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Guidance Characteristics of Two-Dimensionally
Periodic Impedance Surface
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Abstract—In this paper, we present an exact formulation for
the three-dimensional boundary-value problem of waveguiding
by a two-dimensional periodic impedance surface in a uniform
medium. The dispersion characteristics of such a structure are
rigorously analyzed in terms of the complete set of both TE- and
TM-polarized plane waves in the uniform medium. The results
are systematically expressed in the form of the Brillouin diagram;
thereby, in comparison to the one-dimensional case, a host of
new and interesting phenomena are identified and physically
explained.

Index Terms—Bandgap, stopband, surface wave, two-dimen-
sional periodic impedance surface, two-dimensional periodic
structures.

I. INTRODUCTION

T HE guiding of waves by periodic structures has long been
a subject of continuing interest, and extensive theoretical

and experimental results are available in the literature [1]–[10].
While most of the work in the past had been limited to
the one-dimensional (1-D) case, the class of two-dimensional
(2-D) periodic structures has attracted considerable attention in
recent years; in some applications, they have been referred to
as photonic-bandgap structures [11]–[17]. For example, for mi-
crowave and millimeter-wave circuit and antenna applications
[13]–[17], periodic structures have been utilized for perform-
ing the key function of suppressing leaky surface waves. These
structures can be fabricated with relative ease and should find
many applications in practice. Although the special case of
bigrating structures has been extensively investigated and well
understood [18]–[21], most of the work had been limited to
experimental studies and simulations using different numerical
methods. While the type of research is needed for developing
design rules that are useful for practical considerations, a
clear physical picture of wave processes is desirable for
understanding the wave phenomena in 2-D periodic structures.
The goal of this paper is to build up fundamental understanding
of waves guided on the 2-D periodic impedance surface and to
explore new and interesting phenomena that are not realized
in the 1-D case.

Specifically, we consider the guiding of waves by an
impedance surface that is periodic in two dimensions. This
class of structures is intended as a model for the study of
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wave propagation in 2-D periodic structures. In fact, the
case of 1-D periodic reactive surface [2] had been employed
successfully as a model for the analysis of wave phenomena
associated with periodic structures; for the first time, Wood’s
anomaly was then explained on a rigorous basis. We have
observed that the case of 2-D periodic impedance surface can
be formulated rigorously by the method of mode matching as
a three-dimensional electromagnetic boundary value problem.
The total fields above the planar impedance surface can be
expressed in the form of double Fourier series, with each space
harmonic appearing as a plane wave consisting of both TE and
TM polarized constituent ones. The condition for the existence
of a nontrivial solution in the absence of incident wave yields
the dispersion relation of the waveguiding structure; thus, this
problem is considered completely solved.

Based on the exact approach described above, we have
carried out extensive numerical results to identify and ex-
plain physical phenomena associated with the 2-D periodic
impedance surface. The dispersion characteristics of 2-D pe-
riodic structures are displayed in the form of the Brillouin
diagram, with both phase and attenuation constants included.
In particular, the bound-wave regions are carefully examined,
and very interesting numerical results are obtained, exhibiting
some extraordinary dispersion characteristics that cannot take
place in the case of 1-D periodic structures. In short, the results
establish considerable distinctive characteristics of the 2-D
periodic structures.

II. STATEMENT OF PROBLEM

Fig. 1(a) depict the scattering of a plane wave by a planar
impedance surface that is periodic in two dimensions. The
dispersion relation of such an impedance surface can then be
obtained from the resonance of the scattering problem. This
defines the relation between and , so that if one of them
is given, the other is then determined. For example, consider
the case shown in Fig. 1(b), where a 2-D periodic impedance
surface is connected to a uniform impedance surface at
(along the -axis), and a surface wave is incident obliquely
from the uniform impedance surface at the angle . Here,
by fixing the incident angle, is determined for a given
frequency and we can look for the dispersion root of.
For simplicity, the space above the surface is taken to be air
of infinite extent; otherwise, this can always be done by an
appropriate normalization. Such a structure is intended as a
model for the study of wave phenomena associated with the
class of multilayer periodic structures. In the literature, the
case of 1-D periodic reactive surface had been successfully
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(a)

(b)

Fig. 1. Scattering and guidance of plane wave by a 2-D periodic impedance
surface. (a) Scattering by plane wave. (b) Surface wave obliquely incident.

