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This article summarizes four formulations of the composite body method for the
inertia matrix of a manipulator in the earlier works and presents a new formulation.
These five formulations all use the first moments and the inertia tensors of composite
bodies about the origin of the local frame. This paper also presents an algorithm for
computing these first moments and inertia tensors. This algorithm utilizes a set of
minimal linear combinations of inertia parameters instead of the natural inertia
parameters, so that a number of redundant computations are saved. It is found that
the new algorithm for the first moments and the inertia tensors of composite bodies is
computationally superior to the others in the literature. On the other hand, two among
the five formulations for the inertia matrix are more efficient than the other three as
well as the others in the literature. The new formulation is one of these two most
efficient formulations, and is specially adequate to a manipulator with some transla-

tional joints. © 1999 John Wiley & Sons, Inc.

1. INTRODUCTION

The forward dynamics of a manipulator is to solve
the joint accelerations for given actuator forces and
then to calculate the joint velocities and joint dis-
placements by integrating the joint accelerations.
The computation of the inertia matrix plays the
crucial role in the forward dynamics. An efficient

*To whom all correspondence should be addressed.

formulation for forming the inertia matrix is then
the central topic of the forward dynamics.

There are three types of composite body meth-
ods for forming the inertia matrix of a manipulator
in the literature. They are different in the point
about which the inertia properties (first moments
and inertia tensors) are measured: the center of
mass,! the origin of the local frame,> ® and the
origin of the base frame.” The concept of the com-
posite body method was first presented by Walker
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and Orin." However, they used the center of mass
to measure the first moments and the inertia tensors
of composite bodies and did not exploit the constant
terms in the first moments and the inertia tensors.
Renaud®’ used the first moments and the inertia
tensors of composite bodies about the origin of the
local frame to derive the so-called generalized link
method of the inertia matrix. Renaud dissected the
terms in the recursive formulation of the first mo-
ments and the inertia tensors into constant terms
and varying terms, so that some computations are
saved. His method was further extended and modi-
fied by Vukobratovik et al.* and Lin.” The method
of Walker and Orin' utilizing the same inertia prop-
erties as those of Renaud, instead of those about the
center of mass, was later rederived by Lilly and
Orin® and found more efficient, although Lilly and
Orin applied the spatial notation and named the
resulting formulation as spatial composite body
method. On the other hand, Lin’ proposed another
type of composite body method by measuring the
first moments and the inertia tensors of composite
bodies about the origin of the inertia frame on the
base. His method was found the most efficient for-
mulation for the inertia matrix at that time.

In this paper, we are concerned with the second
type of composite body method, i.e., the one using
the inertia properties about the origin of the local
frame. There have been several alternate formula-
tions based on this type of composite body method.
It will be shown in this article that the efficiency of
these formulations was underestimated in the ear-
lier works. A new formulation of this type of com-
posite body method is also presented in this article,
which is specially adequate to a manipulator with
some translational joints. One of the advantages of
this type of composite body method is that a set of
minimal inertia parameters for the manipulator dy-
namics is closely related to the first moments and
the inertia tensors of composite bodies and can be
utilized in the formulations of this type of compos-
ite body method.

A set of minimal linear combinations of inertia
parameters (MLC’s) is a set of minimal parameters
that are linear combinations of the natural inertia
parameters and sufficiently determine the manipu-
lator dynamics. There are two different sets of
MLC’s. One was discovered by Khalil et al.*™'* and
Mayeda et al.'''? independently, the other was
found by Lin.®"'5 Both sets were already used
to reformulate the so-called recursive Newton-
Euler formulation of the manipulator inverse dy-
namics.”” 7 It was exploited that using MLC’s can

reduce a lot of computations in the inverse dynam-
ics. Kawasaki et al."® developed an efficient formu-
lation for the inertia matrix in terms of the set of
MLC’s of Khalil et al. and Mayeda et al. and found
that their new formulation is computationally supe-
rior to all the others in the literature. This paper will
indicate that the formulation of Kawasaki et al.
actually also belong to the second type of composite
body method. On the other hand, we also try to
develop an algorithm for computing the first mo-
ments and the inertia tensors of composite bodies
using Lin’s set of MLC’s. It will be shown that this
new algorithm is more efficient than that of
Kawasaki et al.

This paper is organized as follows. Section 2
summarizes all formulations of the second type of
composite body method in the literature and pre-
sents a new one. The efficiency of these formula-
tions is compared also in this section under the
assumption that the first moments and the inertia
tensors of composite bodies are on hand. Section 3
briefly reviews the minimal linear combinations of
inertia parameters. The algorithm for the first mo-
ments and the inertia tensors of composite bodies in
terms of MLC’s is proposed in section 4. Section 5
draws the conclusion.

2. FORMULATIONS

We consider a manipulator with n low-pair joints,
which are labeled joint 1 to n outward from the
base. Assign a body-fixed frame on each joint (i.e.,
frame E; is fixed on joint i) in accord with the
normal driving-axis coordinate system."”* The dis-
tance from the origin of E; to that of E; is desig-
nated as s, and that to the center of mass of link i
as c;.

