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ABSTRACT. Consider an (L, a)-superdiffusion X on R?, where L is an uni-
formly elliptic differential operator in R, and 1 < a < 2. The G-polar sets for
X are subsets of R x R? which have no intersection with the graph G of X, and
they are related to the removable singularities for a corresponding nonlinear
parabolic partial differential equation. Dynkin characterized the G-polarity of
a general analytic set A C R x R? in term of the Bessel capacity of A, and
Sheu in term of the restricted Hausdorff dimension. In this paper we study in
particular the G-polarity of sets of the form E X F', where E and F are two
Borel subsets of R and R? respectively. We establish a relationship between the
restricted Hausdorff dimension of E X F' and the usual Hausdorff dimensions
of E and F. As an application, we obtain a criterion for G-polarity of £ x F'
in terms of the Hausdorff dimensions of E and F', which also gives an answer
to a problem proposed by Dynkin in the 1991 Wald Memorial Lectures.

1. INTRODUCTION

Suppose that L is an uniformly elliptic differential operator in R x R? of the form

2u u
Lu(t,z) = Y ai;(t,) _Ou Z bi(t,x)a .

2,9

Here we assume that a;; and b; are bounded and smooth functions in R x R4, An
(L, a)-superdiffusion, 1 < a < 2, is a branching measure-valued Markov process
X = (X, P,) such that for every bounded positive Borel function f on R?, the

function
v(r,z) = —log p{sme—<f7Xt>
is a mild solution of the following problem:
% + Lv = v® in (—oo,t) x RY,
v(r, x) — f(x)asr1tand xR

(Here we write PY for the expected value of Y with respect to the probability
measure P, and (f, u) for the integral of f with respect to the measure u.) The
graph of X is the minimal closed subset G of R x R¢ such that, for every t € R,
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the measure X, is concentrated on the t-section of G An analytic set A of R x R¢
is called G-polar if for every < t and = € R?, we have

PgT’I(GﬂAt - @) - 1,

where A, = AN([t,00) x R?). In [2], Dynkin proved that the class of G -polar sets
for the (L, a)-superdiffusion X is identical to the class of sets of Bessel capacity
zero. Moreover he proved that a set A is G-polar if and only if it is a removable
singularity for the partial differential equation

(1) T + Lv = v™.

(We say that A C R x R is a removable singularity for the equation (1) if 0 is
the only nonnegative solution of the equation (1) in (R x R4)\A.) In [7], Sheu
demonstrated that the critical restricted Hausdorff dimension (to be introduced
later) for the G-polarity is d — —2-.

a—1
We say that an analytic set F' in R? is H-polar if {t} x F' is G-polar for every
t € R. The notion of H -polarity is also related to solutions of the heat equation with
initial measure value. (See Baras and Pierre [1].) Note that the critical Hausdorff
dimension for the H-polarity is d — a%

Our objective is to study the following problem proposed by Dynkin in the 1991
Wald Memorial Lectures.

Problem ([3], p. 1245). Suppose F is H-polar and E C R is a set of Lebesgue
measure 0. Is £ x F G-polar?

In Section 2 we recall definitions of Hausdorff dimension, box dimension and the
restricted Hausdorff dimension, and establish new relations between the restricted
Hausdorff dimension of E x F' and the Hausdorff dimensions of F and F. Namely,
we prove that

9H-dim(E) + H-dim(F) < R-H-dim(E x F)
<2H-dim(F) + B-dim_(F).

where H-dim means the Hausdorff dimension, B-dim_ the lower Hausdorff box
dimension, and R-H-dim the restricted Hausdorff dimension. (Our proofs are
analogous (with some suitable modifications) to that of Falconer [4] and from there
we also quote some interesting examples.) Under the assumption H-dim(F) =
B-dim_(F), we obtain that if 2H-dim(E) + H-dim(F) < d — =25, then E x F
is G-polar, whereas, if 2H-dim(E) + H-dim(F) > d — =25, then E x F is not
G-polar. As an application, we give examples in Section 3 which show that the
answer to Dynkin’s problem is negative (see Theorem 6 for more details).

