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Abstract-The system design of a locally connected competitive 
neural network for video motion detection is presented. The 
motion information from a sequence of image data can be 
determined through a two-dimensional multiprocessor array in 
which each processing element consists of an analog neuropro- 
cessor. Massively parallel neurocomputing is done by compact 
and efficient neuroprocessors. Local data transfer between the 
neuroprocessors is performed by using an analog point-to-point 
interconnection scheme. To maintain strong signal strength over 
the whole system, global data communication between the host 
computer and neuroprocessors is carried out in a digital common 
bus. A mixed-signal very large scale integration (VLSI) neural 
chip that includes multiple neuroprocessors for fast video motion 
detection has been developed. Measured results of the pro- 
grammable synapse, and winner-take-all circuitry are presented. 
Based on the measurement data, system-level analysis on a 
sequence of real-world images was conducted. A 1.5 x 2.8-cmZ 
chip in a 1.2-pm CMOS technology can accommodate 64 velocity- 
selective neuroprocessors. Each chip can achieve 83.2 giga con- 
nections per second. The intrinsic speed-up factor over a Sun-4/75 
workstation is around 180. 

I. INTRODUCTION 

APID advances in a very large scale integration (VLSI) R technologies have made possible the integration of 
multiple-million transistors on a single chip. In 1992, the 
feature size for computer memory technologies is around 
0.4 pm [1]. The use of VLSI circuits can greatly reduce 
the physical size and enhance the performance and reliability 
of microelectronic systems. In the microprocessor domain, 
continuous progress on reduced instruction set computers 
(RISC) enables the introduction of the Intel-i860 chip [2], 
the SPARC chip from Sun Microsystems, Inc. (31, and the 
400-MIPS Alpha chip from Digital Equipment Corporation 
[4]. In the digital signal processing domain, the TMS- 
320C40 chip from Texas Instruments, Inc. [5] includes six 
communication ports to facilitate various data communication 
schemes. In the dedicated neural computing domain, the 
11-million-transistor CNAPS chip from Adaptive Solutions, 
Inc. and Inova Microelectronics, Inc. [6] includes 64 digital 
processors for general-purpose neural network execution. 

A desirable configuration for an integrated information 
processing system is shown in Fig. 1. A powerful multimedia 
data-fusion machine is equipped with several smart interface 
units to communicate with the analog signals in the real 
world. These analog signals contain information with some 
degree of fuzziness [7]. The image acquisition/understanding 
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Fig. 1. An integrated information system. Information can be transferred 
between the system and the real world in multimedia format. 

and advanced display units are used to process visual infor- 
mation. The speech recognizer and synthesizer units are used 
to process audio information [8]. The microsensor [9] and 
controller units are used to perform physical actions. Such 
an intelligent system can be used in offices, factories, and 
autonomous vehicles. VLSI neural chips can be effectively 
used in the construction of the interface units. 

Various design approaches are applicable for the construc- 
tion of neural chips. The analog circuit approach is quite 
attractive in terms of hardware size, power consumption, and 
speed [lo]. Analog neural networks were used as sensory 
devices to preprocess the real-world data, as reported by Mead 
et al. [11], [12] and Abidi et al. [13]. In addition, many 
other analog VLSI neural chips have been reported [ 141 - [ 161. 
One unique feature of a purely analog neural network is the 
limited computational precision for complex problems. To 
enhance the performance of analog VLSI neurocomputing, 
extra analog switching circuits can be used to facilitate the 
reconfigurability and scalability of analog neural networks 
[ 171. The digital circuit approach offers greater flexibility, 
scalability, and accuracy than the analog circuit approach. By 
using logic and memory, a large problem can be partitioned 
and processed by the digital neural networks. Some general- 
purpose digital VLSI neural chips were reported [18]-[20]. 

In this paper, a mixed-signal design approach is used to 
exploit the massively parallel computational power of the 
neural network architecture for video motion detection. To 
solve low-level vision processing problems, multiple neurons 
and synapses can be clustered together to function as one pixel 
processing element. By using compact analog circuit design 
for the neuron and synapse cells, highly parallel computation 
on the pixel level can be achieved. 
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11. SYSTEM ARCHITECTURE 