In the normal driving-axis coordinate system,
the z-axis of a body-fixed frame is the driving axis
of the corresponding link, i.e., the unit vector along
joint i is u{” =[0,0,1]", where superscript “{i)”
denotes the representation of a vector with respect
to frame E;. The distance from the origin of frame
E,_, to frame E; is

i_1i5<i_1>: —d;SB; |, or i_lis<i>= —b;S6, | (1)
d,.CB; d;

where S0, =sin 6,, C6, = cos 6;, and b;, d;, B, and 6,
are the geometrical parameters of the coordinate
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system. The coordinate transformation matrix from
E; to E,_, is well known as

i.1R=|CB;S6; CBCoH, —SB; 2
SB;S6; SB;Co;  CpB;

The composite body i is defined as the union of
link i to link n. Let the mass of the composite body
i and the first moment of the composite body about
the origin of E; be denoted by i1, and ¢;, respec-
tively, to obtain

n
;= Z'mj (3)
&=L mfls +cf") (4)

where m; is the mass of link j. The inertia tensor of
the composite body about the origin of frame E;
(denoted by J,) results by using the Huygeno—
Steiner formula®' to obtain

n
ji0 = ¥ RIO IR
j=i

- mj[(]l:s<i> + c}”) X] [(és“> + c§i>) X], (5)

where I§/’ is the representation of the inertia tensor
of link j with respect to frame E; and [a X ] denotes
a skew-symmetric matrix representing vector multi-
plication, ie., [aX]b=aXb. In the context, the
overhead symbol """ is used to denote the inertia
parameters (mass, first moment and inertia tensor)
of a composite body.
We introduce the notation of

1, for rotational joint i,

*=(1-K)=
Ki=(1-K) 0, for translational joint i.

(6)

The concept of the composite-body method' is that
the (j,Dth, j<i, entry of the inertia matrix is the
actuator force of joint j to support the inertia force
and torque of the composite body i due to a unit
joint acceleration of joint i (i.e., when only joint i
moves with a unit joint acceleration and the other
joints are stationary). Applying Newton—Euler
equations (see Appendix A), we obtain the follow-

ing recursive form for computing the inertia matrix:

£ = KFuld x &0 + Kiul®,  i=1,..,n (@)

H0 =KFOu + K& xu$?,  i=1,...,n (8)
£O0=TURETY, 1<j<i—1,  i=1,...,n
9
iy _j+1 i+1 i+1 i i
€0 =T IRELY T Is ) X £D,
l<j<i—-1, i=1,...,n (10)
=ulh. *(J) £4$D
Dy =P (KFtf)) + K£(7),
1<j<i, i=1,...,n (11D

where Dj; is the (j, Dth entry of the inertia matrix
D. Note that D is symmetrical and u{” =[0,0,1]".
If we define the notation of spatial dynamics as

e
K= . | ] (12)
[0 x| diag(r,, 71, 1)
it1 i1 (i i+t1
x| N | "S<_]>X]  ICES
0 z+1iR
D
(D =
o K uf® (14)

Then (7)-(11) turns out to be the spatial composite-
body method in Lilly and Orin® as follows:

£ =KOpD,  i=1,...,n (15)

fO0=TUXEGTY,  1<j<i—1, i=1,...,n
(16)

Dy=¢0-£0, 1<j<i, i=1,..,n @17)

This shows that Method IV of Lilly and Orin® is the
spatial form of (7)—(11). However, the computation
redundancy is more easily explored from the form
of (7)—(11). We denote this form as Formulation 1,
which is listed in Table I with the consideration of
computation redundancy. In Table I, (7) and (8) are
expanded to reveal that no computations are re-
quired for them. The computations of f{'7"/ and
t{"}) are separated from those of f{/ and t{},
j <1, since the vectors f{? and t{’} have zero com-
ponents and the computat1ons w1th them can be
saved. If joint 1 is rotational, f{} is redundant,
while t{'/ is redundant for translatlonal joint 1. This
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Table I. Formulation 1.7
Number of
operations
(@M, 0
£ =K} @, |+K| 0 i=1..n 0
0 i
T A
| (L. i3 @),
t =K¥| J{7), | + K, —@) | i=1..n 0
()5 0
D;=K{@). + KD,  i=1,...,n 0
£070 =K*,_[RED + K[0, —;SB, m,CRIT,  i=3,...,n K}6M2A
to =Rt + 0 x £ ] + 0 ><f<’_, i=3,...,n K¥12M8A + K;8M6A
N i
£ =TFIRETD, n = -2 SM4A
o 0 . bj+1 ‘
0 =TURIGEY +] O [ XELV+] o |}, 12M8 A
j+1 0
i=4,...,n,j=2,...,i—2
K,8M4A,i+2
(1 — K. 2RE$2 = 1 s
f K]lszll i=2,...,n {K]6M2A,l=2
K¥14M10A, i #2
£1) = KE2R(Y) +252) X £42 - ! ’
KRS +s X £5%7), i=2,...,n {K{"12M8A,i=2
= K*$0 o | = c = i —
Dji_Kj(tj,]i)z+Kj(fj,]1')z/ i=2,...,mj=1..i-1 0

This formulation is equivalent to the spatial composite-body method proposed by Lilly and Orin® that used

the notation of spatial dynamics.

individual local frame E;. In computing t<
[0, —b;71,CB;, — b;7#1,SB,17 is a constant vector

fact is also taken in account in Table I. Examining
(1) reveals

- o 0 | by
TS £ =THIR| 0 | XETY +| o [ X £
i 0

so that (10) requires 12M (multiplications) and 8A
(additions) instead of 14M and 10A. This technique

In this formulation vectors are represented with respect to the
., if joint i is a translational joint, then [b;,0,0]7 X {7 1> =

was already exploited in ref. 15 and is used in Ta-
ble L.

Substituting (7)—(10) into (11), we obtain the
closed-form formulation of

D, = K;"K;"u§’>-{]f’>u§” +is( x (uf) x e;n)}
+ K/.K;k u§f>-(u§/> X a]<,1>)
+ K;‘Kiu§f>~(ﬁ1i;s<j> X ul + ¢ x u§f>)
+KjKiﬁ/liu§]>'u§]>/

j<i. (19)
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We apply a coordinate transformation to (19) to
reformulate it as

(f§i>)13
Dj,=K;"K;*‘u§i>- (ffi>)23
JE)ss

— (@) (s<’>)

+ —(&$") (s<1>)

@) (s<’>) +(C§’>)y(js<i>)y
+ K KFuf? - (uf x &)

i (js0), + @),
>

Yy
(iy. ;
+K;-kKl.uj’ (S<l )X_(el<1>)x
0
+ K Ky(u§)_, j<i. (20)

All vectors in (20) are represented with respect to
frame E,, instead of E,, so that J¢” and &" can be
directly used for all j <i, while (19) needs to calcu-
late J¢ and &7, j<i.

