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Abstract. We consider the class of shaped partition problems of partitioning n given vectors in
d-dimensional criteria space into p parts so as to maximize an arbitrary objective function which is
convex on the sum of vectors in each part, subject to arbitrary constraints on the number of elements
in each part. This class has broad expressive power and captures NP-hard problems even if either d
or p is fixed. In contrast, we show that when both d and p are fixed, the problem can be solved in
strongly polynomial time. Our solution method relies on studying the corresponding class of shaped
partition polytopes. Such polytopes may have exponentially many vertices and facets even when one
of d or p is fixed; however, we show that when both d and p are fixed, the number of vertices of any

shaped partition polytope is O(n
d
(
p
2

)
) and all vertices can be produced in strongly polynomial time.
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1. Introduction. The partition problem concerns the partitioning of vectors
A1, . . . , An in d-space into p parts so as to maximize an objective function which
is convex on the sum of vectors in each part; see [3]. Each vector Ai represents d
numerical attributes associated with the ith element of the set [n] = {1, . . . , n} to be
partitioned. Each ordered partition π = (π1, . . . , πp) of [n] is then associated with the

d × p matrix Aπ =
[∑

i∈π1
Ai, . . . ,

∑
i∈πp A

i
]

whose jth column represents the total

attribute vector of the jth part. The problem is to find an admissible partition π which
maximizes an objective function f given by f(π) = C(Aπ), where C is a real convex
functional on Rd×p. Of particular interest is the shaped partition problem, where the
admissible partitions are those π whose shape (|π1|, . . . , |πp|) lies in a prescribed set
Λ of admissible shapes. In this article we concentrate on this later situation.

The shaped partition problem has applications in diverse fields that include circuit
layout, clustering, inventory, splitting, ranking, scheduling, and reliability; see [5,
9, 14, 15] and references therein. Further, as we demonstrate later, the problem
has expressive power that captures NP-hard problems such as the max-cut problem
and the traveling salesman problem, even when the number p of parts or attribute
dimension d is fixed.

Our first goal in this article is to demonstrate constructively that a polynomial
time algorithm for the shaped partition problem does exist when both p and d are
fixed. This result is valid when the set Λ of admissible shapes and the function C are
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SHAPED PARTITION PROBLEMS 71

presented by oracles. Our first result (formally stated and proved in section 4) is the
following:

• Theorem 4.2: Any shaped partition problem is solvable in polynomial oracle
time using O(ndp

2

) arithmetic operations and queries.
Our solution method is based on the observation that since C is convex, the shaped
partition problem can be embedded into the problem of maximizing C over the shaped
partition polytope PΛ

A defined to be the convex hull of all matrices Aπ corresponding to
partitions of admissible shapes. The class of shaped partition polytopes is very broad
and generalizes and unifies classical permutation polytopes such as Birkhoff’s polytope
and the permutohedron (see, e.g., [8, 19, 21]). Its subclass of bounded shaped partition
polytopes with lower and upper bounds on the shapes was previously studied in [3],
under the assumption that the vectors A1, . . . , An are distinct. Therein a polynomial
procedure for testing whether a given Aπ is a vertex of PΛ

A was obtained. This
procedure was simplified and extended in [11]. A related but different generalization
of classical permutation polytopes, arising when algebraic (representation-theoretical)
constraints, rather than shape constraints, are imposed on the permutations involved,
was studied in [19] and references therein.

Since a shaped partition polytope is defined as the convex hull of an implicitly
presented set whose size is typically exponential in the input size even when both
p and d are fixed, an efficient representation as the convex hull of vertices or as
the intersection of half-spaces is not readily expected. Our second objective is to
prove that, nevertheless, for fixed p and d, the number of vertices of shaped partition
polytopes is polynomially bounded in n, and that it is possible to explicitly enumerate
all vertices in polynomial time. Thus, our second result (formally stated and proved
in section 4) is the following:

• Theorem 4.3: Any shaped partition polytope PΛ
A has O(nd(

p
2)) vertices which

can be produced in polynomial oracle time using O(nd
2p3

) arithmetic opera-
tions and queries.

An immediate corollary of Theorem 4.3 is that, for fixed d, p, the number of facets of
PΛ
A is polynomially bounded as well and that all facets can be produced in polynomial

oracle time (Corollary 4.4). Theorem 4.3 shows, in particular, that it is possible to
compute the number of vertices efficiently. This might be extendable to the situation
of variable d and p, where counting vertices is generally a hard task (cf. [16]), as
is counting partitions with various prescribed properties (see [4, 10]). The vertex
counting problem for variable d and p will be addressed elsewhere.

A special role in our development is played by separable partitions, defined as
partitions where vectors in distinct sets are (weakly) separable by hyperplanes. In
the special case d = p = 2, such partitions had been studied quite extensively (see,
e.g., [2, 5, 7, 17]). The case d = 3, p = 2 has also been considered quite recently in
[6]. Here we study such partitions for all d, p, as well as a class of generic partitions,
and provide an upper bound on their number and an algorithm for producing them.
In our recent related work [1], the precise extremal asymptotical behavior of such
partitions is determined.