Motion information extracted from a sequence of time- 
varying images plays a key role in the image understand- 
ing and automated control processes. The requirement of 
an enormous amount of computational power for analyzing 
image sequences is always a major barrier to real-world 
applications of most vision-processing algorithms. By using 
multiprocessor-based VLSI design, the parallelism embedded 
in low-level vision processes can be fully explored. The 
single instruction multiple data (SIMD) architecture is a good 
example [21], [22]. Two specific multiprocessor-based neural 
engines based on the SIMD architecture have been reported. 
The CNAPS machine, from Adaptive Solutions, Inc. [MI, 
consists of an array of processing nodes (PN’s). Each PN is 
an arithmetic processor with its own local memory. The array 
is sequenced by a system controller. Thus every PN executes 
the same instruction at a given clock period. The input data 
and control commands are broadcast to all PN’s through the 
common bus. The output data of the PN’s are transmitted 
through the data bus by the time-multiplexing scheme. A local 
digital data link exists between adjacent PN’s to allow quick 
data transfer. Due to the simplicity of the broadcast scheme, no 
complex routing networks are required. The systolic/cellular 
array processors (SCAP) system, from Hughes Research Lab. 
in Malibu, CA [23], consists of a 16 x 16 processor array, a 
dual-port array memory, and a system controller. The mesh- 
connection architecture is used. The boundary columns are 
connected via the wrap-around scheme, and the top and bottom 
rows are connected to the two ports of the system memory. 
Data communication can be conducted in the paralleled format 
or in the pipelined format. 

In our design, a mesh-connected two-dimensional neuro- 
processor array is used for high-speed video motion detection. 
Each processoring element can extract the velocity informa- 
tion for one pixel. Interprocessor communication is done by 
dedicated analog point-to-point interconnections. Data com- 
munication between the host computer and array processors 
is carried out through the digital common bus to preserve 
signal strength and to achieve simple network scalability. By 
using this efficient communication among processors, a high 
computational power per unit silicon area can be achieved. 

111. MOTION DETECTION ALGORITHM 

Many features from the images such as points, lines, curves, 
and optical flow, can be used to estimate motion parameters. 
Optical flow is the apparent motion of the brightness patterns. 
Generally, the optical flow corresponds to the motion field 
[24], and provides important information about the spatial 
arrangement of the objects, the rate of change of this ar- 
rangement in a given scene, and also the perceiver’s own 
movements. Optical flow can thus be used for deriving relative 
depth of points [25], [26], segmenting images into regions [27], 
and estimating the object motion in the scene [28]. 

According to the nature of the measured primitives, existing 
approaches to optical flow computing can be divided into 
two types: the image intensity based approach and the token 
based approach. The intensity based approach relies on the 

assumption that changes in intensity are strictly due to the 
motion of the object and uses the image intensity values 
and their spatial and temporal derivatives to compute the 
optical flow. By expanding the intensity function into a first- 
order Taylor series, Horn and Schunck [29] derived an optical 
flow equation using the brightness constancy assumption and 
spatial smoothness constraints. An iterative method for solving 
the resulting equation was also developed. The token based 
approach is to consider the motion of tokens such as edges, 
corners, and linear features in an image. The key advantage 
of the token based approach is that tokens are less sensitive 
to variations of the image intensity. The token based approach 
provides the information of the object motion and shape at 
edges, corners, and linear features. An interpolation procedure 
has to be included when dense data are required. 

Recently, several researchers used neural networks to 
conduct optical flow computing [30], [31]. To prevent the 
smoothness constraint from taking effect across strong velocity 
gradients, a line process has been incorporated into the optical 
flow equation [31]. The resulting equation is nonconvex and 
includes the cubic and some higher terms. Instead of using 
an annealing algorithm which is very time consuming, a 
deterministic algorithm was used to obtain a near-optimal 
solution. Convergence of such a network was obtained within a 
few iteration cycles. Basically, the mixed analoddigital neural 
network approach is to first use Horn’s optical flow equation 
to find a smoothest solution and then to update the line process 
by lowering the energy function of the network repeatedly. In 
the hardware implementation, the resistive network is quite 
susceptible to device variation effects from the silicon CMOS 
fabrication processes. 

In order to obtain a dense flow field, the intensity based 
approach is preferable. However, the intensity value may be 
corrupted by noise appeared in natural images and partial 
deviatives of the intensity value are sensitive to rotation. It 
is difficult to detect the rotational objects in natural images 
based on such measurement primitives. Under the assumption 
that changes in intensity are strictly due to the motion of the 
object, Zhou et al. [32], [33] use the principal curvatures of 
the intensity function to compute the optical flow because 
they are rotation-invariant. The intensity values and their 
principal curvatures are estimated by using a polynomial fitting 
technique. Under the assumption of local rigid motion and 
the smoothness constraint, a self-organizing neural network 
[34]-[36] was developed to compute the optical flow. A 
deterministic decision rule was used for the updating of neuron 
states. 

Let the velocity field consist of two components k and 1. 
A set of ( 2 0 k  + 1) ( 2 0 1  + 1) modules of neurons are used 
to represent the optical flow field, where Dk and Dl are the 
maximum values of velocity components in k and 1 directions, 
respectively. For the implementation purposes, the velocity 
component range is sampled using bins of size Q. As shown 
in Fig. 2, each module corresponds to a velocity value and 
contains N, x N,  neurons if the images are of size N ,  x N,. 
All neurons in the same module are self-connected and locally 
interconnected with other neurons in a neighborhood of size 
r x I?. Every pixel is represented by (201, + 1) ( 2 0 1  + 1) 
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mutually exclusive neurons which form a hypercolumn for 
velocity selection. When the neuron at the point ( i , j )  in the 
(k,l)th module is one, the actual velocities in the k and 1 
directions at the point ( i , j )  are k Q  and 1Q, respectively. 