By using the rule of scalar triple product, (20)
yields

e O W PR iy selig(i)

D= KK {uf- (7 u(?) + (uf” x}s”)
(X &)+ K KFul - (uf x &)
+K;k1<i{miu§">~(u§">xjs<i>) +u§">-(é,<.">><u§">)}

+ K Ku§?-uf?,  j<i (1)

which is the formulation that Renaud? first derived
for a manipulator with only rotational joints and
was extended to a general manipulator by Lin.
These two forms (20) and (21) are designated as
Formulations 2 and 3, respectively. Formulation 2
needs u§k> and s<k>, k> j, while Formulatmn 3
requlres u$® and 80, k> j, where k8 = u¢k x
*s. Both formulations are listed in Tables II and
111, respectively.

If we change the coordinate frame, with respect
to which vectors are represented, to the end-effector
frame, then (7)—(8) turns out to be the formulation

of Fijany and Bejczy,” which is listed in Table IV
and is called Formulatzon 4. The additionally re-
quired variables are | R, u{", and " s,

Finally, it is pomted in Appendix B that the
formulation of Kawasaki et al.'® is in fact a variant
form of this type of composite-body method, too.
We designate it as Formulation 5 and list it in Table
V. This formulation is different from Formulation 1
in using lilh{' [see (B3)] instead of the first moment
of the composite body &".

Although Formulations 1 and 3-5 were pre-
sented in earlier work, their efficiency was underes-
timated. Tables I-V are accompanied with the com-
putation requirements along each equation, in order
to give clear and precise computation estimates. We
consider two types of manipulators: Type 1 is a
manipulator with 7 rotational joints such as the
Puma robot, and Type 2 is that with a translational
joint as joint 3 and #n — 1 rotational joints such as the
Stanford arm. Table VI summarizes the computa-
tion requirements of five formulations with the as-
sumption that the values of J¢” and & are on
hand.

According to computational structures, Formu-
lations 1, 4, and 5 can be categorized to one group,
and Formulations 2 and 3 belong to another group.
In the latter group, Formulation 2 is always more
efficient than Formulation 3, since the computations
of ; “8¢% in Formulation 3 entails n(n — 1) and n(n —
3) more multiplications for Type 1 and Type 2,
respectively.

On the other hand, Formulation 1 is always
computationally superior to Formulation 5. This is
because Formulation 5 utilizes '~ 'h} and then re-
quires 4n more additions. Formulation 4 trades less
O(n*) computations with much more O(n) due to
the computations of | R, so it is the least efficient in
the former group for n < 11.

Formulation 1 is the best efficient for Type 1
with 5 <n <11 and for Type 2 with 9 <n <11. For
n <4, Formulation 2 is superior to the others for
both types, while it is the best efficient for Type 2
when 7 < 8. In comparison with the computation
requirements of Type 1, Formulation 2 reduces (13n
—44)M and (111 — 36)A for Type 2, while Formula-
tion 1 just saves 10M and 4A, independently of n. It
is then recommended to use Formulation 1 or 2,
depending on efficiency, for a manipulator with less
than 12 joints.

Although the above efficiency evaluation ne-
glects the computations of &¢{” and J¢”, this does



684

Journal of Robotic Systems—1999

Table Il. Formulation 2.2
Number of
operations
Gy ' ; .
u}»/Jr =j+{Ru§]>, j=1,...,n—1 0
wh = RuD, =1, -2 k=j+2,..,n 8M4A
by 0
;(S<k>=K]* k1R |k ls<k Drloll+]0]}, K#8M6A
0 dy
j=1...,n—=2k=j+2,...,n
Dy =K (G{y + Ky, i=1,..,n 0
(j7_<i>) — (@) (s<z>)
D; = K¥KFu("- (G575 = @), (357, K#KF7M6A
(J<z>) + (@), (s<‘>) + (@), (s<’>)
_(el<_i>)y
+K]-K;ku§l>' (e§1>)x K,—K;kZMlA
0
i (js0), + @),
+K]*Kl.u§’>- (S<l>) _(C<z>) K?KAMC‘}A
0
+K; K (a$?),, =2,...,mj=1,..,i—1 K;K,IM

“In this formulation, vectors are represented with respect to the individual pivot frame E;.

not affect the efficiency comparison, since all five
formulations need the values of ¢ and J¢. It was
pointed out' that an algorithm for computing &{"
and ]f’> in terms of a set of minimal inertia parame-
ters is more efficient than that in terms of the
natural inertia parameters. Therefore, the following
section briefly reviews the theory of minimal linear
combinations of inertia parameters.'*'>

3. MINIMAL LINEAR COMBINATIONS OF
INERTIA PARAMETERS

By the principle of mathematical induction, it has
been shown' that the first moment and the inertia
tensor of the composite body i can be expressed as

the sum of a constant vector (k; or U,) and a
varying vector (I; or V,) as follows:

&P =k;+1, (22)
O =u+v, (23)
where k M, 1,=0,U,=J{,V, =0, and
(&),
li=K;k+1i+1iR (Cg-]:iw)
(li+1)z
A 0
+ Ky IR L+ . 0 (24)
M i,
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If joint i + 1 is a rotational joint, then

(Ui+1)11_(Uz‘+1)zz (Ui+1)12 (Ui+1)13

V,-=i+liR Vit Uiy 0 (U112 HliRT
Uiy 1) Uiy WUiy)s
_ i1y _ i+1 (i)
[sO x| 11,1 =11, x][" s x| (25)
while for translational joint i + 1, where b{? =[b,,,,0,0]" and d{ " =[0,0,d,,,]"

