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ON A PROBLEM OF DYNKIN

YUAN-CHUNG SHEU

(Communicated by Stanley Sawyer)

Abstract. Consider an (L, α)-superdiffusion X on Rd, where L is an uni-
formly elliptic differential operator in Rd, and 1 < α ≤ 2. The G-polar sets for
X are subsets of R×Rd which have no intersection with the graph G of X, and
they are related to the removable singularities for a corresponding nonlinear
parabolic partial differential equation. Dynkin characterized the G-polarity of
a general analytic set A ⊂ R × Rd in term of the Bessel capacity of A, and
Sheu in term of the restricted Hausdorff dimension. In this paper we study in
particular the G-polarity of sets of the form E × F , where E and F are two
Borel subsets of R and Rd respectively. We establish a relationship between the
restricted Hausdorff dimension of E × F and the usual Hausdorff dimensions
of E and F . As an application, we obtain a criterion for G-polarity of E × F
in terms of the Hausdorff dimensions of E and F , which also gives an answer
to a problem proposed by Dynkin in the 1991 Wald Memorial Lectures.

1. Introduction

Suppose that L is an uniformly elliptic differential operator in R×Rd of the form

Lu(t, x) =
∑
i,j

aij(t, x)
∂2u

∂xi∂xj
+

∑
i

bi(t, x)
∂u

∂xi
.

Here we assume that aij and bi are bounded and smooth functions in R× Rd. An
(L, α)-superdiffusion, 1 < α ≤ 2, is a branching measure-valued Markov process
X = (Xt, Pµ) such that for every bounded positive Borel function f on Rd, the
function

v(r, x) = − log Pδr,xe−〈f,Xt〉

is a mild solution of the following problem:{
∂v
∂t + Lv = vα in (−∞, t)× Rd,

v(r, x) → f(x) as r ↑ t and x ∈ Rd.

(Here we write PY for the expected value of Y with respect to the probability
measure P , and 〈f, µ〉 for the integral of f with respect to the measure µ.) The
graph of X is the minimal closed subset G of R × Rd such that, for every t ∈ R,
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the measure Xt is concentrated on the t-section of G An analytic set A of R× Rd

is called G-polar if for every r < t and x ∈ Rd, we have

Pδr,x(G ∩ At = ∅) = 1,

where At = A∩ ([t,∞)×Rd). In [2], Dynkin proved that the class of G -polar sets
for the (L, α)-superdiffusion X is identical to the class of sets of Bessel capacity
zero. Moreover he proved that a set A is G-polar if and only if it is a removable
singularity for the partial differential equation

∂v

∂t
+ Lv = vα.(1)

(We say that A ⊂ R × Rd is a removable singularity for the equation (1) if 0 is
the only nonnegative solution of the equation (1) in (R × Rd)\A.) In [7], Sheu
demonstrated that the critical restricted Hausdorff dimension (to be introduced
later) for the G-polarity is d− 2

α−1 .
We say that an analytic set F in Rd is H-polar if {t} × F is G-polar for every

t ∈ R. The notion of H -polarity is also related to solutions of the heat equation with
initial measure value. (See Baras and Pierre [1].) Note that the critical Hausdorff
dimension for the H-polarity is d− 2

α−1 .
Our objective is to study the following problem proposed by Dynkin in the 1991

Wald Memorial Lectures.

Problem ([3], p. 1245). Suppose F is H-polar and E ⊂ R is a set of Lebesgue
measure 0. Is E × F G-polar?

In Section 2 we recall definitions of Hausdorff dimension, box dimension and the
restricted Hausdorff dimension, and establish new relations between the restricted
Hausdorff dimension of E × F and the Hausdorff dimensions of E and F . Namely,
we prove that

2H- dim(E) + H- dim(F ) ≤ R-H- dim(E × F )

≤ 2H- dim(E) + B- dim−(F ).

where H- dim means the Hausdorff dimension, B- dim− the lower Hausdorff box
dimension, and R-H- dim the restricted Hausdorff dimension. (Our proofs are
analogous (with some suitable modifications) to that of Falconer [4] and from there
we also quote some interesting examples.) Under the assumption H- dim(F ) =
B- dim−(F ), we obtain that if 2H- dim(E) + H- dim(F ) < d − 2

α−1 , then E × F

is G-polar, whereas, if 2H- dim(E) + H- dim(F ) > d − 2
α−1 , then E × F is not

G-polar. As an application, we give examples in Section 3 which show that the
answer to Dynkin’s problem is negative (see Theorem 6 for more details).