employed as a model for the analysis of wave phenomena
associated with periodic structures; for the first time, the
Wood’s anomaly was explained on a rigorous basis [2]. As an
extension, we consider here a periodically perturbed surface
impedance with the spatial variation given by

(1)

(2)

Here, is the average surface impedance, with the surface
resistance , and the surface reactance ; , , and
are the modulation indexes; andand are the periods in
the - and -direction, respectively. Such a characterization
may be regarded as the first-order approximation of a Fourier
series for a general 2-D periodic surface impedance; if needed,
more terms may be included and the ensuing analysis can be
applied with only some slight modifications. We begin the
formulation with the scattering of plane waves for the sake of
generality; the guiding of waves by the structure can then be
treated naturally by the technique of transverse resonance, as
explained in Section III.

III. M ETHOD OF ANALYSIS

Referring to Fig. 1(a), an incident plane wave is scattered
by the 2-D periodic impedance surface and a set of space

harmonics in each of the two directions of periodic variations
is generated. In the air region, each space harmonic appears
as a plane wave, which may be generally represented as
a superposition of the TE- and TM-polarized constituent
plane waves. For the th harmonics, the tangential-field
components can be written as

(3)

(4)

In these equations, the single and double primes denote
the TE- and TM-polarized waves, respectively.stands for
the transverse coordinate vector, while the-axis is taken
as the longitudinal direction. and are mutually
perpendicular 2-D unit vectors that are related to the transverse
propagation vector, by

(5a)

(5b)

with

(6a)

(6b)

(6c)

Here, and are the propagation constants of the
th space harmonic in the-direction and the th space

harmonic in the -direction, respectively. It is noted that in the
expressions above, we have defined the symbols, , and

for the three unit base vectors of the rectangular coordinate
system. Furthermore, the ’s and ’s represent the vertical
variations of the electric and magnetic fields of the th
harmonics, respectively, and can be written generally as a
superposition of the forward and backward traveling waves as

(7)

(8)

where and are the amplitudes of the forward and
backward traveling waves, respectively. It is noted that the
primes over the ’s and ’s are omitted here for simplicity;
these expressions hold for either singly or doubly primed
quantities, denoting the TE- and TM-polarized fields. Finally,
the longitudinal propagation constant and the wave
admittance of the th harmonic in the air region are
defined by

(9)



HWANG AND PENG: GUIDANCE CHARACTERISTICS OF 2-D PERIODIC IMPEDANCE SURFACE 2505

and

(10)

where , , and are, respectively, the wavenumber,
permeability, and permittivity of the free space. For the
scattering of a plane wave by the 2-D periodic impedance
surface, and in (6) are supposed to be known. Up to this
point, the amplitudes of the forward and backward traveling
waves and for are the
only unknown quantities remaining to be determined.

The total electromagnetic fields in the air region can be
represented as a superposition of those of the space harmonics
given in (3) and (4), and they are required to satisfy the
boundary condition at the periodic impedance surface at the
plane

(11)

In the Appendix, it is shown in mathematical details that in the
absence of incident wave, the boundary condition above yields
a set of vector recurrence relations for the Fourier amplitudes
as

(12)

where the ’s are matrices related to the structural as well
as the incident parameters, and the’s are unknown vectors
containing the amplitudes of the plane waves. The condition
for the existence of nontrivial solutions of the last equation
requires the vanishing of the coefficient matrix, and this
defines the dispersion relation of the waveguiding structure.
Such a three-term recurrence relation may be analyzed by the
method of continued fractions with matrix elements. We have
implemented a computer code for such a method; thus, the
numerical analysis for the present problem can be carried
out efficiently, and the results thus obtained are given in
Section IV.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Based on the exact formulation described in Section III,
we are now in a position to carry out both qualitative and
quantitative analyses of guiding characteristics of the 2-D
periodic impedance surface. First, we shall invoke the concept
of small perturbation to develop approximation techniques by
which the first-order solutions can be constructed conveniently.
This allows us to identify in an easy manner various physical
effects associated with the structure in hand, and this will be
particularly useful for practical design considerations. Second,
for a numerical analysis, the infinite system of equations for
the Fourier amplitudes has to be truncated to a finite order,
and the numerical accuracy has to be carefully studied. After
the numerical accuracy is assured, extensive numerical data
are systematically obtained to identify all possible physical
processes associated with the structure under investigation.

