PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 12, Pages 3721–3728 S 0002-9939(99)04981-3 Article electronically published on May 17, 1999

ON A PROBLEM OF DYNKIN

YUAN-CHUNG SHEU

(Communicated by Stanley Sawyer)

ABSTRACT. Consider an (L, α) -superdiffusion *X* on \mathbb{R}^d , where *L* is an uniformly elliptic differential operator in \mathbb{R}^d , and $1 < \alpha \leq 2$. The G-polar sets for X are subsets of $\mathbb{R} \times \mathbb{R}^d$ which have no intersection with the graph G of X, and they are related to the removable singularities for a corresponding nonlinear parabolic partial differential equation. Dynkin characterized the G-polarity of a general analytic set $A \subset \mathbb{R} \times \mathbb{R}^d$ in term of the Bessel capacity of *A*, and Sheu in term of the restricted Hausdorff dimension. In this paper we study in particular the G-polarity of sets of the form $E \times F$, where *E* and *F* are two Borel subsets of $\mathbb R$ and $\mathbb R^d$ respectively. We establish a relationship between the restricted Hausdorff dimension of $E \times F$ and the usual Hausdorff dimensions of *E* and *F*. As an application, we obtain a criterion for G-polarity of $E \times F$ in terms of the Hausdorff dimensions of *E* and *F*, which also gives an answer to a problem proposed by Dynkin in the 1991 Wald Memorial Lectures.

1. INTRODUCTION

Suppose that *L* is an uniformly elliptic differential operator in $\mathbb{R} \times \mathbb{R}^d$ of the form

$$
Lu(t,x) = \sum_{i,j} a_{ij}(t,x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_i b_i(t,x) \frac{\partial u}{\partial x_i}.
$$

Here we assume that a_{ij} and b_i are bounded and smooth functions in $\mathbb{R} \times \mathbb{R}^d$. An (L, α) -superdiffusion, $1 < \alpha \leq 2$, is a branching measure-valued Markov process $X = (X_t, P_u)$ such that for every bounded positive Borel function f on \mathbb{R}^d , the function

$$
v(r,x) = -\log P_{\delta_{r,x}} e^{-\langle f, X_t \rangle}
$$

is a mild solution of the following problem:

$$
\begin{cases} \frac{\partial v}{\partial t} + Lv & = v^{\alpha} \text{ in } (-\infty, t) \times \mathbb{R}^d, \\ v(r, x) & \to f(x) \text{ as } r \uparrow t \text{ and } x \in \mathbb{R}^d. \end{cases}
$$

(Here we write PY for the expected value of Y with respect to the probability measure *P*, and $\langle f, \mu \rangle$ for the integral of *f* with respect to the measure μ .) The graph of *X* is the minimal closed subset G of $\mathbb{R} \times \mathbb{R}^d$ such that, for every $t \in \mathbb{R}$,

c 1999 American Mathematical Society

dimension.

Received by the editors December 1, 1997 and, in revised form, February 23, 1998.

¹⁹⁹¹ *Mathematics Subject Classification.* Primary 60J60, 35K55; Secondary 60J80, 31C45.

Key words and phrases. Superdiffusion, graph of superdiffusion, semilinear partial differential equation, G-polarity, H-polarity, Hausdorff dimension, box dimension, restricted Hausdorff

the measure X_t is concentrated on the *t*-section of G An analytic set A of $\mathbb{R} \times \mathbb{R}^d$ is called G-polar if for every $r < t$ and $x \in \mathbb{R}^d$, we have

$$
P_{\delta_{r,x}}(\mathbb{G}\cap A_t = \emptyset) = 1,
$$

where $A_t = A \cap ([t, \infty) \times \mathbb{R}^d)$. In [2], Dynkin proved that the class of G -polar sets for the (L, α) -superdiffusion X is identical to the class of sets of Bessel capacity zero. Moreover he proved that a set *A* is G-polar if and only if it is a removable singularity for the partial differential equation

$$
\frac{\partial v}{\partial t} + Lv = v^{\alpha}.
$$

(We say that $A \subset \mathbb{R} \times \mathbb{R}^d$ is a removable singularity for the equation (1) if 0 is the only nonnegative solution of the equation (1) in $(\mathbb{R} \times \mathbb{R}^d) \setminus A$.) In [7], Sheu demonstrated that the critical restricted Hausdorff dimension (to be introduced later) for the G-polarity is $d - \frac{2}{\alpha - 1}$.