1

Vi=" R (Vi — i A <] [dE x]

(e, s =b{ +d¢D)). The terms of k; and U,
can be found in Appendix C, which are not used in

1

- [df'fiw ><] [e§i+11> ><] the following.
n1;, the vectors k; and the matrices U; are in-
_ [effl 1) ><] [dffl 1) % ] )“’ 11,RT variant to manipulator motion and named as inertia

constants of composite bodies. The varying terms in

—[b <]l xT =11 x][bfP x| (26) &" and J¢" can be calculated with only some (not

Table lll. Formulation 3.2

Number of
operations
u§j+1>=j+{Ru§j>, j=1,...,n—1 0
wh = RuD, =1, =2 k=420 SM4A
RUTD =K RId, 1 SB 1, by O, =1, n—1 K¥4M2A
b, 0
O = KR IsET D u D x| +ufR x| 0 [}, K*12M8A
0 dy
j=1...,n=2k=j+2,...,n
D, =K*({?)y + Kiht;,  i=1,...,n 0
G || @, (37,
Dy = KKl G | | o), (50, K7 K7M4A
s 0
. —(@&),
+K;KFul?- &), K;K¥2M1A
0
— @),
+KFK A (j87) +uf-| ey K#K;3M2A
0
+K K a$?),,  i=2,.,mj=1,...,i-1 K;K,1M

*This formulation is equivalent to the generalized link method proposed by Renaud? for a
manipulator with only rotational joints, which was extended to a general manipulator and
named as Renaud’s formulation by Lin.” In this formulation, vectors are represented with
respect to the individual pivot frame E; as those in formulation 2, but this formulation
calculates (8¢ = u§? xs¢" instead of ;s¢".
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all) of the inertia constants of composite bodies. This
property allows us to set forth the following set of
minimal linear combinations of inertia parameters
(MLC’s)! that is a set of linear combinations of the
natural inertia parameters and can determine the
dynamics of a manipulator.

Theorem 1 (refs. 14 and 15): For a manipulator with
n low-pair joints, in which joint r is the first rotational
joint counting from the base and joint s is the nearest
rotational joint not parallel to joint r, a set of MLC’s for
determining the actuator forces T is the set ¥ consisting
of all nonzero elements of

L KF(Upgs, 8K (k)),, §;KF(k)),
fOr T S] < S,

2 K30, (000 KO K10,
K; (Uj 13/ Kj (Uj)23' K; (kf)"’ Kj (kj)y
fors<j<mn,

Table IV. Formulation 4.2

3. K;m; fori=1,...,n,
4. Kk, Kk, Kk, fors<i<n,
5. 0iK;Ky;, 0K Ky for r<i<s,

where

k= — (@), k), + @) k), @)
Ky = — (@) [@P) (), + @), k), ]

+(1 - @)k, (28)

and 8; and o, are either one or zero to denote the
redundancy of the parameters, which are defined as fol-
lows: ;=0 for the case where u,//u,//(g — a,), Yk <
i <s, and ,,s is zero or parallel to u, for every rotational
joint m, r <m <i, otherwise 8;=1. On the other hand,

Number of
operations
‘R=""'R, /R, i=1,...,n-2 24M12A
w2 =" R 0
w="Rul”, i=1,...,n-2 8M4A
.18t =[b,C8,, —b,56,,d,]" M
X . bi+1 . 0
lgtm =R +™IRl 0 |, i=1,...,n-2 6M3A
0 diq

- (@M, 0

£{7 =K} @, |[+K[ 0] i=1.. 0
0 i

i) e,
=K Oy [+ K| @y | 0= ,n 0

G503 0
D =KD, + K(£{7)., i=1,...,n 0
£$0 ="REY,  i=2,..,n-1 K*6M3A + K;3M
tW=1RE,  i=2,..,n-1 K*9M6A + K;6M3A
£ =€, i=2,.,mj=2,...,i-1 0
E0 =0+ s XD =2, =101 6M6A

= K¥* gl . gl (ny . £(ny | = C = i —

Dji—Kj ;" -ty +Kjuj fi,i , i=2,...,mj=1,..,i-1 3M2A

*This formulation was proposed by Fijany and Bejczy® and is different from formulation 1 in that vectors
are represented with respect to the end-effector frame E,,.
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Table V. Formulation 5.7

Number of
operations
K, =KFu$h,  i=1,...,n 0
D, =K*(k),+ K, i=1,...,n 0
£070 = —KF(T R =iy, (s D) xufTD K#4M4A
+KAuli"l, i=2,...,n 0
t51) = K¥ Rk, + K7 Thi x uf=1 K*14M10A
— £ x sV, i=3,..., 1 and when K} =1 for i =2 K,8M5A
£ =TURETY, Q=4 mj=2,..,i-2 8M4A
E0 =THREY + T s X £ D, =4, j=2,.,i-2 12M8A
£ =K, IR, i=3,...,n K,8M4A
1) = KF IR +7s2 X £§2),  i=3,... K#14M10A
D, =K{W), +K(E D), i=2...,mj=1,..,i-1 0

This formulation was proposed by Kawasaki et al.!® However, Steps 4.1 and 4.2 in ref. 18 are combined

together and the erratum in Step 4.2 is corrected.

o, =0 for the case of u;//u,, r <j <s, otherwise o; = 1.
Note that u'” for i <s is a constant factor.

Remark: The term V, in (25) for rotational joint
i+1 is slightly different from that in the earlier
works.*"!* Tt additionally requires the (3,3)th entry
of U;,; in the first term on the right-hand side of
(25). Meanwhile, U; does not need (U, ), [see (C2)
in Appendix C]. Such a modification makes the
inverse dynamics in ref. 15 directly in terms of the
inertia constants of composite bodies, i.e., the term
D{" in that work is now directly in terms of U; in
(C2), instead of U in that work [cf. (38), (42), and
(43) in ref. 15]. However, this modification does not
affect the MLC’s (according to Corollary 6 in ref. 14)
and the efficiency of the inverse dynamics.