Finally, the numerical data are displayed graphically in the
form of the Brillouin diagram for physical interpretations.

A. Phase Diagram ( – Relation)

In the analysis of the guiding characteristics of the 2-D
periodic impedance surface at a given frequency, we may
fix one component of the propagation vector, say, and
determine the other or vice versa. Before embarking on
elaborate computations, we first present a simple perturbation
procedure to obtain approximate results with ease. In the
absence of the periodic perturbations in (1), we have a uniform
impedance surface for which the guiding characteristics are
well known. In particular, for a lossless reactive surface, the
propagation constant of the surface wave is given explicitly by

(13)

for TE mode with

for TM mode with
(14)

where is the surface reactance normalized to the free-space
wave impedance . may be interpreted as the
effective refractive index of the surface wave. It is noted that
the TE surface wave exists only for capacitive surface, and the
TM surface wave for inductive surface. In such a special case,
the dispersion curve representing the relationship between
and is a circle of the radius .

In the presence of the periodic perturbations on the surface
impedance, all the space harmonics are generally excited
with the propagation constants and , for

as defined in (6b) and (6c). From
(A19) and (A20), it is straightforward to show that in the limit
of vanishing perturbation, every space harmonic must satisfy
approximately the same dispersion relation

(15)

where is, again, the propagation constant of the surface
wave. Equation (13) represents a circle of the radius,
centered at , for any set of integers and

ranging from the negative to positive infinity. For simplicity,
these circles will be referred to as the unperturbed dispersion
curves.

According to the theory of mode coupling, the dispersion
root of the periodically perturbed structure may differ only
slightly from that of the unperturbed one, but the propagation
characteristics may change qualitatively from a propagating
to a decaying wave in the stopband region. To illustrate the
effect of the periodic modulation on the guiding characteristics
of the reactive surface, we have carried out a parametric study
on the dispersion curves under various operating conditions.

Fig. 2 shows the dispersion curves for the case of the
impedance ; the periods , where

is the free-space wavelength; and the modulation indexes
. Fig 2(a) shows the computed

propagation constant for a given real , while Fig. 2(b)



2506 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 12, DECEMBER 1999

(a)

(b)

Fig. 2. Dispersion curves for the case ofXs = jZ0, �x = �y = �xy = 0:05

and a = b = 0:424264�. (a) Computation ofkx for given ky . (b)
Computation ofky for given kx.

shows the computed propagation constantfor a given real
. For the low-frequency operation, the normalized radius of

each circle is intentionally set to be smaller than
so that the intersections occur only between the circles

centered along either the - or -axis, but not between
those along the diagonal directions. The implication of these
diagrams is that the 2-D periodic structure behaves like a 1-D
one in either the - or -directions.

On the other hand, at higher frequencies, becomes
larger, and additional interactions may take place between

(a)

(b)

Fig. 3. Dispersion curves for the case ofXs = jZ0, �x = �y = �xy = 0:05

anda = b = 0:5657�. (a) Computation ofkx for givenky . (b) Computation
of ky for given kx.

the circles centered along the diagonal directions. In Fig. 3,
the radius of the circles is increased to allow the interactions
between (0, 0) and (1, 1) harmonics and also between (1,
0) and (0, 1) harmonics to occur. Here, the four stopbands in
the central portion are the same as those in the low-frequency
case shown in Fig, 2, while the four extra stopbands that are
slanted at an angle with respect to the-axis are generated. As
will become clearer later on, these extra stopbands are mainly
due to the cross modulation term containing. Inside these
slanted stopbands, is complex for a given real , and
so is for a given real . These extra stopbands provide
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(a)

(b)

Fig. 4. Stopband behavior with the modulation index as a parameter for the
caseXs = jZ0; �x = �y = 0; a = 0:41� and b = 0:81�. (a) Compute
real part ofkx for givenky . (b) Compute imaginary part ofkx for givenky .

additional incident conditions for the suppression of surface
waves, if needed.

To further understand the characteristics of the extra
(slanted) stopbands, Fig. 4 shows the change in the bandwidth
as the modulation index is increased. Fig. 4(a) shows the
real part of as a function of for two values of ,
while Fig. 4(b) shows the imaginary part for seven values of

. Evidently, the bandwidth of each of the four stopbands
increases with increasing ; eventually, they merge together
to become two large ones. From the values ofand at the
band edges for the case of , it is estimated that the
guided wave stays within the stopband for the incident angle
ranging from 6.2 to 48.4 , as measured from the-axis. As a
conjecture, a 2-D periodic array of metal patches is expected

to have large modulation indexes, and this may explain the
wide-angle suppression of surface wave by using the class
of metal structures.