We say that an analytic set F in \mathbb{R}^d is H-polar if $\{t\} \times F$ is G-polar for every *t* ∈ R. The notion of H -polarity is also related to solutions of the heat equation with initial measure value. (See Baras and Pierre [1].) Note that the critical Hausdorff dimension for the H-polarity is $d - \frac{2}{\alpha - 1}$.

Our objective is to study the following problem proposed by Dynkin in the 1991 Wald Memorial Lectures.

Problem ([3], p. 1245)**.** Suppose F is H-polar and $E \subset \mathbb{R}$ is a set of Lebesgue measure 0. Is $E \times F$ G-polar?

In Section 2 we recall definitions of Hausdorff dimension, box dimension and the restricted Hausdorff dimension, and establish new relations between the restricted Hausdorff dimension of $E \times F$ and the Hausdorff dimensions of E and F . Namely, we prove that

$$
\begin{aligned} 2H\text{-}\dim(E) \ + \ H\text{-}\dim(F) \ \leq \mathcal{R}\text{-}H\text{-}\dim(E\times F) \\ \leq 2H\text{-}\dim(E) \ + \ B\text{-}\dim_-(F). \end{aligned}
$$

where *^H*- dim means the Hausdorff dimension, *^B*- dim*[−]* the lower Hausdorff box dimension, and *R*-*H*- dim the restricted Hausdorff dimension. (Our proofs are analogous (with some suitable modifications) to that of Falconer [4] and from there we also quote some interesting examples.) Under the assumption H - dim (F) = *B*- dim_−(*F*), we obtain that if $2H$ - dim(*E*) + *H*-dim(*F*) < $d - \frac{2}{\alpha - 1}$, then $E \times F$ is G-polar, whereas, if $2H$ - dim (E) + H - dim $(F) > d - \frac{2}{\alpha - 1}$, then $E \times F$ is not G-polar. As an application, we give examples in Section 3 which show that the answer to Dynkin's problem is negative (see Theorem 6 for more details).

2. Hausdorff dimension, box dimension and the restricted Hausdorff dimension

Suppose that F is a subset of \mathbb{R}^d . First we recall a definition of the Haudorff dimension of *F*. For every $s > 0$ and $\epsilon > 0$, set

$$
\wedge^s \text{-}m_{\epsilon}(F) = \inf \sum_i (\text{diam}(B_i))^s
$$

where the infimum is taken over all countable coverings of F by open ball B_i with radius $r_i \leq \epsilon$. The Hausdorff measure with index *s* is defined by the formula

(2)
$$
\wedge^s \text{-}m(F) = \lim_{\epsilon \downarrow 0} \wedge^s \text{-}m_{\epsilon}(F),
$$

and the Hausdorff dimension *H*-dim(*F*) is the supremum *s* such that \wedge^s -*m*(*F*) > 0.

Let *A* be a subset of $\mathbb{R} \times \mathbb{R}^d$. In order to determine if *A* is polar relative to the heat equation

$$
\sum_{i} \frac{\partial^2 u}{\partial x_i^2} = \frac{\partial u}{\partial t},
$$

Taylor and Watson [8] introduced the notion of the restricted Hausdorff dimension of *A*. For any *s >* 0, the definition of the restricted Hausdorff measure with index *s*, denoted as \mathcal{R} - \wedge ^{*s*} -*m*(*A*), is the same as that for Hausdorff measure except that the balls for covering are replaced by sets of the form

(3)
$$
P(t, x; r) = [t, t + r^2] \times [x_1, x_1 + r] \times [x_2, x_r + r] \times \cdots \times [x_d, x_d + r]
$$

where $t \in \mathbb{R}, r \geq 0$ and $x = (x_1, x_2, \dots, x_d)$. The restricted Hausdorff dimension of *A*, denoted as \mathcal{R} -*H*-dim(*A*), is defined in terms of the restricted Hausdorff measure in the same way as the Hausdorff dimension is defined in terms of the Hausdorff measure.