The embedding of the partition problem into the problem of maximizing the
convex function C over the partition polytope is useful due to the optimality of vertices
in the latter problem. When Λ consists of a single shape, the optimality of vertices
holds for the more general class of asymmetric Schur convex functions, introduced in
[13]; see [8]. All of our results apply with C as any asymmetric Schur convex function
and Λ consisting of a single shape.
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72 FRANK K. HWANG, SHMUEL ONN, AND URIEL G. ROTHBLUM

The article is organized as follows. In the next section we formally define the
shaped partition problem and shaped partition polytope. We demonstrate the ex-
pressive power of this problem by giving four examples. For the first two examples,
in which the parameters d, p are typically small and fixed, Theorem 4.2 provides a
polynomial time solution. The last two examples show that the max-cut problem
and traveling salesman problem can be modeled as shaped partition problems with
fixed p = 2 and d = 1, respectively, and that the corresponding polytopes have ex-
ponentially many vertices. In section 3 we study separability properties of vertices of
shaped partition polytopes and discuss separable and generic partitions. In the final
section, section 4, we use our preparatory results of section 3 to establish Theorems
4.2 and 4.3 and Corollary 4.4.

2. Shaped partition problems and polytopes. A p-partition of [n] :=
{1, . . . , n} is an ordered collection π = (π1, . . . , πp) of p disjoint sets (possibly empty)
whose union is [n]. A p-shape of n is a tuple λ = (λ1, . . . , λp) of nonnegative integers
λ1, . . . , λp satisfying

∑p
i=1 λi = n. The shape of a p-partition π is the p-shape of n

given by |π| := (|π1|, . . . , |πp|). If Λ is a set of p-shapes of n, then a Λ-partition is any
partition π whose shape |π| is a member of Λ.

Let A be a real d×n matrix; for i = 1, . . . , n, we use Ai to denote the ith column
of A. For each p-partition π of [n] we define the A-matrix of π to be the d× p matrix

Aπ =

∑
i∈π1

Ai, . . . ,
∑
i∈πp

Ai

 ,
with

∑
i∈πj A

i := 0 when πj = ∅. We consider the following algorithmic problem.

Shaped Partition Problem. Given positive integers d, p, n, matrix A ∈ Rd×n, the
nonempty set Λ of p-shapes of n, and the objective function on Λ-partitions given by
f(π) = C(Aπ) with C convex on Rd×p, find a Λ-partition π∗ that maximizes f and,
specifically, satisfies

f(π∗) = max{f(π) : |π| ∈ Λ}.

Of course, the complexity of this problem depends on the presentation of Λ and
C, but we will construct algorithms that work in strongly polynomial time and can
cope with minimal information on Λ and C. Specifically, we assume that the set of
admissible p-partitions Λ can be represented by a membership oracle that, on query
λ, answers whether λ ∈ Λ. The convex functional C on Rd×p can be presented by an
evaluation oracle that, on query Aπ with π a Λ-partition, returns C(Aπ).

Since C is convex, the shaped partition problem can be embedded into the prob-
lem of maximizing C over the convex hull of A-matrices of feasible partitions, defined
as follows.

Shaped Partition Polytope. For a matrix A ∈ Rd×n and nonempty set Λ of p-
shapes of n, we define the shaped partition polytope PΛ

A to be the convex hull of all
A-matrices of Λ-partitions, that is,

PΛ
A := conv {Aπ : |π| ∈ Λ} ⊂ Rd×p.

We point out that for any A, the polytope PΛ
A is the image of the shaped partition

polytope PΛ
I , with I the n×n identity, under the projection X 7→ AX. In [12] this is

exploited, for the situation where the function C is linear and Λ = {λ : l ≤ λ ≤ u} is
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SHAPED PARTITION PROBLEMS 73

a set of bounded shapes, to solve the corresponding shaped partition problem for all
n, d, p in polynomial time by linear programming over PΛ

I .
We now demonstrate the expressive power of the shaped partition problem. In

particular, we show that even if one of d or p is fixed, the shaped partition problem
may be NP-hard, and the number of vertices of the shaped partition polytope may
be exponential. Therefore, polynomial time algorithms for optimization and vertex
enumeration are expected to (and, as we show, do) exist only when both d and p are
fixed. We start with two examples in which it is natural to have d and p small and
fixed.

Example 2.1 (splitting). The n assets of a company are to be split among its
p owners as follows. For j = 1, . . . , p, the jth owner prescribes a nonnegative vector
Aj = (Aj,1, . . . , Aj,n) with

∑n
j=1Ai,j = 1, whose entries represent the relative values

of the various assets to this owner. A partition π = (π1, . . . , πp) is sought which

splits the assets among the owners and maximizes the lq-norm (
∑p
j=1 |

∑
i∈πj Aj,i|q)

1
q

of the total value vector whose jth entry
∑
i∈πj Aj,i is the total relative value of the

assets allocated to the jth owner by π. An alternative interpretation of the splitting
problem concerns the division of an estate consisting of n assets among p inheritors
having equal rights against the estate. With p = 2, the model captures a problem of a
divorcing couple dividing their joint property [5, 9].

Formulation: n, d = p, A = (Aj,i), Λ = {All p-shapes}, f(π) = C(Aπ) with

C : Rp×p −→ R : M 7→
p∑
i=1

|Mi,i|q.