2. Hausdorff dimension, box dimension

and the restricted Hausdorff dimension

Suppose that F is a subset of Rd. First we recall a definition of the Haudorff
dimension of F . For every s > 0 and ε > 0, set

∧s-mε(F ) = inf
∑

i

(diam(Bi))s
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where the infimum is taken over all countable coverings of F by open ball Bi with
radius ri < ε. The Hausdorff measure with index s is defined by the formula

∧s-m(F ) = lim
ε↓0

∧s-mε(F ),(2)

and the Hausdorff dimension H- dim(F ) is the supremum s such that ∧s-m(F ) > 0.
Let A be a subset of R× Rd. In order to determine if A is polar relative to the

heat equation ∑
i

∂2u

∂x2
i

=
∂u

∂t
,

Taylor and Watson [8] introduced the notion of the restricted Hausdorff dimension
of A. For any s > 0, the definition of the restricted Hausdorff measure with index
s, denoted as R- ∧s -m(A), is the same as that for Hausdorff measure except that
the balls for covering are replaced by sets of the form

P (t, x; r) = [t, t + r2]× [x1, x1 + r]× [x2, xr + r]× · · · × [xd, xd + r](3)

where t ∈ R, r ≥ 0 and x = (x1, x2, · · · , xd). The restricted Hausdorff dimension
of A , denoted as R-H- dim(A), is defined in terms of the restricted Hausdorff
measure in the same way as the Hausdorff dimension is defined in terms of the
Hausdorff measure.

We quote a result from Taylor and Watson [8].

Lemma 1. Let A be a Borel subset of R× Rd and s > 0, c be two constants. If µ
is a finite positive measure on R× Rd satisfying

lim sup
r→0

µ(A ∩ P (t, x; r))
rs

≤ c < ∞,

for all (t, x) ∈ A, then

R- ∧s -m(A) ≥ 1
c2s

µ(A).

Proposition 2. Let E and F be two Borel subsets of R and Rd respectively. If
0 < ∧k-m(E) < ∞ and 0 < ∧l-m(F ) < ∞ for some k, l ≥ 0, then R- ∧2k+l -
m(E × F ) > 0.

Proof. This is trivial in the case k = l = 0. We assume that k + l > 0. Since
0 < ∧k-m(E) < ∞ and 0 < ∧l-m(F ) < ∞, it follows from Lemma 5.4 of Hayman
and Kennedy [5] that there exist two measures µ1 and µ2 on R and Rd respectively
satisfying the following two conditions:

(1) 0 < µ1(E) < ∞ and 0 < µ2(F ) < ∞, and
(2) There exists a constant c such that for all t ∈ E, x ∈ F and 0 < r ≤ 1, we

have

µ1(B(t; r)) ≤ crk

and

µ2(B(x; r)) ≤ crl,

where B(x; r) is the ball centered at x and radius r.
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Set µ = µ1 × µ2. For every (t, x) ∈ E × F and 0 < r ≤ 1√
d
, we have, by the

condition (2), that

µ((E × F ) ∩ P (t, x; r)) ≤ µ1(E ∩ [t, t + r2])µ2(F ∩B(x; r
√

d))

≤ c2(
r2

2
)k(r

√
d)l =

c2d
l
2

2k
r2k+l.

Hence

lim sup
r→0

µ((E × F ) ∩ P (t, x; r))
r2k+l

≤ c2d
l
2

2k
< ∞

for all (t, x) ∈ E × F . It follows from Lemma 1 and condition (1) that

R- ∧2k+l -m(E × F ) ≥ 1

c2d
l
2 2k+l

µ(E × F ) =
1

c2d
l
2 2k+l

µ1(E)µ2(F ) > 0.

Corollary 3. For every Borel sets E ⊂ R and F ⊂ Rd, we have

R-H- dim(E × F ) ≥ 2 H- dim(E) + H-dim(F ).(4)

Proof. Let k = H- dim(E) and l = H- dim(F ). If k′ < k and l′ < l, then
∧k′

-(E) = ∞ and ∧l′ -(F ) = ∞. There exist two Borel subsets E′ ⊂ E, F ′ ⊂ F

satisfying 0 < ∧k′
-m(E′) < ∞ and 0 < ∧l′ -m(F ′) < ∞. By Proposition 2, we have

R- ∧2k′+l′ -m(E × F ) ≥ R- ∧2k′+l′ -m(E′ × F ′) > 0.

By the definition of the restricted Hausdorff dimension, we get

R-H- dim(E × F ) ≥ 2k′ + l′.

Since this holds for every k′ < k and l′ < l, we obtain that R-H- dim(E × F ) ≥
2 H- dim(E) + H- dim(F ).

Note that P (t, x; r) ⊂ B((t, x); r
√

d + r2) for all (t, x) ∈ Rd and r ≥ 0. It follows
from the definitions that R- ∧s -m(A) ≥ ∧s-m(A) for all s ≥ 0 and all subsets
A ⊂ Rd+1. Hence

R-H- dim(A) ≥ H- dim(A) for all A ⊂ Rd+1.(5)

The following example is a modification of Example 7.8 in Falconer [4], and it
shows that the equality in (4) does not hold for general Borel sets E and F .