We quote a result from Taylor and Watson [8].

Lemma 1. Let *A be a Borel subset of* $\mathbb{R} \times \mathbb{R}^d$ *and* $s > 0$ *, c be two constants. If* μ *is a finite positive measure on* $\mathbb{R} \times \mathbb{R}^d$ *satisfying*

$$
\limsup_{r \to 0} \frac{\mu(A \cap P(t, x; r))}{r^s} \le c < \infty,
$$

for all $(t, x) \in A$ *, then*

$$
\mathcal{R} \text{-} \wedge^s \text{-}m(A) \ge \frac{1}{c2^s} \mu(A).
$$

Proposition 2. Let E and F be two Borel subsets of \mathbb{R} and \mathbb{R}^d respectively. If $0 < \wedge^k-m(E) < \infty$ and $0 < \wedge^l-m(F) < \infty$ for some $k, l \geq 0$, then \mathcal{R} - \wedge^{2k+l} . $m(E \times F) > 0$.

Proof. This is trivial in the case $k = l = 0$. We assume that $k + l > 0$. Since $0 < \wedge^k$ - $m(E) < \infty$ and $0 < \wedge^l$ - $m(F) < \infty$, it follows from Lemma 5.4 of Hayman and Kennedy [5] that there exist two measures μ_1 and μ_2 on $\mathbb R$ and $\mathbb R^d$ respectively satisfying the following two conditions:

(1) $0 < \mu_1(E) < \infty$ and $0 < \mu_2(F) < \infty$, and

(2) There exists a constant *c* such that for all $t \in E, x \in F$ and $0 < r \leq 1$, we have

$$
\mu_1(B(t; r)) \leq c r^k
$$

and

$$
\mu_2(B(x; r)) \leq cr^l,
$$

where $B(x; r)$ is the ball centered at x and radius r.

Set $\mu = \mu_1 \times \mu_2$. For every $(t, x) \in E \times F$ and $0 < r \leq \frac{1}{\sqrt{d}}$, we have, by the condition (2), that

$$
\mu((E \times F) \cap P(t, x; r)) \leq \mu_1(E \cap [t, t + r^2])\mu_2(F \cap B(x; r\sqrt{d}))
$$

$$
\leq c^2(\frac{r^2}{2})^k(r\sqrt{d})^l = \frac{c^2d^{\frac{1}{2}}}{2^k} r^{2k+l}.
$$

Hence

$$
\limsup_{r \to 0} \frac{\mu((E \times F) \cap P(t, x; r))}{r^{2k+l}} \le \frac{c^2 d^{\frac{1}{2}}}{2^k} < \infty
$$

for all $(t, x) \in E \times F$. It follows from Lemma 1 and condition (1) that

$$
\mathcal{R} \text{-} \wedge^{2k+l} -m(E \times F) \geq \frac{1}{c^2 d^{\frac{1}{2}} 2^{k+l}} \mu(E \times F) = \frac{1}{c^2 d^{\frac{1}{2}} 2^{k+l}} \mu_1(E) \mu_2(F) > 0.
$$

Corollary 3. *For every Borel sets* $E \subset \mathbb{R}$ *and* $F \subset \mathbb{R}^d$ *, we have*

(4)
$$
\mathcal{R}\text{-}H\text{-}\dim(E\times F) \geq 2 H\text{-}\dim(E) + H\text{-}\dim(F).
$$

Proof. Let $k = H$ - dim(*E*) and $l = H$ - dim(*F*). If $k' < k$ and $l' < l$, then $\wedge^{k'}$ - (E) = ∞ and $\wedge^{l'}$ - (F) = ∞ . There exist two Borel subsets $E' \subset E, F' \subset F$ satisfying $0 < \wedge^{k'}$ - $m(E') < \infty$ and $0 < \wedge^{l'}$ - $m(F') < \infty$. By Proposition 2, we have

$$
\mathcal{R} \text{-} \wedge^{2k'+l'} \text{-}m(E \times F) \geq \mathcal{R} \text{-} \wedge^{2k'+l'} \text{-}m(E' \times F') > 0.
$$

By the definition of the restricted Hausdorff dimension, we get

$$
\mathcal{R}\text{-}H\text{-}\dim(E\times F)\geq 2k'+l'.
$$

Since this holds for every $k' < k$ and $l' < l$, we obtain that \mathcal{R} -*H*-dim($E \times F$) \geq $2 H$ - dim $(E) + H$ - dim (F) .