For fixed p, Theorem 4.2 asserts that we can find an optimal partition in polynomial
time O(np

3

), while the number pn of Λ-partitions is exponential. We note that other
(convex) functions C can be used within our framework. In particular, if C is linear
on Rp×p+ , e.g., when q = 1, our results of [12] apply and yield a polynomial time
solution even when p is variable.

Example 2.2 (balanced clustering). Given are n = pm objects represented by
attribute vectors A1, . . . , An ∈ Rd. The objects are to be grouped in p clusters, each
containing m points, so as to minimize the sum of cluster variance of a partition π

given by
∑p
i=1

(
1
|πi|
∑
j∈πi ||Aj − Āπi ||2

)
, where || · || denotes the l2-norm and Āπi :=

1
|πi|
∑
j∈πi A

j is the barycenter of the ith cluster.

Formulation: n = pm, d, p, A = (A1, . . . , An), Λ = {mp = (m, . . . ,m)}, f(π) =
C(Aπ) with

C : Rd×p −→ R : M 7→ ||M ||2 =

d∑
i=1

p∑
j=1

M2
i,j .

Here, we use the fact that f(π) = 1
m2

∑n
i=1 ||Ai||2− 1

m2

∑p
j=1 ||

∑
i∈πj A

i||2. For fixed
d, p, by Theorem 4.2 we can find an optimal balanced clustering in polynomial time

O(ndp
2

), while the number of Λ-partitions is exponential Ω(pnn
1−p

2 ).
The next two examples show that unless both d and p are fixed, the shaped

partition problem may be NP-hard. The idea is simple: the formulation is such that
every Λ-partition π gives a distinct vertex Aπ of the shaped partition polytope PΛ

A.
Then, any function f on Λ-partitions factors as f(π) := C(Aπ) for suitable convex C
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74 FRANK K. HWANG, SHMUEL ONN, AND URIEL G. ROTHBLUM

on PΛ
A, say, the one given by

C(X) := inf

∑
|π|∈Λ

θπf(π) :
∑
π

θπA
π = X,

∑
π

θπ = 1, θπ ≥ 0

 .

In the following examples, the membership oracle for Λ and the evaluation oracle for
f(π) := C(Aπ), restricted to A-matrices, are easily polynomial time realizable from
the natural data for the problem.

Example 2.3 (max-cut problem and unit cube). Find a cut with maximum
number of crossing edges in a given graph G = ([n], E).

Formulation: n = d, p = 2, A = In, Λ = {all 2-shapes},
f(π) = #{e ∈ E : |e ∩ π1| = 1}.

Here, the A-matrices of Λ-partitions are precisely all (0, 1)-valued n× 2 matrices with
each row sum equal to 1; in particular, each such matrix is determined by its first
column. It follows that the shaped partition polytope PΛ

A has 2n vertices that stand in
bijection with Λ-partitions and is affinely equivalent to the n-dimensional unit cube by
projection of matrices onto their first column. So, each Aπ is a distinct vertex of PΛ

A

and there is a convex C on Rd×2 such that f(π) = C(Aπ) for all π.
Example 2.4 (traveling salesman problem and permutohedron). Find a shortest

Hamiltonian path on n sites under a given symmetric nonnegative matrix D, where
Di,j represents the distance between sites i and j.

Formulation: n = p, d = 1, A = (1, . . . , n), Λ = {1n = (1, . . . , 1)},

f(π) = −
n−1∑
j=1

Dπj ,πj+1 ,

where we regard a partition simply as the corresponding permutation. The matrices Aπ

in this case are simply all permutations of A. The shaped partition polytope PΛ
A has n!

vertices that stand in bijection with Λ-partitions, and is the so-called permutohedron.
Since each Aπ is a distinct vertex of PΛ

A, there is again a convex C on Rn such that
f(π) = C(Aπ) for all π.

3. Vertices and generic partitions. In this section we show that every ver-
tex of any shaped partition polytope PΛ

A equals the A-matrix Aπ of some A-generic
partition, a notion that we introduce and develop below.

The convex hull of a subset U in Rd will be denoted conv(U). Two finite sets
U, V of points in Rd are separable if there is a vector h ∈ Rd such that hTu < hT v
for all u ∈ U and v ∈ V with u 6= v; in this case, we refer to h as a separating vector
of U and V . The proof of the following characterization of separability is standard
and is left to the reader. It implies, in particular, that if U and V are separable, then
|U ∩ V | ≤ 1.

Lemma 3.1. Let U and V be finite sets of Rd. Then U and V are separable if
and only if their convex hulls either are disjoint or intersect in a single point that is
a common vertex of both.

Let A be a given d × n matrix. For a subset S ⊆ [n], let AS = {Ai : i ∈ S} be
the set of columns of A indexed by S (with multiple copies of columns identified). A
p-partition π = (π1, . . . , πp) is A-separable if the sets Aπr and Aπs are separable for
each pair 1 ≤ r < s ≤ p, that is, if for each pair 1 ≤ r < s ≤ p there is a vector
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SHAPED PARTITION PROBLEMS 75

hr,s ∈ Rd such that hTr,sA
i < hTr,sA

j for all i ∈ πr and j ∈ πs with Ai 6= Aj . We
have the following lemma, which generalizes a result of [3] from matrices with no zero
columns and no repeated columns.

Lemma 3.2. Let A be a matrix in Rd×n, let Λ be a nonempty set of p-shapes
of n, and let π be a Λ-partition. If Aπ is a vertex of PΛ

A, then π is an A-separable
partition.