According to Theorem 1, not all inertia con-
stants of composite bodies that are required by the
formulations of the inertia matrix can be calculated
out with the set of MLC’s. For i <r, both & and
J{? are not required in the above five formulations,
so the fact that they cannot be calculated out with
the MLC’s has no influence. However, & is re-
quired for translational joint i, r <i <s, in the above
five formulations, but it cannot be calculated out
with the MLC's, since «;; and «,;, instead of k;, for
translational joint i, r <i <s, are in the MLC’s. It is
then necessary to modify the formulations.

We consider only Formulations 1 and 2. In For-
mulation 1, {77 and t{}} for i <r are redundant, so
that (8) and (10) are discarded for i <r. However,
for r <i < s the modification of (8), (10), and (11) is
necessary. Since all rotational joints in front of joint
s are parallel to one another, only the z-components
of the representations of the vectors t, ; and t; ; with

respect to frame E, are required for computing D;;,

j<i<s. Thus, (8), (10), and (11) for r<i<s are
replaced by
(t{")), =K} (u</>)z( §’>)33
+ Ki[Kli - (u§i>)y(li)x + (u§l>)x(ll)y] 7
..,s—1 29)
r _ r iy [+ 1a(i ]
(). = 41 =030 ¢ 50)
1<j<i,i=r,...,s—1 (30)
D, = K . (47).+ K657,
r<j<i—1,i=r,...,s—1 (31)
Equation (29) follows from (8), (22), and (27). Note

that u¢/”’ is constant for j <s, and (u¢”),= +1 for
rotational joint j, j <s. In summary, Table I is still
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retained for i>s, whereas t{’/ and t{/ in Table I
are, respectively, replaced by (), and (t§77),
(29) and (30) for r < i < s and are discarded for i <r.

In Formulation 2, only the first and third terms
on the right-hand side of (20) should be modified.
For rotational joints i and j, j<i§s— 1, ué? =
[0,0, +117, so u§i> [(c<l>) —(@{”),,0]" can be in
terms of k;; and I; by usmg (22) and (27). Thus,
(20) is modified for i <s—1 as

D, = K7 KE (). (1) + 0 E0 (),

£ @), (157), ]} + K KFug -6 (uf> x &)

mi(;5<i>)y

—in(js ),

0

1

+ K]*KI u§i> . + (U§j>)z(tz<',ri>)z

+ KK, (u§?)

z

j<i<s—1 (32)
where (t{"7), is that in (29). Note that §; is added in
the above equation, because the terms associated
with §; in (32) have no contribution to D;; when
6; = 0 according to the definition of §; in Theorem 1.
All equations in Table II are retained with the ex-

ception of D;;, which is replaced by (32) for i <s.

Consequently, both Formulations 1 and 2 re-
quire

e (&"), and (&{"), for i >s;
(]<’>)13, g¢ >)23, and (J{”),; for rotational joint
iix=s; 4

o Ji)g3, (€7),, and (&{"), for rotational joint
i, r<i<s;

o (t{7), [see 29)] for r<i<s.

4. ALGORITHM FOR FIRST MOMENTS AND
INERTIA TENSORS

Equations (22) and (24) already construct an effi-
cient recursive form for computing I; and &{”. In
the followmg, we are only concerned with V; for
computing J{P.

Analog to (18), we can decompose
X[1;X]in (25) as

[*1s® x]11,x] = [b{, x][1;X]

[1+ 1S<1> % ]

i+1 1
+ IR X

J(TiRT) ]

(33)

Substituting (24) and (33) into (25), we obtain the
expanded form of

(Ui+1)1l o (Ui+1)22 (Ui+1)12 (Ui+l)13
Vi=i+1l-R Vi + 0 (U1
Symmetry (Ui+1)33
2d; (1), 0 _di+1(é§f11>)x 0 _bi+1(li)y —b;1(1),
+ 2, (1), —d @), [|TIRT+ 2b;.4,(1), 0
Symmetry 0 Symmetry 2b,, (1),
(34)
for rotational joint i + 1. The expanded form of (26) is
mi+1di+1 + 2(el<'-i%—+11>)z 0 _(61{-1;—4—1”)3(
V=RV yadin +2@E), @), |[TIRT
Symmetry 0
0 _bi+1(li)y _bi+1(lz‘)z
+ 2b;, (1), 0 (35)
Symmetry 2b,,4(1),
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Table VI. Efficiency comparison of five formulations when J¢7 and & are on hand.

Type 1 Type 2
n 4 6 11 n 6 8 9
Form.1 M 10n%2 —18n + 10 98 262 1022 10n% —18n 252 496 648
A 6n2—10n+4 60 160 620 6n2—10n 156 304 396
Form.2 M 11.5n% — 27.5n + 16 90 265 1105 11.5n% — 40.51 + 60 231 472 627
A 8n2—18n + 10 66 190 780 812 —29n + 46 160 326 433
Form. 3 M 12.5n% — 28.51 + 16 102 295 1215 12.5n% — 43.51n + 65 254 517 686
A 812 —18n + 10 66 190 780 812 —29n + 45 159 325 432
Form. 4 M 45n%+ 48,51 — 108 158 345 970 45n%+ 4851 — 114 339 562 687
A 4n?% 4 24n — 56 104 232 692 4n® +24n — 62 226 386 478
Form.5M 10n% —18n + 14 102 266 1016 10n% —18n + 4 256 500 652
A 6n’>—6n+2 74 182 662 6n2—6n—7 173 329 425

for translational joint i + 1. In the algorithm, V; for
i>s is computed by using (34) or (35).