Note that $P(t, x; r) \subset B((t, x); r\sqrt{d+r^2})$ for all $(t, x) \in \mathbb{R}^d$ and $r \geq 0$. It follows from the definitions that $\mathcal{R}-\wedge^s-m(A) \geq \wedge^s-m(A)$ for all $s \geq 0$ and all subsets *A* ⊂ \mathbb{R}^{d+1} . Hence

(5)
$$
\mathcal{R}\text{-}H\text{-dim}(A) \geq H\text{-dim}(A) \text{ for all } A \subset \mathbb{R}^{d+1}.
$$

The following example is a modification of Example 7.8 in Falconer [4], and it shows that the equality in (4) does not hold for general Borel sets *E* and *F*.

Example 1. Let $0 = a_0 < a_1 < a_2 < \cdots$ be an increasing sequence of integers. Put

$$
\begin{array}{lcl} E \ = \ \{r \in [0,1] | r \ = \ 0.r_1r_2 \cdots r_i \cdots, \\ & \text{where} \ r_i \ = \ 0 \ \text{whenever} \ a_{2k} + 1 \leq i \leq a_{2k+1} \ \text{for some integer} \ k \} \end{array}
$$

and

$$
F_1 = \{ r \in [0,1] | r = 0.r_1r_2 \cdots r_i \cdots,
$$

where $r_i = 0$ whenever $a_{2k+1} + 1 \le i \le a_{2k+2}$ for some integer $k \}.$

It was shown in Falconer [2] that if the *aⁱ* increase sufficiently rapidly, then *H*- $\dim(E \times F_1) \geq 1$ and H - $\dim(E) = H$ - $\dim(F_1) = 0$. Set

$$
F = \{ (x_1, 0, 0, \cdots, 0) \in \mathbb{R}^d, | x_1 \in F_1 \}.
$$

The formula for Hausdorff dimension of product sets implies that H - dim(F) = $H - \dim(F_1) = 0$, and $H - \dim(E \times F) = H - \dim(E \times F_1) \geq 1$. It follows from (5) that

$$
\mathcal{R}\text{-}H\text{-}\dim(E\times F)\geq H\text{-}\dim(E\times F)\geq 1>0\ =\ 2\ H\text{-}\dim(E)\ +\ H\text{-}\dim(F).
$$

To get a sufficient condition for the equality in (4) to hold, we recall a definition of box dimension for subset F of \mathbb{R}^d . For every $\epsilon > 0$, let $N_{\epsilon}(F)$ be the number of ϵ -mesh cubes that intersect *F*. Here an ϵ -mesh cube is one of the form

$$
[m_1\epsilon, (m_1+1)\epsilon] \times \cdots \times [m_d\epsilon, (m_d+1)\epsilon]
$$

where $m_1, ..., m_d$ are integers. The lower and upper box dimensions of F are defined as

$$
B \text{-} \dim_{-}(F) = \liminf_{\epsilon \to 0} \frac{\log N_{\epsilon}(F)}{-\log \epsilon}
$$

and

$$
B\text{-}\dim_{+}(F) = \limsup_{\epsilon \to 0} \frac{\log N_{\epsilon}(F)}{-\log \epsilon}.
$$

The box dimension of *F* is given by

$$
B\text{-}\dim(F) = \lim_{\epsilon \to 0} \frac{\log N_{\epsilon}(F)}{-\log \epsilon}
$$

(if this limit exists). Note that for every $\epsilon > 0$, the $N_{\epsilon}(F)$ number of ϵ -mesh cubes that intersect with *F* forms a covering for *F*. Hence for every $s > 0$, we have

$$
\wedge^s \text{-} m_{\epsilon \sqrt{d}}(F) \leq (\epsilon \sqrt{d})^s N_{\epsilon}(F).
$$