D k ,  -Dz 5 1 5 Dl} be a binary set of the neural network 
with u i , j , k , z  denoting the state of the (2, j ,  k ,  1)th neuron which 
is located at point ( i , j )  in the ( k ,  Z)th module, T i , j , k , ~ ; ~ , ~ , k , l  

be the synaptic interconnection strength from neuron ( i ,  j ,  k ,  1) 
to neuron (m, n, k, l ) ,  and I i , j , k , l  be the bias input. 

At each step, the neuron ( i ,  j ,  k ,  1) synchronously receives 
signals from itself, neighboring neurons, and a bias input 

Let v = { u i , j , k , z ,  1 5 i 5 NT, 1 5 j 5 N,, - D k  5 k 5 

'%,j ,k,l  = Ti,j,k,Z;m.n,k,lum,n,li,l + I t , j , k , Z  (1) 
(m - 2 ,n - j )  E So 

/ . / 

. 
where SO is an index set for all neighbors in a r x r window 
centered at point (z, j) .  The ~ , , ~ , k , l  is then processed by the 

/ 
I 

winner-take-all circuitry to determine the velocity of the pixel 

u Z , j , k , z  = g ( U t , 3 , k , l )  

Fig. 2. A competitive neural network is used for optical flow computing. 
The neurons are arranged in modules according to their velocity selectivity. 
Indexes t and J denote the image coordinates. ( k , l )  denotes the velocity 
coordinate. Each hypercolumn represents the velocity selectivity of one image 
pixel. 

( 2 )  

where g(x,,3,k,~) is the winner-take-all function: 

1 if x i , j , k , l  = max(zi,j,p,q; - D  < - < - D k ,  

0 otherwise. 

computing the optical flow from a pair of image frames can 
be expressed as -D1 5 4 I a). g ( z i , j , k , z )  = 

(3)  

The network operation will be terminated if the network 
converges; i.e., the energy function of the network defined by 

reaches a minimum. (6) 

where kl l (z , j )  and k12(2 + k , j  + 1)  are the principal curva- 
tures of the first image, kZl( i , j )  and k22( i  + k , j  + I )  are 
the principal curvatures of the second image, g l ( i , j )  and 
g 2 ( i  + k , j  + 1 )  are the intensity values of the first and second 
images, respectively. Here, S = So - (0,O) is an index set 
excluding (0,O). A, B,  and C are empirical constants. 

Two important features of the network should be noted: 
i) The synaptic interconnection strength between neurons 

on different modules are zeros because only the neurons 
in the same module are connected, i.e. 

T i , j , k , l ; m . n , p , p  = 0, for ( k ,  1 )  # (P, q)r 

if (2 ,  j )  # (m, (5 )  The principal curvatures are defined as [37] 

ii) A maximum evolution function is used to ensure that k l ( i , j )  = M + ( M 2  - G)l12 (7)  

and only one neuron which has the maximum excitation is 
fired and the other ( 2 D k  + 1 ) ( 2 D ~  + 1) - 1 neurons are 

As reported in [32], a smoothness constraint is used for 
obtaining a smooth optical flow field and a line process 
is employed for detecting motion discontinuities. The line 
process consists of vertical and horizontal lines, L" and Lh,  
respectively. Each line can be in either one of the two states: 

(8) 
1/2 turned off. k 2 ( i , j )  = M - ( M 2  - G )  

where k i ( i , j )  and k z ( i , j )  are the Principal curvatures, G and 
are the Gaussian and mean curvatures given by 

(9) 
G=&.- - -  @q( i  j )  @ g ( i , j )  @ g ( i , j )  [ aiaj ] 1 for being active and 0 for being idle. The error function for ai2 aj2 



LEE et al.: VLSI NEUROPROCESSORS FOR VIDEO DETECTION 181 

and 

A polynomial fitting technique can be used to estimate the 
derivatives. The k l l ,  k 2 1 ,  k 1 2 ,  and k22  values are calcu- 
lated from the images by the host computer and sent to the 
neuroprocessor for network evaluation. 

In (6), the first term is to find velocity values such that all 
points of two images are matched as closely as possible in a 
least-squares sense. The second term, which is weighted by 
B, is the smoothness constraint on the solution and the third 
term, which is weighted by C, is a line process to weaken 
the smoothness constraint and to detect motion discontinuities. 
The constant A in the first term determines the relative im- 
portance of the intensity values and their principal curvatures 
to achieve the best results. The line process weakens the 
smoothness constraints by changing the smoothing weights, 
resulting in space-variant smoothing weights. For example, if 
all lines are on, the weights will be B/2. If all lines are off, 
the weights at the four nearest neighbors of the center point 
are increased by C/2. 