Proof. The claim being obvious for p = 1, suppose that p ≥ 2. Let Aπ be a
vertex of PΛ

A. Then there is a matrix C ∈ Rd×p such that the linear functional on

Rd×p given by the inner product 〈C,X〉 =
∑d
i=1

∑p
j=1 C

j
iX

j
i is uniquely maximized

over PΛ
A at Aπ. Pick any pair 1 ≤ r < s ≤ p, and let hr,s = Cs − Cr. Suppose

there are i ∈ πr and j ∈ πs with Ai 6= Aj (otherwise Aπr and Aπs are trivially
separable). Let π′ be the Λ-partition obtained from π by switching i and j, i.e.,
taking π′r := πr ∪ {j} \ {i}, π′s := πs ∪ {i} \ {j}, and π′t := πt for all t 6= r, s. Then
(Aπ

′
)r = (Aπ)r +Aj −Ai 6= (Aπ)r, and hence Aπ

′ 6= Aπ. By the choice of C, we have
〈C,Aπ′〉 < 〈C,Aπ〉 and so

hTr,s(A
j−Ai) = (Cs−Cr)T (Aj−Ai) =

p∑
t=1

(Ct)T ((Aπ)t−(Aπ
′
)t) = 〈C,Aπ−Aπ′〉 > 0.

This proves that Aπr , Aπs are separable for each pair 1 ≤ r < s ≤ p, hence π is
A-separable.

We need some more terminology. Let A ∈ Rd×n. A p-partition π = (π1, . . . , πp) of
[n] is A-disjoint if conv(Aπr ) and conv(Aπs) are disjoint for each pair 1 ≤ r < s ≤ p.
As the convex hulls of finite sets are disjoint if and only if the sets can be strictly
separated by a hyperplane, we have that π is A-disjoint if and only if for each pair
1 ≤ r < s ≤ n there exists a vector hr,s ∈ Rd such that (hr,s)

TAi < (hr,s)
TAS for

all i ∈ πr and j ∈ πs. Of course, A-disjointness implies A-separability, and the two
properties coincide when the columns of A are distinct.

For v ∈ Rd denote by v̄ ∈ Rd+1 the vector obtained by appending a first coordinate
1 to v. For a matrix A ∈ Rd×n and indices 1 ≤ i0 < · · · < id ≤ n, denote

signA(i0, . . . , id) := sign(det[Āi0 , . . . , Āid ]) ∈ {−1, 0, 1}.
A matrix A is generic if its columns are in affine general position, that is, if any set
of d + 1 vectors or less from among {Āi : i = 1, . . . , n} are linearly independent; in
particular, if n > d this is the case if and only if all signs signA(i0, . . . , id) for indices
1 ≤ i0 < i1 < · · · < id ≤ n are nonzero. Also, the columns of a generic matrix are
distinct.

We next provide a representation of the set of A-disjoint 2-partitions for generic
matrices A. The case where n ≤ d is simple.

Lemma 3.3. Let A ∈ Rd×n be generic, p ≤ 2, and n ≤ d. Then every p-partition
of [n] is A-disjoint.

Proof. It suffices to consider the case p = 2. A standard result from linear algebra
shows that as Ā1, . . . , Ān are linearly independent, the range of [Ā1, . . . , Ān]T is Rn.
Hence, given a 2-partition π of [n], there is a vector µ ∈ Rd+1 with µTAi > 0 for each
i ∈ π and µTAj < 0 for each j ∈ π2; with C obtained from µ by truncating its first
coordinate µ1, we then have CTAi > −µ1 > CTAj for all i ∈ π1 and j ∈ π2, proving
that π is A-disjoint.

Let A ∈ Rd×n be generic with n ≥ d. For any d-subset I = {i1, . . . , id} of [n] with
i1 < · · · < id, define

I−A := {i0 ∈ [n] : signA(i0, i1, . . . , id) = −1}, I+
A := {i0 ∈ [n] : signA(i0, i1, . . . , id) = 1}.
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76 FRANK K. HWANG, SHMUEL ONN, AND URIEL G. ROTHBLUM

Of course, {I−A , I+
A} is a 2-partition of [n]\I. Let I ⊆ [n] be a d-set and (J−, J+) be a 2-

partition of I. The 2-partitions of [n] associated with A, I, and (J−, J+) are defined to
be either of the two 2-partitions π− := (I−A∪J−, I+

A∪J+) and π+ := (I+
A∪J+, I−A∪J−).

Lemma 3.4. Let A ∈ Rd×n be generic, with n ≥ d. Then the set of A-disjoint 2-
partitions is the set of all 2-partitions associated with A, d-sets I ⊆ [n] and 2-partitions
(J−, J+) of I.

Proof. We will show that for each d-set I ⊆ [n] and 2-partition (J−, J+) of I,
the two 2-partitions associated with A, I, and (J−, J+) are A-disjoint and that each
A-disjoint 2-partition is generated in this way.