Taking the logarithm and then dividing by $-\log \epsilon$ (we assume that $\epsilon < 1$) on both sides gives

$$
s + \frac{s \log d}{2 \log \epsilon} + \frac{\log(\wedge^s-m_{\epsilon \sqrt{d}}(F))}{-\log \epsilon} \leq \frac{\log N_{\epsilon}(F)}{-\log \epsilon}.
$$

As $\epsilon \downarrow 0$, we get

$$
s + \liminf_{\epsilon \to 0} \frac{\log(\wedge^s-m_{\epsilon \sqrt{d}}(F))}{-\log \epsilon} \leq B \text{-} \dim_{-}(F).
$$

If *s* < *H*-dim(*F*), then $\lim_{\epsilon \to 0} \wedge^s \cdot m_{\epsilon}(F) = \infty$ and hence *s* ≤ *B*-dim_−(*F*). Since this holds for all $s < H$ - dim(*F*), we observe that

(6)
$$
B\text{-}\dim_{-}(F) \geq H\text{-}\dim(F).
$$

Although there are many examples in which the above inequality is strict, many reasonably regular sets have the same Hausdorff and box dimension (see Falconer [4] for more details).

Example 2. Let *m* be a positive integer and $0 < \lambda < \frac{1}{m}$. Put $C_0 = [0, 1]$. For $k \geq 0$, assume C_k consists of m^k closed intervals of lengths λ^k . Then each closed interval *I* in C_k is replaced by *m* equally spaced subintervals of length λ^{k+1} , the ends of the *I* coinciding with the ends of the extreme subintervals. The union of all these subintervals forms the set C_{k+1} . Put

$$
C(m,\lambda) = \bigcap_k C_k.
$$

Note that $C(2, \frac{1}{3})$ is the middle third Cantor set. Clearly, for every *m* and $\lambda >$ $0, C(m, \lambda)$ is a set of Lebesgue measure zero. Moreover we have

$$
H\text{-}\dim(C(m,\lambda)) = B\text{-}\dim(C(m,\lambda)) = \frac{\log m}{-\log \lambda}
$$

(for a proof, see Falconer [4] Example 4.5)).

Proposition 4. For any sets $E \subset \mathbb{R}$ and $F \subset \mathbb{R}^d$, we have

(7)
$$
\mathcal{R}\text{-}H\text{-}\dim(E\times F)\leq 2 H\text{-}\dim(E) + B\text{-}\dim_{-}(F).
$$

Proof. Let $k = H$ - dim(E) and $l = B$ - dim_−(F). Choose $k' > k$ and $l' > l$. By the definition of box dimension, there exists $\epsilon_0 > 0$ such that

(8)
$$
N_{\epsilon}(F) \leq \epsilon^{-l'} \text{ for all } \epsilon < \epsilon_0.
$$

Let E_j be any ϵ - cover of *E* by intervals with $\sum_j |E_j|^{k'} < 1$. For each *j*, let F_{jn} be the $\sqrt{|E_j|}$ -mesh cubes that intersect with *F*. Then $E_j \times F_{jn}$ are sets of the form (3) and

$$
\bigcup_j \bigcup_n E_j \times F_{jn}
$$

is a covering of $E \times F$ with diam $(E_j \times F_{jn}) \leq \sqrt{\epsilon(d+\epsilon)}$. Set $\epsilon' = \sqrt{\epsilon + d}$. For $\sqrt{\epsilon}$ < ϵ_0 , we have

 $\overline{}$

$$
\mathcal{R} \sim \wedge^{2k'+l'} -m \sqrt{\epsilon(d+\epsilon)} (E \times F) \leq \sum_{j} \sum_{n} \left[\sqrt{|E_j| (d+|E_j|)} \right]^{2k'+l'}
$$

$$
\leq (\epsilon')^{2k'+l'} \sum_{j} |E_j|^{k'+l'} |E_j|^{-\frac{l'}{2}}
$$

$$
\leq (\epsilon')^{2k'+l'} \sum_{j} |E_j|^{k'} < \infty,
$$

which implies that $\mathcal{R}\text{-}H\text{-}\dim(E\times F) \geq 2k' + l'$. Since this holds for all $k' > k$ and $l' > l$, we obtain that $\mathcal{R}\text{-}H\text{-}\dim(E\times F) \geq 2H\text{-}\dim(E) + B\text{-}\dim(F)$. \Box

Combining Corollary 3 and Proposition 4 we get the following main theorem.