By choosing the interconnection strengths and bias inputs 

Smoothness Window= 5 x 5 

D k = D l = l  I IiJLJ 

Input Bias 

Fig. 3. An artificial neural network. Each small frame denotes a hypercol- 
umn. The neurons in a hypercolumn are uniformly distributed on a plane. 
In addition to an external bias input, each neuron has a self-feedback, and 
receives inputs from similar directionally selective neurons at the neighboring 
hypercolumns. 

Receive * 
Neighbors 

From 

-+GJ 
VmnW'S 

- [.9l(i.J) - S2(z + k , J  + 1)12  (12) 
where Sa,b is the Dirac delta function, the error function in 
(6) is mapped into the energy function of the neural network 
in (4). Notice that the interconnection strengths consist of 
constants and line process only. The bias inputs contain all the 
information from images. When the network reaches a stable 
condition, the optical flow field is determined by the neuron 
states. The size of a typical smoothing window is 5 x 5 .  

Since the first and second terms in (6) do not contain the 
line process, the updating of the line process is prior to the 
updating of neuron states. Let Ly;j:E: and Ly;j:$ denote the 
new and old states of the vertical line Ly,j,k,l, respectively. Let 
Qt,J ,k , l  be the potential of the vertical line Ly,J,k,l given by 

(13) 
C 
2 q t . j , k , I  = - ( v z , ~ , k , l  - 7 1 t + l , ~ , k , l ) ~ .  

Then, the new state is determined by 

Whenever the states of neurons v i , j . k , ~  and Vi+l,j ,k, l  are 
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Fig. 4. Functional diagram of one neuroprocessor. It contains a velocity- 
sensitive component array and data conversion block. The velocity of one 
image pixel can be determined by one neuroprocessor. 

different, the vertical line Lt ,J ,k , l  will be active provided that 
the parameter C is greater than zero. If C = 0, then all lines are 
inactive, which means that no line process exists in the network 
operation. The choice of C is closely related to selecting the 
smoothness parameter B in (6). A similar updating scheme is 
also used for the horizontal lines. In the prototype neural chip 
design, computation for the terms which are weighted by the 
parameter C is not included. 

The state of each neuron is synchronously evaluated and 
updated according to (1) and (2). The initial states of the 
neurons are set as 

1 if It,J,k,l = max(It ,J ,p ,q ,  - I P L Dk, 
-D1 I q I D [ )  

(15) 
0 otherwise 

v t , J , k , l  = 
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Transistor M I  M, M, M, M5 M6 M, M31 M32 M3, M34 

Size inum 3/39 3/39 414 414 513 4/2 412 814 814 8/2 8/2 
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Fig. 6.  Circuit schematic of the operational amplifier used for summing ~ i ~ ,  7. mo winner-take-all cells are connected as a differential operational 
neuron. amplifier. 

where Ii,j,k,l is the bias input. The initial conditions are 
completely determined by the bias inputs. If there are two 
maximal bias inputs at point (z, j) ,  then only the neuron 
corresponding to the smaller velocity is initially set to 1 and 
the other one is set to 0. This is consistent with the minimal 
mapping theory [38]. In the updating scheme, the minimal 
mapping theory is also used to handle the case of two neurons 
having the same largest inputs. 

IV. THE NEURAL-BASED NEUROPROCESSOR DESIGN 

A. WSZ Architecture 

To implement the electronic neural network processor, 
a VLSI architecture has been developed which maps 
the three-dimensional neural network configuration onto a 
two-dimensional plane. As shown in Fig. 3, each small 
frame represents one velocity-selective hypercolumn which 

contains ( 2 0 k  + 1) (20 l  + I) velocity-sensitive components. 
Each hypercolumn is locally interconnected with the r x r - 1 
neighboring hypercolumns. The hypercolumn is designed as 
a neuroprocessor within which the velocity selectivity of an 
image pixel can be conducted. Mixed analogfdigital design 
technologies are utilized for the neuroprocessor design to 
achieve compact and programmable synapses and neurons for 
massively paralleled neural computation [39]. 

To simplify the two-dimensional interconnection design for 
computation of optical flow, the analog point-to-point intercon- 
nection for local communication and the digital common bus 
for global communication are used. Since velocity information 
of one pixel is affected by its neighbors, each neuroprocessor 
receives information from the neighboring neuroprocessors 
during the network operation. Data communication between 
these locally interconnected neuroprocessors is one key factor 
on the overall system performance. There are three different 
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Diiital Outputs of Encoder 

methods to accomplish the local data communication with 
trade-offs on the operation speed and silicon area. 

The first method is to use the digital bit-parallel point-to- 
point interconnection. The (201, + 1)(201 + 1)-bit Z ) ~ , ~ , ~ , ~ ' S ,  

where -Dk L p 5 Dk, -01 5 q 5 01, are transmitted 
using the word-wide point-to-point interconnections. The data 
transfer speed is very fast. However, the total number of 
interconnection lines for each neuroprocessor is as large as 
(201, + 1) (201 + 1) (I- x r). The silicon area for the intercon- 
nection routing is large. The required large pin count becomes 
a major constraint for hardware implementation. 