Example 1. Let 0 = a0 < a1 < a2 < · · · be an increasing sequence of integers.
Put

E = {r ∈ [0, 1]|r = 0.r1r2 · · · ri · · · ,

where ri = 0 whenever a2k + 1 ≤ i ≤ a2k+1 for some integer k}
and

F1 = {r ∈ [0, 1]|r = 0.r1r2 · · · ri · · · ,

where ri = 0 whenever a2k+1 + 1 ≤ i ≤ a2k+2 for some integer k}.
It was shown in Falconer [2] that if the ai increase sufficiently rapidly, then H-
dim(E × F1) ≥ 1 and H- dim(E) = H- dim(F1) = 0. Set

F = {(x1, 0, 0, · · · , 0) ∈ Rd, | x1 ∈ F1}.
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The formula for Hausdorff dimension of product sets implies that H- dim(F ) =
H- dim(F1) = 0, and H- dim(E×F ) = H- dim(E×F1) ≥ 1. It follows from (5)
that

R-H- dim(E × F ) ≥ H- dim(E × F ) ≥ 1 > 0 = 2 H- dim(E) + H- dim(F ).

To get a sufficient condition for the equality in (4) to hold, we recall a definition
of box dimension for subset F of Rd. For every ε > 0, let Nε(F ) be the number of
ε-mesh cubes that intersect F . Here an ε-mesh cube is one of the form

[m1ε, (m1 + 1)ε]× · · · × [mdε, (md + 1)ε]

where m1, ..., md are integers. The lower and upper box dimensions of F are defined
as

B- dim−(F ) = lim inf
ε→0

log Nε(F )
− log ε

and

B- dim+(F ) = lim sup
ε→0

log Nε(F )
− log ε

.

The box dimension of F is given by

B- dim(F ) = lim
ε→0

log Nε(F )
− log ε

(if this limit exists). Note that for every ε > 0, the Nε(F ) number of ε-mesh cubes
that intersect with F forms a covering for F . Hence for every s > 0, we have

∧s-mε
√

d(F ) ≤ (ε
√

d)sNε(F ).

Taking the logarithm and then dividing by − log ε (we assume that ε < 1) on both
sides gives

s +
s log d

2 log ε
+

log(∧s-mε
√

d(F ))
− log ε

≤ log Nε(F )
− log ε

.

As ε ↓ 0, we get

s + lim inf
ε→0

log(∧s-mε
√

d(F ))
− log ε

≤ B- dim−(F ).

If s < H- dim(F ), then limε→0 ∧s-mε(F ) = ∞ and hence s ≤ B- dim−(F ). Since
this holds for all s < H- dim(F ), we observe that

B- dim−(F ) ≥ H- dim(F ).(6)

Although there are many examples in which the above inequality is strict, many
reasonably regular sets have the same Hausdorff and box dimension (see Falconer
[4] for more details).

Example 2. Let m be a positive integer and 0 < λ < 1
m . Put C0 = [0, 1]. For

k ≥ 0, assume Ck consists of mk closed intervals of lengths λk. Then each closed
interval I in Ck is replaced by m equally spaced subintervals of length λk+1, the
ends of the I coinciding with the ends of the extreme subintervals. The union of
all these subintervals forms the set Ck+1. Put

C(m, λ) =
⋂
k

Ck.
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Note that C(2, 1
3 ) is the middle third Cantor set. Clearly, for every m and λ >

0, C(m, λ) is a set of Lebesgue measure zero. Moreover we have

H- dim(C(m, λ)) = B- dim(C(m, λ)) =
log m

− log λ

(for a proof, see Falconer [4] Example 4.5)).

Proposition 4. For any sets E ⊂ R and F ⊂ Rd, we have

R-H- dim(E × F ) ≤ 2 H-dim(E) + B- dim−(F ).(7)

Proof. Let k = H- dim(E) and l = B- dim−(F ). Choose k′ > k and l′ > l. By
the definition of box dimension, there exists ε0 > 0 such that

Nε(F ) ≤ ε−l′ for all ε < ε0.(8)

Let Ej be any ε- cover of E by intervals with
∑

j |Ej |k′
< 1. For each j, let Fjn be

the
√|Ej |-mesh cubes that intersect with F . Then Ej × Fjn are sets of the form

(3) and ⋃
j

⋃
n

Ej × Fjn

is a covering of E × F with diam(Ej × Fjn) ≤ √
ε(d + ε). Set ε′ =

√
ε + d. For√

ε < ε0, we have

R- ∧2k′+l′ -m√
ε(d+ε)

(E × F ) ≤
∑

j

∑
n

[
√
|Ej |(d + |Ej |)]2k′+l′

≤ (ε′)2k′+l′ ∑
j

|Ej |k′+ l′
2 |Ej |− l′

2

≤ (ε′)2k′+l′ ∑
j

|Ej |k′
< ∞,

which implies that R-H- dim(E × F ) ≥ 2k′ + l′. Since this holds for all k′ > k
and l′ > l, we obtain that R-H- dim(E × F ) ≥ 2H- dim(E) + B- dim−(F ).