B. Brillouin Diagram

Another useful way of investigating the waveguiding phe-
nomenon is to plot the relationship between and for a
given or between and for a given . As an example,
consider the case where a 2-D periodic impedance surface is
connected to a uniform impedance surface at (along the
-axis), and a surface wave is incident obliquely at the incident

angle from the uniform impedance surface, as shown in
Fig. 1(b). Here, by fixing the incident angle, is determined
for a given frequency and we can look for the dispersion root
of . This is done over a range of frequency to construct the

– diagram or the Brillouin diagram. In the case of a 1-
D periodic structure that is uniform along the-direction, we
have only a fixed ; on the other hand, in the 2-D case, there
exist many harmonics with different wavenumbers for any
positive or negative integer . From (15), the unperturbed
dispersion curves are plotted in Figs. 5(a) and 6 for two
different incident angles. It is noted that the unperturbed
dispersion curves for the fundamental ( ) harmonic are
straight lines, as in the case of 1-D periodic structure, while
the new ones for are hyperbolic curves, which are
present only in the case of 2-D periodic structures. Again, from
the coupled-mode theory, the dispersion curves for the case
of small perturbation should follow these unperturbed curves,
except in the vicinities of the intersection points, as circled and
marked by , , , etc., in Figs. 5(a) and 6. Here, the number
in the parentheses after each character stands for the frequency
at which the intersection occurs. Looking at Fig. 5(a), we can
identify two types of wave interactions: co-flow interaction at
the point marked by and the contra-flow interaction at all
other points. The locations of these intersections will be used
as the reference points for our numerical as well as physical
analysis.

It is well known that in the case of a 1-D periodic structure
[3], there exist bound-wave regions in the form of a triangle,
known as the bound-wave triangle. Physically, if a dispersion
curve falls within the triangles in a frequency range, the wave
guided by the structures is always bound over the frequency
range; otherwise the guided wave may radiate its energy into
the air region. The bound-wave region is a simple triangle for
the case of a 1-D periodic structure, but it may be changed
in the 2-D case.

To better understand the bound-wave region, we recall
that the longitudinal propagation constant of the th
harmonic in the air region is given by

(16)

with

(17)

For smaller than , the space harmonic will propagate
from the impedance surface in the air region and a guided wave
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(a) (b)

(c) (d)

Fig. 5. (a) Brillouin diagram of an impedance surface: unperturbed dispersion curves. (b) Brillouin diagram of a 2-D periodic impedance surface. (c)Variation
of the attenuation parameter with normalized frequencykoa=2� for the same impedance surface as that in Fig. 5(b). (d) Variation of the attenuation parameter
with normalized frequencykoa=2� for the same impedance surface as flat in Fig. 5(b).

will lose its energy as it propagates. Therefore, the boundary
of the bound-wave region is defined by

(18)

With , the bound-wave region is shown
with a highlighted area in Fig. 5(b) for and in
Fig. 6 for . It is noted that in the latter case,
we have always greater than ; thus, the bound-wave
region is determined by the higher harmonic, , not
the fundamental one.

Fig. 5(b) shows the Brillouin diagram for a modulated
inductive surface for a TM guided wave for the case of
the impedance , the periods , and the
modulation index and . Evidently,
the diagram is horizontally symmetrical with respect to the
middle line ; therefore, we may concentrate on the
second half of the diagram. Comparing Fig. 5(a) and (b), we
observe that the actual dispersion curves closely follow the
unperturbed ones, and strong interactions or couplings take
place around the intersection points marked by circles in both
diagrams. Also shown in Fig. 5(b) is the highlighted area for
the bound-wave region. Inside the bound-wave region, we
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Fig. 6. Brillouin diagram of a 2-D periodic impedance surface.

have three distinct stopbands, as marked by, , and . In
comparison with Fig. 5(a), we see that the stopband marked
by is due to the interactions between the space harmonics
in the -direction, ( , ) and ( , ).
Similarly, the one marked by is due to the interactions
between the space harmonics ( , ) and ( ,

). On the other hand, the one marked byis due to
the interactions between space harmonics in both the- and
-directions ( , ) and ( , ). In the

portion outside the bound-wave region in Fig. 5(b), a strong
co-flow interaction is evident in the area marked by. The
intersection points of the dispersion curves with the boundaries
of the bound-wave region are enclosed by a square. These
boundary points physically means the beginning and ending of
the leaky-wave phenomenon, and are convenient for physical
interpretations of the numerical results obtained herein.