The second method is to use the digital bit-serial point- 
to-point interconnection. The u ~ i , j , ~ , ~ ' s  are sent in a bit-serial 
order by using a time-multiplexing technique. The total 
number of interconnection lines is reduced by a factor of 
(201, + 1)(201 + 1). However, the time required for data 
transfer increases with the same factor [40]. In addition, the 
required hardware overhead for time-multiplexing includes a 
one-bit latch for each synapse cell, the multiplexing control 
signals, and the associated decoding circuitry. 

The third method is to use the analog bit-parallel point-to- 
point interconnection. The I J ~ , ~ , ~ , ~ ' S  are converted to an analog 
value, and then sent to the neighboring neuroprocessors. 
The ~ ) i , j , ~ , ~ ' s  are converted back into digital values at the 
receiving sites. The required hardware overhead includes the 
digital/analog converter or analoddigital converter at the two 
ends of interconnection wire. Both the analog interconnection 
method and the multiplexing digital interconnection method 
are suitable in the neural network processor design. For 
applications with large 01, and Dl values, the multiplexing 
digital interconnection method is preferred. 

A functional diagram of the velocity-selective neuropro- 
cessor is shown in Fig. 4. It includes a velocity-sensitive 
component array, and a data conversion block. The array has 
(201, + 1)(201 + 1) velocity-sensitive components which are 
laterally connected through the winner-take-all circuit. The 
velocity of the neuroprocessor is determined by competition 
which is performed by the winner-take-all circuit. Only one 
velocity component which has the maximum excitation will 
be the winner to represent the velocity of that pixel. The 
data conversion block is used for the analog point-to-point 
interprocessor interconnection. 

As shown in Fig. 5, the velocity-sensitive component is 
constructed with one synapse array, one summing neuron, 
and one winner-take-all cell. The synapse array contains 
I? x r + 1 programmable synapses. The synapse weights 
Ti,J,,+,l;m,n,k,l are stored as charge packets on capacitors and 
must be refreshed periodically [17], [41]. The binary outputs 
z),,,,~,~ from the neighboring neuroprocessors are routed to 
the corresponding mask ports of the synapse cells to conduct 
the network operation. A summing neuron functions as a 
parallel current-mode adder. Each summing neuron with its 
associated programmable synapse array perform a complete 
inner-product computation. The binary outputs of the winner- 
take-all circuit represent the velocity status. 

The synapse weights and bias inputs are calculated by the 
host computer or a digital coprocessor and stored in a digital 
static-RAM. The 8-bit digital/analog converter transforms the 

Outputs from Winner-Take-All Circuits 

. * e  
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CE 
Read 

Wn1e 
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Fig. 8. The data latch is used to store the final results of the image pixels. 
The contents of latch can be read/write by host computer through the common 
data bus. 
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Fig. 9. A voltage-scaling digital-to-analog converter. The unity-gain 
followers are used to buffer the resistor string from loading. 

digital representation of the synapse weights into analog values 
for charging the weight-storage capacitances of the synapse 
matrix. A two-port static-RAM and differential amplifier- 
based synapse design allows network retrieving and learning 
processes to occur concurrently. 

B. Detailed Circuit Design 

In Fig. 5, a transconductance amplifier consisting of tran- 
sistors Ml-MS produces synapse output current If,j according 
to mask voltage Vmask and weight voltage y:j. The bias 
voltage Vbias controls the dynamic range of synapse cells by 
adjusting the bias current in the transconductance amplifiers. 
When the Vmask is a logic 1, the Vbias is connected to v,, 
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Fig. 10. A parallel and distributed analog-to-digital converter. One common reference voltage and one scaling resistor-chain are used. The comparators 
and associated digital decoding circuits are distributed to each synapse cell. 

to provide the amplifier with a specific bias current I""". 
When the Vmask is at logic 0, the Vbias is connected to the 
negative power supply so that no synapse output current is 
produced. Therefore, the Vmask performs a masking operation 
on the synapse weight voltage yyj. The mask voltage of each 
synapse cell is directly related to the value of the t ~ ~ , ~ , k , [  

which represents the velocity information of the neighboring 
pixels. The maximum synapse conductance is decided by 
device sizes of the differential pair and the bias current I""", 
while the minimum synapse conductance is determined by 
the resolution of the weight value on the MOS capacitance. 
The synapse output currents are summed up and converted 
to the voltage format at the summing neuron. This compact 
synapse circuit performs a two-quadrant multiplication. The 
polarity of the synapse output depends on the value of weight 
voltage y:j. An 8-bit resolution can be easily supported in 
the DRAM-style synapse cell. The required refreshing time 
is around 100 ms. Recently, detailed design of four quadrant 
Gilbert multiplier for synapse cells were reported [17], [42]. 
Multiple differential pairs and current-mirror circuits make the 
wide-range operation possible. If more than 8-bit resolution 
is required for the synapse function, large-geometry MOS 
transistors, and shorter refreshing time will be needed. In 
the EEPROM-style synapse cell [43], [44], at least a 6-bit 
resolution can be obtained. 