For joint i, i < s, only the (3,3)th entry of KxJ¢0
is required for computing the inertia matrix. It can
be shown that

(<2 )55 = ufTf w0 (36)

since u$"” ='Ru{" is the third column of :R or the
third row of | R. Since the rotational joints in front of
joint s are parallel to one another, u{"” =[0,0, +1]”
and then (J¢7),; = (J¢"),, for rotational joint i, i < s.

It is then suggested to compute V<", instead of V,,
for i <s, where

V() =RV, R” (37)

The advantage is that the computations of the coor-
dinate transformation of "RV, ,/"'R” in (34) and
(35) are saved. This also entails that only the (3,3)th
entry of V{"’ is required to compute.

It follows from (37) that (V{"?),, = u¢?T Vul?.
Note that u¢” is a constant vector for i <s. If joint
i+ 1 is joint s, then (34) can be reduced to

(Us)ll - (Us)zz (Us)lz (U5)13 st( ls)z 0 _ds(egs,‘))x
(V=T [V, + 0 WUy |+ 24,(1),  —d @), |[us”
Symmetry (Uy)s3 Symmetry 0
PR 2000, + Ko 2b{[1- @), - [l ) i), )iy,
—[(u?*”)x(uis*”)z](1571)2} (38)
where
(uf*~1),Co,+ [(u*™),CB,+ (uf*~1) S B,] S,
ul® = _[RMufD=| =) S0, + [(ui~),CB, + (ui*")_SB,.|Co, (39)

— (@), B, + (D) ,CB,
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which requires 4M and 2A, since (u!{*), and
[(ués~1) ,CB, + (u¢*~1)_SB,] are constants. How-
ever, when joint s — 1 is a rotational joint, u{*~1 =
[0,0, +1]7, so computing u¢*’ in (39) needs no arith-
metic operations.

For joint i +1, i+1<s, (34) and (35) are com-
bined to obtain

(Vi) g = Ky (50 )55 + K211,
+Ki+1[(V+1)33 + dlﬂ{zxz i1
1= @ Uy adyy +201 ).
— @iy @iy ], ),
@), @), ], )|
+Ki2biﬂ{[1 — @My,
— @) @, ] @),

S (RN AN (40)

by using (22), (28), and K¥*u{/’ =[0,0, +1]" for j <s.

The algorithm for computmg J&0 and &V is
listed in Table VII and is divided into two parts: one
is for i>s—1, the other for i=r,...,s—1. How-
ever, no computation is required for i = n. The com-
putations for i =s — 1 are separated into these two
parts, which will be described later. Computing I;
utilizes (24), while (22) is used to compute &".
However, it should be remarked that the z-compo-
nent of & for any rotational joint i is redundant
for computing the inertia matrix, and is not com-
puted in the algorithm.

The computation of (34) and (35) is divided into
three steps. Let X be the symmetrical matrix of the
similarity transformation term on the right-hand
side of (34) or (35), and Y =""'RX'"'R". V, is then
the sum of Y and the last term on the right-hand
side of (34) or (35). It should be remarked that only
the computation of X is different for different type
of joint in these three steps. An efficient computing
technique for Y =""RX'"'R” is presented in the
following, which is similar to that proposed by
Kawasaki et al.'®

Table VIl.  Algorithm of first moments and inertia tensors.
Number of
operations
e Fori=n—1,...,s—1:
@), 0
) ) K¥ 8M4A
L=K:, R @), (1K R [ 1, 4| 0
A K;,19M5A
(li+1)z i+1%i+1
" 0n | (V+1)11+(U1+1)11 22+2d1+1(11+1)
11
(X)22 (V+1)22+2d1+1(lz+1)
(H—l))
X33 (Jz+1 33
= K* K¥* 3M6A
12 il (Viy D+ Wiy, o
g; T = @),
23 i X¢
- - i (L<+J51>)23_di+1(cf<'++11>)y i
(V+1)11+d1+1[m1+1d1+1+2(A§-lﬁ-+11>) ]
(Vi + iyl di o+ 2@§51) ]
(Viiy)
+Ki (V“)33 K;, 4AM5A
+1/12
(V+1)13 :+1(C§i+11>)x
(Vie 1)y —di1 @5,
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Number of
operations
Y=""IRX'"'RT,  fori>s[see (41)-(54)] 18M14A
_(Vi)ll I Y
(V)),, (Y22 +2b;, (1),
wv) ()33 +2b,, ,(1.)
33 _ i+1 %/ x , fOI‘iZS 3M4A
AN (2 = b, 4(1),
(Vi3 Y1z —b;, (1),
(V),, i (Y)23
(1), (1),
&P =k, +K¥ 1), | +K (1), | fori=s Ki2A +K;3A
0 (1),
(j§i>)13 (U3 + (V5
(j§i>)z3 = Kz* (Ui)Z?y + (Vi)23 7 fOr 1 >S K1*3A
(f§i>)33 (U35 + (V)5
(u=1),Co,+ [(uf*~1),CB,+ (ui*~ 1) SB,] S,
wl® =| @), 80, + [~ D), CB+ (1), SB.|Co, |, fori=s—1 K,_4M2A
(i),
(V)33 = wi¥TXul®,  fori=s—1[see (55)] 10M5A
e Fori=s—1,...,r:
@), 0
) ) ’ ) K#* [ 8M4A
li=K;k+11HiR (é?ﬁb)y +Ki+1l+1iR L, + 0 ’ fori<s-—2 {K%+19M5A
7”I>l- d i+1
(li+1)z i+1%i+1
(Y)33 =K;k+1(ji<i+11>)33
FK [V Dgs +diy 20y iy + 11 = @200,y d o + 201 ), ]
(@), @) M), + [ ), @), 1, ) ), fori<s—2 K;.,5M5A
(VS )3y = (Vas + KF 20, 4(1), KFIMI1A
+K;2b,, {[1— @21, — [(u§i>)x(u§[>)y](l,~)y — [P, i), 1(1),} K;AM3BA
(li)x
e§l>:K1* ki+ (li)y Ki2a
0
(j:@)sa =K l(U)s; + (Vi<r>)33] KiF1A
(t;?)z = Kf(u§i>)z(j,-<i>)33 + Kk — (u§i>)y(li)x + (u<ri>)x(li)y] K;2M2A.
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n=A4,+ X2 (41)
Y2 =A,+ X33 (42)
Vn=A;,—A, (43)
(Y)12=CpB;, 1 Ay — SBi,1 Ag (44)
(13 =5B;,, A, +CBi,, Ag (45)
(V)23 = A5+ SB;, 1 Ag (46)

where

A =CO,,[XD11 — X)22] =250, (X2 (47)