First, let I ⊆ [n] have d-elements, say, i1 < · · · < id, and let (J−, J+) be a
2-partition of I. Then H := {x ∈ Rd : det[x̄, Āi1 , . . . , Āid ] = 0} is a hyperplane
that contains the columns of A indexed by I; this hyperplane can be written as
{x ∈ Rd : hTx = γ} for some h ∈ Rd and γ ∈ R such that I−A = {i ∈ [n] : hTAi < γ}
and I+

A = {i ∈ [n] : hTAi > γ}. Thus, hTAi < hTAU < hTAj for all i ∈ I−A , u ∈ I,
and j ∈ I+

A . We next observe that B = [Ai1 , . . . , Aid ] is generic, hence Lemma 3.3
ensures that the 2-partition {j : ij ∈ J−}, {j : ij ∈ J+} of [d] is B-disjoint. Thus,
there exists a vector d ∈ Rd with dTAi > dTAj for all i ∈ J− and j ∈ J+. For
sufficiently small positive t, we then have that (C + td)Ai < (C + td)TAj for all
i ∈ I−A ∪ J− and j ∈ I+

A ∪ J+, proving that (I−A ∪ J−, J+
A ∪ J+) is A-disjoint. It

follows immediately that (I+
A ∪ J+, I−A ∪ J−) is A-disjoint too, proving that the two

2-partitions of [n] associated with A, I and the 2-partition (J−, J+) of I are A-disjoint.
Next assume that π is an A-disjoint 2-partition. Then there exists a hyperplane

strictly separating Aπ1 and Aπ2 . Any such hyperplane can be perturbed to a hy-
perplane that is spanned by d columns of A and weakly separates Aπ1 and Aπ2 (the
details of constructing such a perturbation are left to the reader). In particular, if
Ai1 , . . . , Aid span the hyperplane and 1 ≤ i1 < · · · ≤ id ≤ n, then for I := {i1, . . . , id}
either π1

1 ⊆ I−A ∪ I and π2 ⊆ I+
A ∪ I or π1 ⊆ I+

A ∪ I and π2 ⊆ I−A ∪ I. In the former
case we have π = (I−A ∪ J−, I+

A ∪ J+) for J− = π1 ∩ I and J+ = π2 ∩ I, and in the
latter case π = (I+

A ∪ J+, I−A ∪ J−) for J+ = π1 ∩ I and J− = π2 ∩ J .
Let p ≥ 2. With each list [πr,s = (πr,s1 , πr,s2 ) : 1 ≤ r < s ≤ p] of

(
p
2

)
2-partitions

of [n] associate a p-tuple π = (π1, . . . , πp) of subsets of [n] as follows: for r = 1, . . . , p
put

πr :=
(
∩pj=r+1π

r,j
1

)⋂(
∩r−1
j=1π

j,r
2

)
.

Since πr ⊆ πr,s1 and πs ⊆ πr,s2 for all 1 ≤ r < s ≤ p, the elements πi of the p-tuple
associated with the given list are pairwise disjoint. If ∪pi=1πi = [n] holds as well, then
π is a p-partition that will be called the partition associated with the given list.

Lemma 3.5. For A ∈ Rd×n and p ≥ 2, the set of A-disjoint p-partitions equals
the set of p-partitions associated with lists of

(
p
2

)
A-disjoint 2-partitions.

Proof. First, consider a p-partition π associated with a list of
(
p
2

)
A-disjoint

2-partitions. Then, for each 1 ≤ r < s ≤ p,
conv(Ai : i ∈ πr) ∩ conv(Ai : i ∈ πs) ⊆ conv(Ai : i ∈ πr,s1 ) ∩ conv(Ai : i ∈ πr,s2 ) = ∅,

so π is A-disjoint. Conversely, let π = (π1, . . . , πp) be an A-disjoint p-partition.
Consider any pair 1 ≤ r < s ≤ p. Since conv(Aπr ) and conv(Aπs) are disjoint, there
is a hyperplane Hr,s that contains no column of A and defines two corresponding half-
spaces H−r,s and H+

r,s that satisfy Aπr ⊂ H−r,s and Aπs ⊂ H+
r,s. Let πr,s := (πr,s1 , πr,s2 )

be the A-disjoint 2-partition defined by πr,s1 := {i ∈ [n] : Ai ∈ H−r,s} and πr,s2 := {i ∈
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SHAPED PARTITION PROBLEMS 77

[n] : Ai ∈ H+
r,s}. Let π′ be the p-tuple associated with the constructed πr,s’s. Then

the sets of π′ are pairwise disjoint, and for i = 1, . . . , p, we have

πi ⊆
(
∩pj=i+1π

i,j
1

)⋂(
∩i−1
j=1π

j,i
2

)
= π′i.

Since [n] = ∪pi=1πi ⊆ ∪pi=1π
′
i, it follows that π = π′ is the p-partition associated with

the constructed list of
(
p
2

)
A-disjoint 2-partitions.

For each ε > 0 define the ε-perturbation A(ε) ∈ Rd×n of A as follows: for i =
1, . . . , n, let the ith column of A(ε) be A(ε)i := Ai + εM i

d, where M i
d := [i, i2, . . . , id]T

is the image of i on the moment curve in Rd. Consider any 1 ≤ i0 < · · · < id ≤ n.
Then the determinant

D(ε) := det[Ā(ε)i0 , . . . , Ā(ε)id ] =
d∑
j=0

Djε
j

is a polynomial of degree d in ε, with Dd being the Van der Monde determinant
det[M̄ i0

d , . . . , M̄
id
d ], which is known to be nonzero. So for all sufficiently small ε > 0,

signA(ε)(i0, . . . , id) = sign(D(ε)) equals the sign of the first nonzero coefficient among
D0, . . . , Dd and is either −1 or 1 and independent of ε. We define the generic sign of
A at (i0, . . . , id), denoted χA(i0, . . . , id), as the common value of signA(ε)(i0, . . . , id)
for all sufficiently small positive ε.