The summing neuron functions as a current-to-voltage con- 
verter and is realized by using a two-stage operational ampli- 
fier and a feedback resistor. Circuit schematic diagram of the 
two-stage operational amplifier is shown in Fig. 6. Transistors 
M13 and A414 form an improved cascode stage to increase 
the voltage gain and M24 operates as a resistor for proper 
frequency compensation. The amplifier voltage gain of 100 dB 
can be achieved. 

The outputs of the winner-take-all circuit are binary values. 
Only one winner cell with the maximum input voltage will 
have the logic-1 output value. The other cells will have the 
logic-0 output value. The winner-take-all circuitry functions 

as a multiple-input parallel comparator. Fig. 7 shows the 
circuit schematic diagram of two winner-take-all cells. The 
high-resolution and expandability of this winner-take-all cir- 
cuit makes it suitable for many competitive learning neural 
networks [45] - [48]. Winner-take-all circuits with transistors 
biased in the subthreshold region were reported in the litera- 
ture. Such low-power winner-take-all circuits [49], [50] have 
slower speed response and are suitable for special applications 
if the power consumption is crucial. 

After the winner-take-all circuit, the (201, + 1)(201 + 1) 
binary outputs represent the velocity information of one image 
pixel. Combinational logic gates are used to encode these 
(201, + 1)(201 + 1) binary signals and to store the result into 
a data latch. Fig. 8 shows digital circuits of the data latch with 
the associated read/write control logic. The final velocity result 
is read by the host computer from the data latches through the 
digital common bus. 

Fig. 9 shows a voltage-scaling digital-to-analog converter 
[51] which is used to convert the encoded binary code 
to the analog value and send it to the neighboring 
neuroprocessors. The voltage-scaling converter uses a series 
of resistors connected between Vref and -VIef to provide 
intermediate voltage values. For an N-bit converter, the 
resistor string would have 2N + 1 resistor segments. In 
Fig. 9, a total of 26 resistor segments are used. The 
resistor is implemented in the P-well diffusion layer of 
the MOS fabrication process. The sheet resistance of the 
P-well layer is around 2 KR/O from the MOSIS 1.2-pm 
CMOS P-well process [52], [53] .  Unity-gain followers are 
used to buffer the resistor string from conductive loading. 
Each tap is connected to a switching tree whose switches 
are controlled by the bits of the digital word. Each switch 
is implemented by a CMOS transmission gate. 

When the analog velocity information from the neighboring 
neuroprocessors is received, a total of J? x I? - 1 analog- 
to-digital converters are used to convert these analog values 
back to the binary values with (201, + 1)(201 + 1) bits. 
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Fig. 11. The layout of one velocity-selective neuroprocessor. It contains 25 neurons, 25 x 27 synapse matrix and is able to detect the moving object with 
25 different velocities. It occupies 2482 x 5636X2 silicon area. The synapse cell is shown in the insert. 

Only one of these bits is logic-1 and the others are logic- 
0. To achieve high-speed performance and a compact silicon 
area, a parallel and distributed analog-to-digital converter has 
been designed. One voltage scaling resistor-chain is used. 
As shown in Fig. 10, the comparators and the associated 
digital decoding circuitries are distributed into the synapse 
cells. The comparators included in the same velocity-sensitive 
component use the same reference voltage provided by the 

resistor-chain. The distributed decoding circuitries make sure 
that only one of ( 2 0 k  + 1)(202 + 1) binary outputs is logic 
1 and the others are inhibited to logic 0. 

V. EXPERIMENTAL RESULTS 
In the prototype neuroprocessor chip design, Dk = 02 = 

2 and a size of 5 x 5 smoothing window are used. The 
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Fig. 12. The layout of VLSI neural chip. It consists of 64 neuroprocessors 
and occupies 1 .5  x 2.8 cm2 silicon area. 

Fig. 13. The detailed layout of interconnects among four neuroprocessors. 

physical layout of the velocity-selective neuroprocessor for 
one image pixel using the scalable CMOS design rules is 
shown in Fig. 11. It occupies an area of 2,482 x 5,636X2 
and contains 25 neurons, 25 x 27 synapse cells, and is able 
to detect the moving object with 25 different velocities. In 
the hardware implementation, two rows of synapses are used 

TABLE I 
PERFORMANCE COMPARISON OF Two INTERCONNECT METHODS 

Design Approach 

Performance 

Chip Size (cm2) 
Number of 

Interconnection 

Pin count 
Network Ineration 

Speed Performance 

Neuro-processors 

Routing Area (%) 

Time (ns) 

(connection/second) 

Using Bit-Parallel Using Bit-Parallel 
Analog Interconnect Digital Interconnect 

Method Method 

1 3  x 2.8 1.5 x 2.8 

64 12 

23 
178 

85 
3,250 

522 250 

6.03 x 10" 2.08 x 10'' 

non Computer I 

'ha local lnterconneCllOn exlsls between each neuroprocessor 
md ns 25 nearen neighbors. 