A,=CO,,, A (48)
A= —A, + XOn (49)
A, =50, A+ XOn (50)
A5 =56, ,(X)13 + C, ;(X)23 (51)
Ag=[A; = XnICB 1 —25B:1 A5 (52)
A, =CBi,, Ag (53)
Ag=C60,, (X153 — S0, ,(X)23 (54)

Similarly, (V{})s; in (38) can also be divided
into three steps. The matrix X is identical to that for
(34). Let (Y)3; = ué®TXu(*¥. Then

(Va3 = () [ @) ,00n + 2u{),(Xns]
+(u§?); 002
+ 2(u§5>)z[(u§5>)x(X)13 + (ui”)y(X)zs]

+ @) X0 (55)

Table VIII.
the inertia tensors.

which requires 10M and 5A, since (u{*’), is constant
[see (39)], so are then 2(uf*), and (u¢*)?. Finally,
(V{)),; is the sum of (Y);; and the other terms in
(38). The first two steps are placed in the part of
i>s5—1, since the computation of X for i=s—1is
identical to that for i > s.

For i <s—1, we use (40) to compute (V{"?),;.
The terms associated with K,,; and K¥ ; in (40)
are summed up to be (Y)5;. Then (V{"?),, is the sum
of (Y);; and the rest terms. It is apparent that the
second step for computing (V{"),, is identical to
the third steps for (V{’}),;, so that the latter is also
executed in the part of » <i <s— 1. As was pointed
out above, (t{’/), in (29) for r<s—1 should be
calculated out at the same time, since it uses I, (see
Table VID.

The computation requirements of the algorithm
listed in Table VII for Type 1 and Type 2 of manipu-
lators are

e Type 1: (32n — 47)M and (33n — 57)A
e Type 2: (32n — 45)M and (33n — 59)A

In the work of Kawasaki et al.,' the number of
operations for computing J¢” is 27M and 34A for a
manipulator with only rotational joints and 30M
and 37A for a general manipulator. Table VII shows
that the present algorithm requires only 24M and
27A for the third column of J{”, which is more
efficient. The total computation requirements of For-
mulations 1 and 2 with considering the first mo-
ments and inertia tensors are summarized in Table
VIIL. Table VIII also shows that Formulation 1 is
more efficient than Algorithms I and II of Kawasaki
et al.'® for a manipulator with only rotational joints,
while Formulation 2 is also more efficient than both
algorithms of Kawasaki et al. for n <8.

Computation requirements for the inertia matrix with the consideration of the first moments and

Type 1 Type 2
n 4 6 8 n 4 6 8

Form. 1 M 102+ 14n — 37 179 407 715 10n? + 14n — 45 171 399 707

A 6n%+23n —53 135 301 515 61>+ 23n —59 129 295 509

Form. 2 M 11.5%% + 4.51n — 31 171 410 741 11.5n% — 8.5n + 15 165 378 683

A 8n? + 15n — 47 141 331 585 8n?+4n—13 131 299 531
Kawasaki M 11n? + 151 — 41 194 445 783
etal. I'® A 7n%+32n — 66 174 378 638
Kawasaki M 11n% +9n —35 177 415 741
etal. II'® A 7n% + 23n — 57 147 333 575
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5. CONCLUSION

In this paper, we deal with a type of composite
body method for computing the inertia matrix of a
manipulator and present five formulations based on
this method. Four formulations are closely related
to those in the earlier works, while Formulation 2 is
novel. It is shown that Formulation 1 is the best
efficient for some cases, while Formulation 2 is
superior for the other cases. This fact still holds true
when the formulations in the literature are also
compared together.

The other salient feature of this paper is the
algorithm for computing the first moments and in-
ertia tensors of composite bodies. The algorithm
uses a set of minimal linear combinations of inertia
parameters (MLC'’s) instead of the natural inertia
parameters, and is found superior to the others in
the earlier works. The same set of MLC’s was al-
ready used to reform the Newton—Euler recursive
formulation of the inverse dynamics." The resulting
formulation was shown to be one of the most effi-
cient inverse dynamics formulations. This paper
shows again that using a set of MLC’s can make the
dynamics formulations more efficient.

APPENDIX A: DERIVATION OF THE
COMPOSITE-BODY METHOD

The definition of a composite body is defined in
section 2, and the inertia parameters of a composite,
ie., 7, &, and j{”, are defined in (3)~(5). The
inertia force (f;)) and torque (t;,) of the composite
body i can be obtained by using Newton—Euler
equations as

£50 = — el (A1)

t<Tii> _ —i§i>d)§i> (AZ)

where w; is the angular acceleration of joint i, r; is
the distance from the base to the center of mass of
the composite body i, and I, is the inertia tensor of
the composite body i about the center of mass of
the composite body i, which can be expressed as

ol

() =ish 4 il (A3)
m;
14 = 7<) ! &< &<
I =] _W[Ci x| [e” x] (A4)

1

where s is the distance from the base to the origin
of frame E,.