Lemma 3.6. Let A ∈ Rd×n and p ≥ 1. For all sufficiently small ε > 0, A(ε) is
generic and the set of A(ε)-disjoint p-partitions is the same. Further, for every d-set
I ∈ [n], the sets I−A(ε) and I+

A(ε) are independent of ε.

Proof. By Lemma 3.5, the set of A(ε)-disjoint p-partitions is entirely determined
by the set of A(ε)-disjoint 2-partitions. Thus, it suffices to consider only p = 2.

First assume that n < d. In this case augment A with n + 1 − d zero vectors to
obtain a matrix A′ ∈ Rd×(d+1). The above arguments show that for sufficiently small
positive ε, det Ā′(ε) is nonzero, implying that Ā(ε)1, . . . , Ā(ε)n are linearly indepen-
dent. From Lemma 3.3 it follows that for such ε, the set of A(ε)-disjoint 2-partitions
of [n] is the set of all 2-partitions of [n].

Next assume that n > d. As explained above, for all sufficiently small ε > 0,
signA(ε) (i0, . . . , id) equals the nonzero generic sign χA(i0, . . . , id) for all 1 ≤ i0 <
· · · < id ≤ n. It follows that for all sufficiently small ε, the matrix A(ε) is generic, and
for every d-set I, the sets I−A(ε) and I+

A(ε) are independent of ε. By Lemma 3.4, the set

of A(ε)-disjoint 2-partitions is the set of all pairs of 2-partitions of [n] associated with
A, d-sets I ⊆ [n], and 2-partitions (J−, J+) of I; but each such pair depends only on
I−A(ε), I

+
A(ε), J

−, and J+. Hence the set of A(ε)-disjoint 2-partitions is the same for all

sufficiently small ε > 0.
Let A ∈ Rd×n. A p-partition of [n] is A-generic if it is A(ε)-disjoint for all

sufficiently small ε > 0. Denote by Πp
A the set of A-generic p-partitions.

Lemma 3.6 shows that for all sufficiently small ε > 0, the set of A(ε)-disjoint
partitions is the same and equals Πp

A. The final lemma of this section links vertices
of shaped partition polytopes with generic partitions.

Lemma 3.7. Let A ∈ Rd×n and let Λ be a nonempty set of p-shapes of [n]. Then
every vertex of the polytope PΛ

A has a representation as the A-matrix Aπ of some
A-generic Λ-partition.

Proof. Let B ∈ Rd×p be a vertex of PΛ
A and let C ∈ Rd×p be a matrix such that

〈C, ·〉 is uniquely maximized over PΛ
A at B. Let Π := {π : |π| ∈ Λ} be the set of
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78 FRANK K. HWANG, SHMUEL ONN, AND URIEL G. ROTHBLUM

Λ-partitions and let Π∗ := {π ∈ Π : Aπ = B}. Then there is a sufficiently small ε > 0
such that 〈C,A(ε)π

∗〉 > 〈C,A(ε)π〉 for all π∗ ∈ Π∗ and π ∈ Π \ Π∗, and in addition,
as guaranteed by Lemma 3.6, A(ε) is generic and the set of A(ε)-disjoint p-partitions
equals Πp

A. For such ε, 〈C, ·〉 is maximized over the perturbed polytope PΛ
A(ε) at a

vertex of the form A(ε)π
∗

for some π∗ ∈ Π∗. By Lemma 3.2, π∗ is A(ε)-separable.
Since A(ε) is generic it has distinct columns, and therefore π∗ is also A(ε)-disjoint.
We conclude that π∗ is A-generic, proving that π∗ contains a generic partition.

4. Optimization and vertex enumeration. We now use the facts established
in the previous section to prove our main results. Our computational complexity
terminology is fairly standard (cf. [20]). In all our algorithms, the positive integer n
will be input in unary representation, whereas all other numerical data such as the
matrix A will be input in binary representation. An algorithm is strongly polynomial
time if it uses a number of arithmetic operations polynomially bounded in n, and
runs in time polynomially bounded in n plus the bit size of all other numerical input.

Lemma 4.1. Let d, p be fixed. For any A ∈ Rd×n, the set Πp
A of A-generic

p-partitions has |Πp
A| = O(nd(

p
2)). Further, there is an algorithm that, given n ∈ N

and A ∈ Qd×n, produces Πp
A in strongly polynomial time using O(ndp

2

) arithmetic
operations.