2. HAUSDORFF DIMENSION, BOX DIMENSION
AND THE RESTRICTED HAUSDORFF DIMENSION

Suppose that F is a subset of R?. First we recall a definition of the Haudorff
dimension of F'. For every s > 0 and € > 0, set

AS-me(F) = infz (diam(B;))®
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where the infimum is taken over all countable coverings of F' by open ball B; with
radius r; < €. The Hausdorff measure with index s is defined by the formula

(2) AN-m(F) = léifgl A -m(F),

and the Hausdorff dimension H- dim(F) is the supremum s such that A*-m(F) > 0.
Let A be a subset of R x R?. In order to determine if A is polar relative to the
heat equation

9%u ou

Taylor and Watson [8] introduced the notion of the restricted Hausdorff dimension
of A. For any s > 0, the definition of the restricted Hausdorff measure with index
s, denoted as R- A® -m(A), is the same as that for Hausdorff measure except that
the balls for covering are replaced by sets of the form

(3)  P(t,x;r) = [t,t+ %] x [w1, 21 +7] X [22, 20 +7] X -+ X [24, g + 7]

where t e R,r > 0and z = (1,22, -+ ,xq). The restricted Hausdorff dimension
of A, denoted as R-H-dim(A), is defined in terms of the restricted Hausdorff
measure in the same way as the Hausdorff dimension is defined in terms of the
Hausdorff measure.

We quote a result from Taylor and Watson [8].

Lemma 1. Let A be a Borel subset of R x R? and s > 0, ¢ be two constants. If i
is a finite positive measure on R x R? satisfying

ANP(t,x;
lim sup M(—W <c< oo,
r—0 T

for all (t,z) € A, then

R- A -m(A) > (A).

c2% H

Proposition 2. Let E and F be two Borel subsets of R and R? respectively. If
0 < A*-m(E) < 0o and 0 < Al-m(F) < oo for some k,1 > 0, then R- NZFH -
m(E x F) > 0.

Proof. This is trivial in the case k = [ = 0. We assume that k£ +1 > 0. Since
0 < AF-m(E) < 0o and 0 < Al-m(F) < oo, it follows from Lemma 5.4 of Hayman
and Kennedy [5] that there exist two measures p; and g on R and RY respectively
satisfying the following two conditions:

(1) 0 < u1(E) < oo and 0 < po(F) < 0o, and
(2) There exists a constant ¢ such that for all t € E,x € F and 0 < r < 1, we
have

p(B(t;r)) < er”
and
po(B(x;r)) < erl,

where B(x;r) is the ball centered at x and radius r.
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Set u = p1 X po. For every (t,z) € Ex Fand 0 < r < %, we have, by the
condition (2), that

p((Ex F)N P(t,a;r)) < p(EN[tt+r°])pe(F N Blw;rvd))

2,72k Va) c2ds 2k+1
S C (?) (7" d) = 7 r .
Hence
L
) p((E x F)NP(t,x;r)) cAdz
lim sup T S gF <o

for all (t,x) € E x F. It follows from Lemma 1 and condition (1) that

! ! 1 (E)p2(F) > 0.

_ 2k l_ > _
R- A m(ExF) CQ%klM(EXF) Q%kl
O

Corollary 3. For every Borel sets E C R and F C RY, we have
(4) R-H-dim(E x F) > 2 H-dim(E) + H-dim(F).
Proof. Let k = H-dim(F) and | = H-dim(F). If ¥ < k and I’ < [, then
AF_(E) = oo and A'-(F) = oco. There exist two Borel subsets E' C E, F' C F
satisfying 0 < A¥-m(E') < oo and 0 < A'-m(F’) < co. By Proposition 2, we have

R-AHH (B x F) > R-A2MH (B x F') > 0.
By the definition of the restricted Hausdorff dimension, we get

R-H-dim(E x F) > 2k + I'.

Since this holds for every k' < k and " < [, we obtain that R-H-dim(E x F) >
2 H-dim(E) + H-dim(F). O

Note that P(t,z;r) C B((t,z);rvd + r2) for all (t,z) € R? and r > 0. It follows
from the definitions that R- A® -m(A) > A®-m(A) for all s > 0 and all subsets
A C Rt Hence

(5) R-H-dim(A) > H-dim(A) for all A ¢ R4,

The following example is a modification of Example 7.8 in Falconer [4], and it
shows that the equality in (4) does not hold for general Borel sets E and F'.