Still referring to Fig. 5(b), we follow the dispersion curve
of the fundamental harmonic ( , ), starting
from the point through , , , , then to the point .
The attenuation constant against the frequency is
plotted in Fig. 5(c), with the range of bound-wave highlighted.
Inside the bound-wave region, there are two distinct stopbands
marked by and , as in Fig. 5(b). These stopbands in
the low-frequency range are surrounded by pure passbands in
which the attenuation constant vanishes. Beyond the point,
the dispersion root is generally complex because the frequency
is so high that the fundamental harmonic is radiating. It is
interesting to note that the point is at the onset of radiation
of the harmonic ( , ); thus, a second beam starts
to appear and the attenuation constant increases substantially.
In the region of co-flow interaction, as indicated by, no
substantial change in the attenuation constant occurs. Similar
results are obtained for the other branch of the dispersion
curves, as marked by the points, , , , and , and as
plotted in Fig. 5(d). In contrast, the branch starts in a leaky-

wave region and falls in the bound-wave region over a range
of frequency, before entering again into another leaky-wave
region. An interesting phenomenon is that in the range of co-
flow interactions, as marked by, the decay constant here is
very much different from that in the corresponding range in
Fig. 5(c), even though the coupling between the two modes
is very strong.

To see the effect of the incident angle on the guidance
characteristics, we consider here the case of the incident angle

. The results are shown in Fig. 6. In this case,
is about equal to 1.083, always larger than ; therefore,
for the fundamental harmonic in the-direction, , the
space harmonic ( ) is always below cutoff. In this case, the
bound-wave region is dictated by the second space harmonic
in the -direction, as determined by (18). For completeness,
the dispersion curves of the lowest three space harmonics in
the -direction are shown here, together with the highlighted
area for the bound-wave region. The general behaviors of the
attenuation constant as a function of frequency are similar to
those in Fig. 5(c) and (d) and, for succinctness, are not shown.
However, Fig. 6 contains a very important message that the
periodic variation may give rise to unexpected radiation.

V. CONCLUSIONS

We have presented a rigorous treatment of guided waves on
the planar 2-D periodic impedance surface. Numerical results
are systematically carried out and are displayed in the form of
the Brillouin diagram to identify the types of wave interactions
and to show the stopband structure of the dispersion curves.
Particular attention is paid to the new phenomena that arise
in the case of 2-D periodic structures, but not in the 1-
D case. At a sufficiently high frequency, there exist extra
stopbands that provide more degrees of freedom for the design
of microwave and millimeter-wave circuits and antennas, such
as the suppression of leaky surface waves. In the case of
large modulation indexes, we have observed for the first time
a drastic change within the stopband, including the merge
of neighboring stopbands. Most importantly, the additional
periodicity in the -direction may results in unexpected leaky
waves in 2-D periodic structures. The practical implication
of these new phenomena remains to be explored for new
applications.

APPENDIX

Since the tangential electric and magnetic fields in the air
should be expressed as a superposition of (3) and (4), we have

(A1)

(A2)
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By substituting (A1) and (A2) into (11), we obtain

(A3)

Taking the inner product of with both sides, the voltage
and current amplitude has the following relation:

(A4)

with , where

(A5)

and

(A6)

We may now fix the integer and group the harmonics
according to the index to form the new vector relationship

(A7)

Taking the inner product of in (A3) with both sides and
performing the same process as the above, we obtain

(A8)

where , , and are column vectors with
and as their th elements, respectively, and

matrices , , , and may be defined as

...

...

(A9)

...

...

(A10)

...

...
(A11)

where , 2.
Equations (A7) and (A8) could be rearranged and expressed

as a super matrix and vector form with the following notations:

(A12)
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where

(A13)

(A14)

(A15)

(A16)

In the absence of the incident wave, the relationship between
and will be written as

(A17)

where

(A18)

and are the diagonal matrices with and
as their th element, respectively.

By substituting (A17) into (A12), we obtain the three-term
recurrence relation

(A19)

where

(A20)
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