Proof. If n ≤ d, the set of A-generic p-partitions is the set of all partitions,
of which there are pn ≤ pd. Henceforth we assume that n > d. If p = 1, then
Πp
A := {([n])} consists of the single p-partition ([n]). Suppose now that p ≥ 2. For

each choice 1 ≤ i0 < · · · < id ≤ n, compute the generic sign χA(i0, . . . , id) as follows.
Evaluate the polynomial

D(ε) := det[Ā(ε)i0 , . . . , Ā(ε)id ] =
d∑
j=0

Djε
j

at ε = 0, 1, . . . , d to obtain D(0), D(1), . . . , D(d). Each evaluation involves the compu-
tation of the determinant of a matrix of order d+1 and can be done, say, by Gaussian
elimination, using O(d3) arithmetic operations and, for rational A, in strongly poly-
nomial time. Then, solve the following linear system of equations:

d∑
j=0

εjDj = D(ε), ε = 0, . . . , d,

to obtain the indeterminates D0, . . . , Dd. This can be done by inverting the nonsingu-
lar Vandermonde matrix of coefficients of this system, again by Gaussian elimination.
The generic sign χA(i0, . . . , id) is then the sign of the first nonzero Di. So, for fixed
d, the number of arithmetic operations needed to compute all

(
n
d+1

)
generic signs is

O(
(
n
d+1

)
d4) = O(nd+1).

By Lemma 3.6, for sufficiently small positive ε, for each d-set I ⊆ [n], I−A(ε)

and I+
A(ε) are independent of ε. For a d-set I ⊆ [n] and such ε, I−A(ε) and I+

A(ε)

are available from the above signs that determine det[Āi, Āi1 , . . . , Āiq ] for each i ∈
[n] \ J (a permutation that puts Āi into the right location may be applied). Further,
from Lemmas 3.6 and 3.4, Π2

A equals the common set of A(ε)-disjoint partitions for
sufficiently small positive ε, and this set is the set of partitions of [n] of the form
(I−A(ε) ∪ J−, I+

A(ε) ∪ J+) or (I+
a(ε) ∪ J+, I−A(ε) ∪ J−), where I is a d-subset of [n] and
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SHAPED PARTITION PROBLEMS 79

(J−, J+) is a 2-partition of I. For each d-set I ⊆ [n], the common 2-partitions
(I−A(ε), I

+
A(ε)) for sufficiently small positive ε have been determined; hence a list of the

2-partitions in Π2
A is available (the construction may contain duplicates). As there

are
(
n
d

)
d-subsets I and 2d 2-partitions (J−, J+) of each I, we have |Π2

A| ≤ 2d+1
(
n
d

)
=

O(nd) and all partitions in Π2
A can be obtained from the generic signs, again using

O(nd+1) operations.
For sufficiently small positive ε, Πp

A is the common set of A(ε)-disjoint p-partitions
and Π2

A is the common set of A(ε)-disjoint 2-partitions. It follows from Lemma 3.5
that Πp

A is the set of all p-partitions associated with lists of
(
p
2

)
2-partitions from Π2

A.
This shows that

|Πp
A| ≤ |Π2

A|(
p
2) = O(nd(

p
2)).

To construct Πp
A, produce all such lists of

(
p
2

)
2-partitions from Π2

A; for each list, form
the associated p-tuple π and test if it is a partition (i.e., if ∪pi=1πi = [n]). As there are

O(nd(
p
2)) lists, all this work can be done easily using O(ndp

2

) arithmetic operations,
which subsumes the work for computing the generic signs and constructing Π2

A, and
is the claimed bound.

We can now provide the solution of the shaped partition problem. The set of
admissible p-partitions Λ can be represented by a membership oracle that, on query,
λ answers whether λ ∈ Λ. The convex functional C on Rd×p can be presented by an
evaluation oracle that, on query Aπ with π a Λ-partition, returns C(Aπ). The oracle
for C will be called M -guaranteed if C(Aπ) is guaranteed to be a rational number
whose absolute value is no larger than M for any Λ-partition π. The algorithm is
then strongly polynomial oracle time if it uses a number of arithmetic operations and
oracle queries polynomially bounded in n and runs in time polynomially bounded in
n plus the bit size of A and M .

Theorem 4.2. For every fixed d, p, there is an algorithm that, given n,M ∈ N,
A ∈ Qd×n, oracle-presented nonempty set Λ of p-shapes of n, and M -guaranteed
oracle-presented convex functional C on Qd×p, solves the shaped partition problem
in strongly polynomial oracle time using O(ndp

2

) arithmetic operations and oracle
queries.

Proof. Use the algorithm of Lemma 4.1 to construct the set Πp
A of A-generic

p-partitions in strongly polynomial time using O(ndp
2

) arithmetic operations. Then
test shapes of the partitions in the list to obtain the subset ΠΛ := {π ∈ Πp

A : |π| ∈ Λ}
of A-generic Λ-partitions by querying the Λ-oracle on each of the |Πp

A| = O(nd(
p
2))

partitions in Πp
A. Since C is convex, it is maximized over the shaped partition polytope

PΛ
A at a vertex of PΛ

A. By Lemma 3.7, this vertex equals the A-matrix Aπ of some
partition in ΠΛ. Therefore, any π∗ ∈ ΠΛ achieving C(Aπ

∗
) = max{C(Aπ) : π ∈ ΠΛ}

is an optimal solution to the shaped partition problem. To find such π∗, compute for
each π ∈ ΠΛ the matrix Aπ = [

∑
i∈π1

Ai, . . . ,
∑
i∈πp A

i], query the C-oracle for the

value C(Aπ), and pick the best. The number of operations involved and queries to the

C-oracle is again O(ndp
2

). The bit size of the numbers manipulated throughout this
process is polynomially bounded in the bit size of M and A, and hence the algorithm
is strongly polynomial oracle time.