Theorem 5. Let $E \subset \mathbb{R}$ and $F \subset \mathbb{R}^d$ be two Borel sets. If H *-* dim(*F*) = *B-* dim(*F*)*, then we have*

(9)
$$
\mathcal{R}\text{-}H\text{-}\dim(E\times F) = 2 H\text{-}\dim(E) + H\text{-}\dim(F).
$$

Remark. Consider the logarithmic Hausdorff dimension instead (for a definition see, e.g., Dynkin [3]) and define the box dimension of *F* as

$$
\lim_{\epsilon \to 0} \frac{\log N_{\epsilon}(F)}{\log(-\log \epsilon)}.
$$

Using the same approach as before, we prove that the restricted logarithmic Hausdorff dimension of $E \times F$ is the sum of the logarithmic Hausdorff dimensions of E and of *F*.

ON A PROBLEM OF DYNKIN 3727

3. Applications

Consider an (L, α) -superdiffusion *X* and assume that $d > \frac{2}{\alpha - 1}$. (Note that there is no G-polar set in the case $d < \frac{2}{\alpha - 1}$.) Set $\gamma_0 = d - \frac{2}{\alpha - 1}$. Sheu [7] showed that the critical restricted Hausdorff dimension for G-polarity is γ_0 . (This means that if \mathcal{R} -*H*-dim(*A*) $< \gamma_0$, then *A* is G-polar; whereas, if \mathcal{R} -*H*-dim(*A*) $> \gamma_0$, then it is not G-polar). In fact γ_0 is also the critical Hausdorff dimension for H-polarity in \mathbb{R}^d (see, e.g., Dynkin [3] and Sheu [7]). Using these facts and Theorem 5, we obtain the following theorem (which give an answer to Dynkin's problem).

Theorem 6. Assume that F is a Borel subset of \mathbb{R}^d and satisfies the condition

 $\gamma = H$ ⁻ dim(*F*) = *B*⁻ dim(*F*) < γ_0 .

Let E be a Borel subset of R*. Then*

- (1) *If* H *-* dim(E) $\lt \frac{1}{2}(\gamma_0 \gamma)$ *, then* $E \times F$ *is a* G*-polar set.*
- (2) *If* H *-* dim $(E) > \frac{1}{2}(\gamma_0 \gamma)$, then $E \times F$ is not G-polar.

Remark. (1) In [8], Taylor and Watson also considered polarity of sets of the form $T \times \{0\}$, $0 \in \mathbb{R}^d$, $T \subset \mathbb{R}$, for the heat equation. They showed that $T \times \{0\}$ is polar if, and only if $C_{\frac{d}{2}}(T) = 0$, where C_{β} is the Riesz capacity of order β . (See also Kaufman and Wu [6].)

(2) Example 1 shows that there exist Borel sets $E \subset \mathbb{R}$ and $F \subset \mathbb{R}^d$ satisfying R -*H*-dim($E \times F$) ≥ 1 and H -dim(E) = *H*-dim(F) = 0. Clearly $E \times F$ is not $\mathbb{G}\text{-}\text{polar if }d-\frac{2}{\alpha-1}<1.$ Therefore the condition that $H\text{-}\dim(F) = B\text{-}\dim(F)$ is crucial.

Example 3. Let $F = \{0\}$ be the origin point of \mathbb{R}^d and $E = C(m, \lambda)$, where *m* is an integer, $0 < \lambda < \frac{1}{m}$ and $C(m, \lambda)$ is defined as in Example 2. Clearly $H\text{-dim}(F) = B\text{-dim}(F) = 0$. By Theorem 5 and (6), we have

$$
\mathcal{R}\textrm{-}H\textrm{-}\dim(C(m,\lambda)\times\{0\}) \ = \ 2 \ \ H\textrm{-}\dim(C(m,\lambda)) \ = \ \frac{2\,\log m}{-\log \lambda}.
$$

Theorem 6 says that if $m < \lambda^{-\frac{\gamma_0}{2}}$, then $C(m,\lambda) \times \{0\}$ is G-polar; whereas, if $m > \lambda^{-\frac{\gamma_0}{2}}$, then it is not G-polar.