Example 1. Let 0 = ag < a1 < a2 < --- be an increasing sequence of integers.
Put

E = {rel0,1]jr = 0rirg---mi- -,
where r; = 0 whenever agr + 1 < i < aggy1 for some integer k}
and
= {rel0,1]|r = 0rrg---ri---,
where r; = 0 whenever agg11 + 1 <4 < aggyo for some integer k}.

It was shown in Falconer [2] that if the a; increase sufficiently rapidly, then H-
dim(E x Fy) > 1 and H-dim(E) = H-dim(F;) = 0. Set

F = {(zlaovoa"'7O)€Rd7|$1€Fl}'
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The formula for Hausdorff dimension of product sets implies that H-dim(F) =
H-dim(Fy) = 0, and H-dim(E x F) = H-dim(E x Fy) > 1. It follows from (5)
that

R-H-dim(E x F) > H-dim(E x F) >1>0 = 2 H-dim(E) + H-dim(F).

To get a sufficient condition for the equality in (4) to hold, we recall a definition
of box dimension for subset F of R%. For every € > 0, let N.(F) be the number of
e-mesh cubes that intersect F'. Here an e-mesh cube is one of the form

[mie, (my + 1)e] X -+ X [mqe, (mg + 1)¢]

where myq, ..., mq are integers. The lower and upper box dimensions of F' are defined

as
log N.(F
B-dim_(F) = liminf 282
e—0  —loge
and
) ) log N.(F)
B-d F) =1 —_— .
im (F) msup ==
The box dimension of F' is given by
log N.(F)

B-dim(F) = i
im(F) P —loge

(if this limit exists). Note that for every € > 0, the N.(F') number of e-mesh cubes
that intersect with F' forms a covering for F'. Hence for every s > 0, we have
N-m, 7(F) < (eVd)*Ne(F).

Taking the logarithm and then dividing by — loge (we assume that € < 1) on both
sides gives

s logd log(A*-m_ /q(F)) < log N(F)

2 loge —loge ~  —loge
As e | 0, we get

log(A®- F
s + liminf 08(N*m, yal )
e—0 — log €

If s < H-dim(F'), then lim,_,o A*-m.(F) = oo and hence s < B-dim_(F'). Since
this holds for all s < H-dim(F'), we observe that
(6) B-dim_(F) > H-dim(F).

Although there are many examples in which the above inequality is strict, many
reasonably regular sets have the same Hausdorff and box dimension (see Falconer
[4] for more details).

< B-dim_(F).

Example 2. Let m be a positive integer and 0 < A < =. Put C; = [0,1]. For
k > 0, assume C}, consists of m* closed intervals of lengths A%, Then each closed
interval I in C}, is replaced by m equally spaced subintervals of length A\*+!, the
ends of the I coinciding with the ends of the extreme subintervals. The union of
all these subintervals forms the set Cjy1. Put

C(m,\) = (Cx.
k
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Note that C(2, %) is the middle third Cantor set. Clearly, for every m and A >
0,C(m, A) is a set of Lebesgue measure zero. Moreover we have

logm

H-dim(C(m,A)) = B-dim(C(m,})) = —log A

(for a proof, see Falconer [4] Example 4.5)).
Proposition 4. For any sets E C R and F C R?, we have
(7) R-H-dim(E x F) <2 H-dim(E) + B-dim_(F).

Proof. Let k = H-dim(F) and ! = B-dim_(F). Choose ¥’ > k and I’ > I. By
the definition of box dimension, there exists ¢y > 0 such that

(8) N.(F) < e forall e < e.

Let E;j be any e- cover of E' by intervals with |Ej|* < 1. For each j, let Fj, be

the y/|E;|-mesh cubes that intersect with F. Then E; X Fj, are sets of the form
(3) and

UUEJ Xan

J n

is a covering of E x F with diam(E; X Fj,) < y/e(d+¢€). Set € = +/e+d. For
Ve < €y, we have

R- AR Mg E X F) < SN WIS+ B D
7 n

2% +1 v
(¢ S IE;|F Tz By

J

2k' 41 /
(€) S IE;F < oo,
J

IN

IN

which implies that R-H-dim(F x F) > 2k’ + [’. Since this holds for all &' > k
and I’ > [, we obtain that R-H-dim(E x F) > 2H-dim(E) + B-dim_(F). O

Combining Corollary 3 and Proposition 4 we get the following main theorem.