Combining Corollary 3 and Proposition 4 we get the following main theorem.

Theorem 5. Let E ⊂ R and F ⊂ Rd be two Borel sets. If H- dim(F ) =
B-dim(F ), then we have

R-H- dim(E × F ) = 2 H- dim(E) + H-dim(F ).(9)

Remark. Consider the logarithmic Hausdorff dimension instead (for a definition
see, e.g., Dynkin [3]) and define the box dimension of F as

lim
ε→0

log Nε(F )
log(− log ε)

.

Using the same approach as before, we prove that the restricted logarithmic Haus-
dorff dimension of E × F is the sum of the logarithmic Hausdorff dimensions of E
and of F .
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3. Applications

Consider an (L, α)-superdiffusion X and assume that d > 2
α−1 . (Note that there

is no G-polar set in the case d < 2
α−1 .) Set γ0 = d − 2

α−1 . Sheu [7] showed that
the critical restricted Hausdorff dimension for G-polarity is γ0. (This means that
if R-H- dim(A) < γ0, then A is G-polar; whereas, if R-H- dim(A) > γ0, then it is
not G-polar). In fact γ0 is also the critical Hausdorff dimension for H-polarity in
Rd(see, e.g., Dynkin [3] and Sheu [7]). Using these facts and Theorem 5, we obtain
the following theorem (which give an answer to Dynkin’s problem).

Theorem 6. Assume that F is a Borel subset of Rd and satisfies the condition

γ = H-dim(F ) = B- dim(F ) < γ0.

Let E be a Borel subset of R. Then
(1) If H- dim(E) < 1

2 (γ0 − γ), then E × F is a G-polar set.
(2) If H- dim(E) > 1

2 (γ0 − γ) , then E × F is not G-polar.

Remark. (1) In [8], Taylor and Watson also considered polarity of sets of the form
T × {0}, 0 ∈ Rd , T ⊂ R, for the heat equation. They showed that T ×{0} is polar
if, and only if C d

2
(T ) = 0, where Cβ is the Riesz capacity of order β. (See also

Kaufman and Wu [6].)
(2) Example 1 shows that there exist Borel sets E ⊂ R and F ⊂ Rd satisfying

R-H- dim(E × F ) ≥ 1 and H- dim(E) = H- dim(F ) = 0. Clearly E × F is not
G-polar if d − 2

α−1 < 1. Therefore the condition that H- dim(F ) = B- dim(F ) is
crucial.

Example 3. Let F = {0} be the origin point of Rd and E = C(m, λ), where
m is an integer, 0 < λ < 1

m and C(m, λ) is defined as in Example 2. Clearly
H- dim(F ) = B- dim(F ) = 0. By Theorem 5 and (6), we have

R-H- dim(C(m, λ) × {0}) = 2 H- dim(C(m, λ)) =
2 log m

− log λ
.

Theorem 6 says that if m < λ−
γ0
2 , then C(m, λ) × {0} is G-polar; whereas, if

m > λ−
γ0
2 , then it is not G-polar.

Example 4. Take E = C(m1, λ1) and F the d copies of C(m2, λ2). Here m1, m2

are two integers and 0 < λi < 1
mi

, i = 1, 2. By induction and (1.5), (7.8)-(7.9) of
Falconer [4], we have

H- dim(F ) = B- dim(F ) =
d log m2

− logλ2
.

Theorem 5 implies that

R-H- dim(E × F ) =
2 log m1

− logλ1
+

d log m2

−λ2
.(9)

As in Taylor and Watson [8], we assume that

λ1 = m1
− 1

a1 and λ2 = m2
− 1

a2

for some 0 < a1, a2 < 1. Then (9) becomes

R-H- dim(E × F ) = 2 a1 + d a2.
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(A similar result was also obtained by Taylor and Watson for the case m1 = m2 =
2.) Under the assumption that 0 < a2 < 1− 2

d(α−1) , we restate Theorem 6 as follows:
If 0 < a1 < 1

2 [d(1−a2)− 2
α−1 ], then E×F is G-polar, and if a1 > 1

2 [d(1−a2)− 2
α−1 ],

then it is not G-polar.

Remark. Assume that d = 2
α−1 . Then the critical logarithmic Hausdorff dimension

for H-polarity is 1
α−1 , and it is equal to the critical restricted logarithmic Hausdorff

dimension of G-polarity (see,e.g., Dynkin [3], Sheu [7]). Using these facts and the
remark to Theorem 5, we have results similar to Theorem 6.
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