The acceleration (¥;) of the center of mass and
the angular acceleration (®;) of the composite body
i due to the motion of joint i only (i.e., the other
joints are assumed stationary) are

iD= [K;“ uf”? x (ri<i>

—s™) +K, u<’>] (A5)

off = Krui (A6)
where u; is the unit vector along joint i, g; is the
displacement of joint i. Then the joint force and
torque of joint i applied on link i are, respectively,

£ = —£47

= [Krul® x & + Kiu]d, (A7)
0 iy _ L oacy s e
t; =_tTi_ﬁ1_iCi X £15

= [KHOu? ke xuP g a8)

Under the situation that only joint j moves and
the gravity is neglected, the actuator force applied
on joint j is to resist the component of the force or
torque exerted on joint j by link j along the direc-
tion of joint j, which is an equivalent force or torque
of the pair of —f;, and —t,;. Thus, we obtain the
actuator force of joint j due to §; as

= uin. * () Lig(h) [ o
T = U [K]-(ti +s X £ )+K]-f,- ],

j<i. (A9)

The definition of 7, ; is equivalent to the product for
the (j, )th entry of the inertia matrix and §,, i.e.,

7,,=Dyf,  j<i (A10)
where D;; is the (j, i)th-entry of the inertia matrix
D. Since D is symmetrical, we just need to consider
the upper triangular matrix, i.e., j <i.

Let f{ and t{/ be, respectively, f{” and t{"
when §; = 1. Substituting (A7) and (A8) into (A9)
again, we finally obtain the recursive formulations
(7)-(11), which are similar to that of Walker and
Orin' in structure, but use the first moments and
the inertia tensors of composite bodies about the
origin of the local frame (instead of the center of
mass).
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APPENDIX B: FORMULATION OF
KAWASAKI ET AL.

This section is to show that the formulation pro-
posed by Kawasaki et al.'® is also a variant form of
the composite body method, although it is in terms
of MLC’s.

Atkeson et al? indicated that the dynamic
model of a manipulator is still preserved if the
values of individual inertia parameters are so
changed that the values of a set of minimal linear
combinations of inertia parameters (MLC’s) are re-
tained. Since the set of MLC’s discovered by Khalil
et al®'® and Mayer et al.'"'? is obtained by re-
grouping the inertia parameters [masses (m;), and
first moments (112,¢$”) and inertia tensors (J{"?) about
the origin of the local frame] of same dynamic
effects to the members of MLC'’s, the natural inertia
parameters, m;, m;ci”, and J{”, can be replaced
with their counterparts in the MLC’s if the counter-
parts are not redundant or with zero if they are not
in the set of MLC’s. This allows us to repeat the
formulation of Kawasaki et al.'® in terms of the
natural parameters instead of the MLC’s without
toil. Equations (25) and (44) in ref. 18 are repeated
by using the notation of this article (i.e., M;, MS,, J,,
v, and "~ 'p, in ref. 18 are replaced by m,, m;c{”,
JP, i, and ;_ ¢~ 1), respectively) as

R(mkc:< P my <l>) j<i (BD

FR(ED = [ s x| [mii ]

=i
[hizi ][]
+ﬁ1k+1[k+1s<k> ><] [k+1 sk X]) R” (B2)

It is then apparent that

"h] =, R&" + 7,45 (B3)

L -j (B4)
which correspond to the first moment and the iner-
tia tensor of the composite body 1.

Steps 4.1 and 4.2 in Table II in ref. 18 can be
combined together in the following compact form
(k; and 'w; in ref. 18 are replaced by t{/ and £},
respectlvely)

e = KO ug,

i=1,...,n (B5)

D, =K*u$"'k,+ KA, i=1,...,n (B6)

£070 = —KF (TRl =iy, {s9TY) xufith

+ KD, i=2,..,n  (B?)
ML = KA (=600 s+, (R
+K, "'hixuf"Y,  i=2,...,n (B8)
£00=TUREGTY,  1<j<i-2 (B9
E) =TRSO £, 1<j<i-2
(B10)
D= (KFt§) + K £§P), 1<j<i—1
(B11)

It should be remarked that there was an erratum in
(32) in ref. 18, which should be corrected to

D oeih . o
w0 £ = uf- [K*(h“ ><u<’>)+ijiu§’>]
(B12)

So we modify the computation of 'h/*! in Step 4.2
in Table II of ref. 18 to be that of ’h]” u{”. And
Thi*' x P =/hi x u{P + i, is x uf” for transla-
tional joint i is embedded in (B8) and (B10). For a
manipulator with only rotational joints, the masses
of the composite bodies, 7;, are all redundant for
the manipulator dynamics and can be set to be zero.
In such a case, " 'hi=¢&{~? and then the formula-
tion of Kawasaki et al. (B5)-(B11) is reduced to
Formulation 1 [i.e., Egs. (7)—(11)]. This indicates that
Algorithm II in ref. 18 is a special form of Formula-
tion 1.

APPENDIX C: INERTIA CONSTANTS OF
COMPOSITE BODIES

The inertia constants of the composite body i (k;
and U)) in (22) and (23) are defined in the following:

0
I, =me” + Kf i, s + IR 0
(ki+l)z
[ rit1_qiy
N ( i )x i+1
+ K| i 0 +7 Rk, | (CD

0
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If joint 7 + 1 is a rotational joint, then
U, = I —m[ef? x][e? X]
i[5 ][50 x]
- Uiy 1) 0 0 "
i+ +
+ R 0 (Ui+1)22 0 fRT
0 0 0
[ <[ Ry, X]

~[(TIRGe D) X[ x] @)

whereas for translational joint i + 1,

U, =I" —m,[c{? x][ef? x| +RU,, /" |RT

1

- Thi+1[bf<?1 ><] [bz<~i+>1 ><]
_[ §-i>1 X] [(H—liRkH—l) X]

o [(HliRkHl) X] [b1<-l;—>1 X]
Note that 1R, is the third column of IR (Ge.,
IR, =10, =SBy, CBiy 11, b = [b;,1,0,01" and
(5 =10,0,d,,,]" G, s = b +d(D).

(C3)
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