Theorem 5. Let E C R and F C R? be two Borel sets. If H-dim(F) =
B-dim(F), then we have

(9) R-H-dim(E x F) = 2 H-dim(E) + H-dim(F).

Remark. Consider the logarithmic Hausdorff dimension instead (for a definition
see, e.g., Dynkin [3]) and define the box dimension of F' as

log Ne(F)
¢—0 log(—log €)

Using the same approach as before, we prove that the restricted logarithmic Haus-
dorff dimension of E x F' is the sum of the logarithmic Hausdorff dimensions of
and of F.
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3. APPLICATIONS

Consider an (L, a)-superdiffusion X and assume that d > % (Note that there
is no G-polar set in the case d < =%7.) Set 70 = d — =25. Sheu [7] showed that
the critical restricted Hausdorff dimension for G-polarity is 7. (This means that
if R-H-dim(A) < 7, then A is G-polar; whereas, if R-H-dim(A) > 7o, then it is
not G-polar). In fact o is also the critical Hausdorff dimension for H-polarity in
R (see, e.g., Dynkin [3] and Sheu [7]). Using these facts and Theorem 5, we obtain
the following theorem (which give an answer to Dynkin’s problem).

Theorem 6. Assume that F is a Borel subset of R? and satisfies the condition
v = H-dim(F) = B-dim(F) < 7.
Let E be a Borel subset of R. Then

(1) If H-dim(E) < 3(yo — ), then E x F is a G-polar set.
(2) If H-dim(E) > (v — 7), then E x F is not G-polar.

Remark. (1) In [8], Taylor and Watson also considered polarity of sets of the form
T x {0},0 € R? | T C R, for the heat equation. They showed that T x {0} is polar
if, and only if C'a (T') = 0, where Cj3 is the Riesz capacity of order 5. (See also
Kaufman and Wu [6].)

(2) Example 1 shows that there exist Borel sets E C R and F' C R? satisfying
R-H-dim(E x F) > 1 and H-dim(FE) = H-dim(F) = 0. Clearly E x F is not
G-polar if d — —25 < 1. Therefore the condition that H-dim(F) = B-dim(F) is
crucial.

Example 3. Let F = {0} be the origin point of R? and E = C(m,\), where
1

m is an integer, 0 < A < .- and C(m, ) is defined as in Example 2. Clearly
H-dim(F) = B-dim(F) = 0. By Theorem 5 and (6), we have

ReH-dim(C(m, \) x {0}) = 2 H-dim(C(m,\)) = 228™

—log\’
Theorem 6 says that if m < A==, then C(m,\) x {0} is G-polar; whereas, if

m > /\_%1, then it is not G-polar.

Example 4. Take E = C(m1, \1) and F the d copies of C(ma, A2). Here mq,mo
are two integers and 0 < \; < ;.4 = 1,2. By induction and (1.5), (7.8)-(7.9) of
Falconer [4], we have
d 1
H-dim(F) = B-dim(F) = 2282
—log A2
Theorem 5 implies that
2 logm, d logms
— log /\1 —)\2 '

As in Taylor and Watson [8], we assume that

(9) R-H-dim(E x F) =

/\1 = ml_i and )\2 = mg_%
for some 0 < aj,as < 1. Then (9) becomes

R-H-dim(E x F) = 2a; + d as.
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(A similar result was also obtained by Taylor and Watson for the case m; = mo =
2.) Under the assumption that 0 < as < 1— ﬁ, we restate Theorem 6 as follows:

If0 < a1 < 4[d(1—az)— =25], then Ex F is G-polar, and if a1 > £[d(1—az2)— =25,
then it is not G-polar.

Remark. Assume that d = % Then the critical logarithmic Hausdorff dimension

for H-polarity is ﬁ, and it is equal to the critical restricted logarithmic Hausdorff

dimension of G-polarity (see,e.g., Dynkin [3], Sheu [7]). Using these facts and the
remark to Theorem 5, we have results similar to Theorem 6.
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