Example 4. Take $E = C(m_1, \lambda_1)$ and F the *d* copies of $C(m_2, \lambda_2)$. Here m_1, m_2 are two integers and $0 < \lambda_i < \frac{1}{m_i}, i = 1, 2$. By induction and (1.5) , (7.8) - (7.9) of Falconer [4], we have

$$
H - \dim(F) = B - \dim(F) = \frac{d \log m_2}{-\log \lambda_2}.
$$

Theorem 5 implies that

(9)
$$
\mathcal{R}\text{-}H\text{-}\dim(E\times F) = \frac{2\,\log m_1}{-\log\lambda_1} + \frac{d\,\log m_2}{-\lambda_2}.
$$

As in Taylor and Watson [8], we assume that

$$
\lambda_1 = m_1^{-\frac{1}{a_1}}
$$
 and $\lambda_2 = m_2^{-\frac{1}{a_2}}$

for some $0 < a_1, a_2 < 1$. Then (9) becomes

$$
\mathcal{R}\text{-}H\text{-}\dim(E\times F) = 2 a_1 + d a_2.
$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

(A similar result was also obtained by Taylor and Watson for the case $m_1 = m_2$ 2.) Under the assumption that $0 < a_2 < 1 - \frac{2}{d(\alpha - 1)}$, we restate Theorem 6 as follows: If $0 < a_1 < \frac{1}{2}[d(1-a_2) - \frac{2}{\alpha-1}]$, then $E \times F$ is $\hat{\mathbb{G}}$ -polar, and if $a_1 > \frac{1}{2}[d(1-a_2) - \frac{2}{\alpha-1}]$, then it is not G-polar.

Remark. Assume that $d = \frac{2}{\alpha - 1}$. Then the critical logarithmic Hausdorff dimension for H-polarity is $\frac{1}{\alpha-1}$, and it is equal to the critical restricted logarithmic Hausdorff dimension of G-polarity (see,e.g., Dynkin [3], Sheu [7]). Using these facts and the remark to Theorem 5, we have results similar to Theorem 6.

ACKNOWLEDGMENTS

I thank the referee and the editor for their useful comments. This research was partially supported by NSC grant 86-2115-M-009-011, Taiwan.

REFERENCES

- 1. Baras, P. and Pierre, M., *Problems paraboliques semi-linéares avec donnees measures*, Applicable Analysis **18** (1984), 111–149. MR **87k:**35116
- 2. Dynkin, E. B., *Superdiffusions and parabolic nonlinear differential equations*, Ann. of Probab. **20** (1990), 942–962. MR **93d:**60124
- 3. Dynkin, E. B., *Superprocesses and partial differential equations*, Ann. of Probab. **21** (1993), 1185–1262. MR **94j:**60156
- 4. Falconer, K., *Fractal Geometry : Mathematical Foundations aand Applicationss*, John Wiley & Sons Ltd., 1990. MR **92j:**28008
- 5. Hayman, W. K. and Kennedy, P. B., *Subharmonic Functions*, vol. 1, Academic Press, 1976. MR **57:**665
- 6. Kaufman, R. and Wu, J. M, *Parabolic potential theory*, J. Differential Equations **43** (1982), 204–234. MR **83d:**31006
- 7. Sheu, Y. C., *A Hausdorff measure classification of G-polar sets for superdiffusions*, Probab. Theory Relat. Fields **95** (1993), 521–533. MR **94g:**60072
- 8. Taylor, S. J. and Watson, N. A., *A Hausdorff measure classification of polar sets for the heat equation*, Math. Proc. Camb. Phil. Soc. **97** (1985), 325–344. MR **86m:**35077

Department of Applied Mathematics, National Chiao-Tung University, Hsinchu, Taiwan

Current address: Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720-5070

E-mail address: ycsheu@nctu.math.edu.tw