Fig. 14. The system diagram for high-speed motion detection using multiple 
VLSI neural chips. Each VLSI neural chips can accommodate 64 neuropro- 
cessors with 1.2 pm CMOS technology and 1.5 x 2.8 cm2 chip area. Each 
neuroprocessor in the VLSI neural chip can communicate with its neighbors 
through the analog point-to-point interconnections. The standard IC parts such 
as SRAM and 8-hit DAC are used for refreshing of synapse weights. 

to increase the resolution of synapse weights coming from 
the bias inputs and also to enhance the fault tolerance of the 
network. With an advanced 1.2-pm CMOS technology, 64 
neuroprocessors can be accommodated into one VLSI neural 
chip of 1.5 x 2.8 cm2 in size. The chip layout is shown 
in Fig. 12. It requires a 178-pin PGA package. The analog 
interprocessor data communication requires 128 pins. The 
detailed layout of interconnects among four neuroprocessors 
is shown in Fig. 13. The interconnection routing area occupies 
23% of the chip area. A performance comparison against 
the digital bit-parallel point-to-point interconnection method 
is listed in Table I. In the digital bit-parallel method, each 
data link requires 25 lines. Only 12 neuroprocessors can be 
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Fig. 15. The layout of the test module which includes key circuit blocks. 

Fig. 16. Measured results of programmable synapse characteristics. A big 
bias voltage can provide a large dynamic range. 

1.hj 1.495 1.515 (") 

(b) 

Fig. 17. Measured results of winner-take-all circuits. (a) one input as indi- 
cated in the x-axis changes linearly from -1.53 V to -1.48 V, the second 
input is connected to 1.5 V, and the other seven inputs are kept at -1.525 V. 
(b) one input as indicated in the x-axis changes linearly from 1.47 V to 1.52 
V, the second input is connected to 1.5 V, and the other seven inputs are 
kept at 1.475 V. 

accommodated in the same chip area and 85% of chip area 
will be used for the interconnection routing purpose. 

With 128 VLSI neural chips and many supporting standard 
IC parts such as S U M ' S  and 8-bit DAC's for storing the 
weight information and dynamically refreshing of the synapse 
cells, computation of optical flow from an image with 64 x 128 

TABLE I1 
CIRCUIT RESPONSE TIME 

Measured Results 

Analog-to-Digital Conversion 73 ns 
Synapse Multiplication 120 ns 

Neuron threshoding 20 ns 
Winner-Take-All Operation 38 ns 

8 ns 
84 ns+, 263 ns' 

Total 343 ns+, 5 2 2  ns* 

Encoder & Data Latch 
Digital-to-Analog Conversion 

~ 

Note: To, = 202 A in MOSIS 1.2-um CMOS technology 
+ with an output loading of 5 pF 
* with an output loading of 50 pF 

TABLE I11 
PERFORMANCE OF VLSI MOTION ESTIMATION SYSTEM 

Synapse Weight Loading Time 

Network Execution Time 

Neuron State Read Out Time 
Total Processing Time 

2,080 us (50 ns per write) (into S U M )  

(for 36 iterations) 18.792 us 
409.6 us (50 ns per read) 

2.509 ms 

sample size = 300 
mean = 14.07 
standard deviation = 0.042 I 1 

14.05 14.1 14.15 14.2 14.25 
measured synapse conductance (uW) 

(a) 

40 i n 

30 
m 
M 
8 

E 

0 
-13.8 -13.75 -13.7 

sample size = 300 
mean = -13.69 
standard deviation = 0.036 1 V+V I -13.5 

measured synapse conductance (uA/V) 

(b) 

Fig. 18. The statistical distribution of measured synapse output conduc- 
tances. (a) The synapse conductances can be described by a Gaussian 
distribution with a mean value of 14.07 PA/\.' and a standard deviation of 
0.042 pA/V at weight voltage VztJ = 2 V. (b) The synapse conductances can 
be described by a Gaussian distribution with a mean value of -13.69 pA/V 
and a standard deviation of 0.036 pA/V at weight voltage b::, = -2 V. 



188 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 2, MARCH 1993 

The first frame 

The third frame 
(c) 

(e) 

Fig 19 System-level analysis result on a sequence of four missile launcher 
result using the parameters -4 = 4, E = 850, C = 0, Dk = 7 ,  D ,  
weights are included through the Gaussian function. (f) Obtained result I 

variation on synapse weights are not included 

pixels and 256 gray levels can be performed at a rate of 
30 frames per second. The proposed system set-up for fast 
motion detection using multiple VLSI neural chips is shown 
in Fig. 14. 

