh, “Simulation and experiment of photonic
m K(2, 1) K(2, 2) bandgap structures for microstrip circuits,”®moc. APMC,Hong Kong,
mtl mtl Dec. 1997, pp. 585-588.
Dg:l) Xg 2) [15] V. Radisic, Y. Qian, and T. Itoh, “Broad-band power amplifier using
D,, = 9 1 5 o (A14) dielectric photonic bandgap structurdBEE Microwave Guided Wave
xX@Y p2 Lett., vol. 8, pp. 13-14, Jan. 1998.
, [16] M. P. Kesler, J. G. Maloney, and B. L. Shirly, “Antenna design with
Zm(o) the use of photonic bandgap materials as all dielectric planar reflectors,”
V()= _, (A15) Microwave Opt. Technol. Lettvol. 11, no. 4, pp. 169-174, 1996.
Krn(o) [17] T. J. Ellis and G. M. Rebeiz, “MM-wave tapered slot antennas on
l;n(()) micromachined photonic bandgap dielectrics,” IBEE MTT-S Int.
1,,(0)= < ) (A16) Microwave Symp. Dig.June 1996, pp. 1157-1160.
I (0) [18] R. B. Hwang and S. T. Peng, “Performance evaluation of bigrating as

a beam splitter,’Appl. Opt.,vol. 36, no. 10, pp. 2011-2018, 1997.

, “Plane wave scattering by bigratings,” presented at the IEEE AP-
S Int. Symp. URSI North Amer. Radio Sci. Meeting, Montreal, P.Q.,
Canada, July 13-18, 1997.

In the absence of the incident wave, the relationship betwell
V.,(0) and 1,,,(0) will be written as

[20] S. T. Peng and R. B. Hwang, “Analysis of plane-wave scattering by
a bigratings,” presented at the Int. Conf. Microwave Millimeter Wave
Km(o) - _Zgn)lm(o) (A17) Tegchnoﬁ, BeFi)jing, China, Aug. 18-20, 1998.
[21] S.T. Peng, “Guided waves on 2D periodic structures and their relation to
where planar photonic band gap structures,” presented at the APMC Workshop
New Propagation Phenomena Millimeter-Wave Planar Circuits/Lines
Z;(la) 0 Applicat., 1998, Yokohama, Japan.
ng) = //(a) (A18)
0 Zrn
ZX® and Z/{® are the diagonal matrices wit#,\*), and

Ruey Bing Hwang (S'95-M'96) was born in Nan-
Tou, Taiwan, R.O.C., on January 20, 1967. He
received the B.S. degree in communication engi-
neering from the National Chaio-Tung University,
Hsinchu, Taiwan, R.O.C., in 1990, the M.S. degree
from the Institute of Electrical Engineering, Na-
tional Taiwan University, Taipei, Taiwan, R.O.C.,
in 1992, and the Ph.D. degree from the Insti-
tute of Electronics, National Chaio-Tung University,
Hsinchu, Taiwan, R.O.C., in 1996.

From 1996 to 1999, he was with the National
Center for High-Performance Computing, Hsinchu, Taiwan, R.O.C, where he
was involved with computational electromagnetic. In the summer of 1999,
he joined the Microelectronics and Information Systems Research Center,
T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation inNational Chaio-Tung University, Hsinchu, Taiwan, R.O.C., as an Associ-

sinusoidally stratified dielectric mediafEEE Trans. Microwave Theory ated Researcher. His professional interests include guidance and scattering
Tech.,vol. MTT-12, p. 323, May 1964. characteristics of periodic structures, antenna design, and electromagnetic

ZZL(,‘Q as theirnth element, respectively.
By substituting (A17) into (A12), we obtain the three-tern

recurrence relation
A-rn—l—llrn—l—l (0)+Brnlrn(0)+A-rn—llrn—l(0) =0 (Alg)

where

B,, =D, + Y,Z(?, (A20)
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