Recall that the shaped partition polytope is defined as PΛ
A = conv{Aπ : |π| ∈ Λ}.

The number of matrices in the set {Aπ : |π| ∈ Λ} is typically exponential in n,
even for fixed d, p. Therefore, although the dimension of PΛ

A is bounded by dp, this
polytope potentially can have exponentially many vertices and facets as well. Lemmas
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80 FRANK K. HWANG, SHMUEL ONN, AND URIEL G. ROTHBLUM

3.7 and 4.1 yield the following theorem, which shows that, in fact, shaped partition
polytopes are exceptionally well behaved.

Theorem 4.3. Let d, p be fixed. For any A ∈ Rd×n and nonempty set Λ of

p-shapes of n, the number of vertices of the shaped partition polytope PΛ
A is O(nd(

p
2)).

Further, there is an algorithm that, given n ∈ N, A ∈ Qd×n, and oracle-presented Λ,
produces all vertices of PΛ

A in strongly polynomial oracle time using O(nd
2p3

) opera-
tions and queries.

Proof. By Lemma 3.7, each vertex of PΛ
A equals the A-matrix Aπ of some partition

in Πp
A. Therefore, the number of vertices of PΛ

A is bounded above by |Πp
A|, hence, by

Lemma 4.1, is O(nd(
p
2)). To construct the set of vertices given a rational matrix A,

proceed as follows. Use the algorithm of Lemma 4.1 to construct the set Πp
A of A-

generic p-partitions in strongly polynomial time using O(ndp
2

) arithmetic operations.
Test the shapes of the partitions in the list to obtain its subset ΠΛ := {π ∈ Πp

A :
|π| ∈ Λ} of A-generic Λ-partitions by querying the Λ-oracle on each of the |Πp

A| =

O(nd(
p
2)) partitions in Πp

A. Construct the set of matrices U := {Aπ : π ∈ ΠΛ}
with multiple copies identified. This set U is contained in PΛ

A, and by Lemma 3.7
contains the set of vertices of PΛ

A. So u ∈ U will be a vertex precisely when it is
not a convex combination of other elements of U . This could be tested using any
linear programming algorithm, but to obtain a strongly polynomial time procedure,
we proceed as follows. By Carathéodory’s theorem, u will be a vertex if and only
if it is not in the convex hull of any affine basis of U \ {u}. So, to test if u ∈ U is
a vertex of PΛ

A, compute the affine dimension a of U \ {u}. For each (a + 1)-subset
{u0, . . . , ua} of U \ {u}, test if it is an affine basis of U \ {u}, and if it is, compute the
unique µ0, . . . , µa satisfying u =

∑a
i=0 µiui and

∑a
i=0 µi = 1. Then u is in the convex

hull of {u0, . . . , ua} if and only if µ0, . . . , µa ≥ 0. So u is a vertex of PΛ
A if and only if

for each affine basis we get some µi < 0. Computing the affine dimension a, testing
if an (a + 1)-subset of U \ {u} is an affine basis, and computing the µi can all be
done by Gaussian elimination in strongly polynomial time. Since we have to perform

the entire procedure for each of the |U | ≤ |ΠΛ| = O(nd(
p
2)) elements u ∈ U , and for

each such u the number of affine bases of U \ {u} is at most
(|U |−1
dp+1

)
, the number of

arithmetic operations involved is O(|U |(|U |−1
dp+1

)
) = O(nd

2p3

), which absorbs the work

of constructing ΠΛ and obeys the claimed bound.
As an immediate corollary of Theorem 4.3, we get the following polynomial bound

on the number of facets of any shaped partition polytope and a strongly polynomial
oracle time procedure for producing all facets (by which we mean finding, for each
facet F , a hyperplane {X ∈ Rd×p : 〈H,X〉 = h} supporting PΛ

A at F ).
Corollary 4.4. Let d, p be fixed. For any A ∈ Rd×n and nonempty set Λ of

p-shapes of n, the number of facets of the shaped partition polytope PΛ
A is O(n

d2p3

2 ).
Further, there is an algorithm that, given n ∈ N, A ∈ Qd×n, and oracle-presented Λ,
produces all facets of PΛ

A in strongly polynomial oracle time using O(nd
2p3

) operations
and queries.

Proof. By the well-known upper bound theorem [18], the number of facets of any

k-dimensional polytope with m vertices is O(m
k
2 ). Applying this to PΛ

A with k ≤ dp

and m = O(nd(
p
2)), we get the bound on the number of facets of PΛ

A. To construct
the facets, first construct the set V of vertices using the algorithm of Theorem 4.3.
Compute the dimension a of aff(P ) = aff(V ) and compute a (possibly empty) set S of
dp−a points that, together with V , affinely span Rd×p. For each affinely independent
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SHAPED PARTITION PROBLEMS 81

a-subset T of V , compute the hyperplane {X ∈ Rd×p : 〈H,X〉 = h} spanned by
S ∪T . This hyperplane supports a facet of PΛ

A if and only if all points in V lie on one
of its closed half-spaces. Clearly, all facets of PΛ

A are obtained that way, in strongly
polynomial time and with the number of arithmetic operations and oracle queries
bounded as claimed.

Acknowledgment. Shmuel Onn thanks the Mathematical Sciences Research
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