To obtain the electrical properties of the basic circuit blocks, 
a test structure containing key circuit components was fabri- 
cated with a 2-pm CMOS process from Orbit Semiconductor, 
Inc. through the MOSIS Service of USC/Information Sciences 
Institute at Marina del Ray, CA and tested. The picture of the 
test structure is shown in Fig. 15. Measured transfer curves 
of the synapse cell with different bias voltages are shown in 
Fig. 16. The dynamic range of the synapse cell is controlled 
by the bias voltage. Experimental data on the winner-take- 
all circuit are shown in Fig. 17. The circuit consists of nine 

The second frame 

(b) 

The fourth frame 
(4 

I ' 7  

J 

Lll 
1 

- 
L- 

( f )  

images. (a) The first, (b) second, (c) third, and (d) fourth frame (e) Obtained 
= 1, and after 36 iterations The effects of process variation on synapse 

using same parameters as those in 19(e) except that the effects of process 

winner-take-all cells. Two experiments were conducted. In 
Fig. 17(a), one input sweeps linearly from -1.53 to -1.48 V, 
the second input is connected to -1.5 V, and the other seven 
inputs are kept at -1.525 V. In Fig. 17(b), one input sweeps 
linearly from 1.47 to 1.52 V, the second input is connected 
to 1.5 V, and the other seven inputs are kept at 1.475 V. The 
winner-take-all function is successfully implemented with a 
resolution of 15 mV. 

The processing time for one network iteration is around 
522 ns. Each iteration cycle includes synapse multiplication, 
neuron summing, winner-take-all operation, data storage on 
latches, digitallanalog and analoddigital conversion, and in- 
terprocessor data transfer. SPICE [54] simulation results on 
various circuit blocks are listed in Table 11. The large response 
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time of the synapse multiplication is due to the significant 
capacitance loading on the current-summation line. For the 
digital/analog conversion simulations, 5 pF and 50 pF effective 
capacitance loadings are estimated for interchip data commu- 
nication and off-chip data communication, respectively. The 
major delay will come from the off-chip interprocessor data 
communication. The total computing power of 8.32 x lo1’ 
connections per second can be achieved by using one VLSI 
neural chip containing 1600 neurons, 41 600 synapses cells, 
and operated at a master clock rate of 2 MHz. Based on the 
results of Table I1 the speed comparison of a system using 
128 VLSI neural chips with a Sun-4/75 SPARC workstation 
is listed in Table 111. The speedup factor is very large. 

System-level analysis has been conducted to illustrate the 
performance of the motion detection chip. The mismatch effect 
of analog synapse components has been included. Fig. 18 
shows the statistical distribution of measured synapse output 
conductances. A total of 300 synapses was measured. In 
Fig. 18(a), the synapse conductances can be described by 
a Gaussian distribution with a mean value of 14.07 pA/V 
and a standard deviation of 0.042 pA/V at weight voltage 
Ksj = 2 V. In Fig. 18(b), the synapse conductances can be 
described by a Gaussian distribution with a mean value of 
-13.69 pAfV and a standard deviation of 0.036 pA/V at 
weight voltage Ks, = -2 V. During computer analysis, the 
effects of process variation on synapse weights are included 
through the use of Gaussian function. 

A set of four successive image frames directly produced 
by a Sony XC-77 CCD camera was used as the input data. 
Fig. 19(a)-(d) shows four successive image frames of a mobile 
missile launcher moving from left to right against a stationary 
background. The size of each image frame is 130 x 160 pixels. 
The maximum displacement of the mobile missile launcher 
between the time-varying image frame is 7 pixels. To estimate 
the principle curvatures and intensity values, a 5 x 5 window 
and a third order polynomial was used for all frames. By 
setting A = 4, B = 850, C = 0, DI, = 7, and DI = 1, the 
velocity field was obtained after 36 iterations. The parameter A 
is set to 4, because four successive image frames are used. The 
parameter B is chosen by using trial-and-error method. The 
parameter C is set to 0 in the prototype design to simplify 
the neuron-state updating scheme of the network. Fig. 19(e) 
shows the final result of using synapse weights obtained by 
including the effects of process variation. Comparing with the 
result in Fig. 19(f), which the effects of process variation are 
not included, the motion information of the moving object 
still can be successful detected. 

VI. CONCLUSION 
A mixed-signal two-dimensional mesh-connected architec- 

ture for high-speed motion detection has been presented. A 
compact and efficient VLSI neuroprocessor which including 
25 neurons and 25 x 27 synapse cells is able to estimate the 
motion of each pixel with 25 different velocities. Multiple 
neuroprocessors can be connected as a two-dimensional mesh 
to fully exploit the massively parallel computational power of 
neural networks. In this architecture, the local computation 

is processed in analog neuroprocessor and the local data 
communication is performed in parallel. Each 1.5 x 2.8-cm2 
VLSI neural chip from a 1.2-pm CMOS technology can 
operate at a rate of 83.2 giga connections per second. 
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