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Abstract

Let n be a positive integer withn> 2. The trivalent Cayley interconnection network, denoted byTCIN(n), is proposed by
Vadapalli and Srimani (1995). Later, Vadapalli and Srimani (1996) claimed that the diameter ofTCIN(n) is 2n − 1. In this
paper, we argue that the above claim is not correct. Instead, we show that the diameter ofTCIN(n) is 2n− 1 only forn= 2 and
2n− 2 for all other cases. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most of the graph and interconnection network def-
initions used in this paper are standard (see, e.g., [1]).
Let G = (V ,E) be a finite, undirected graph. Letu
and v be two vertices ofG. The distancebetween
u and v, denoted byd(u, v), is the length of the
shortest path between them. Thediameterof G, de-
noted byD(G), is the maximum distance between
every two vertices inG. Let n be a positive in-
teger with n > 2. TCIN(n) is the trivalent Cayley
graph, proposed by Vadapalli and Srimani [2]. Each
node corresponds to a circular permutation in lexi-
cographic order ofn symbols,t1, t2, . . . , tn, comple-
mented or uncomplemented. Each edge is of the type
(v, δ(v)), whereδ ∈ {g,f,f−1}, defined in the follow-
ing way:

✩ This work was supported in part by the National Science Council
of the Republic of China under Contract NSC 87-2213-E-009-100.
∗ Corresponding author. Email: lhhsu@cc.nctu.edu.tw.

f
(
t∗k t∗k+1 . . . t

∗
n t
∗
1 t
∗
2 . . . t

∗
k−1

)
= t∗k+1t

∗
k+2 . . . t

∗
n t
∗
1 t
∗
2 . . . t

∗
k−1t̄

∗
k ,

f−1(t∗k t∗k+1 . . . t
∗
n t
∗
1 t
∗
2 . . . t

∗
k−1

)
= t̄∗k−1t

∗
k . . . t

∗
n t
∗
1 t
∗
2 . . . t

∗
k−2,

g
(
t∗k t∗k+1 . . . t

∗
n t
∗
1 t
∗
2 . . . t

∗
k−1

)
= t∗k t∗k+1 . . . t

∗
n t
∗
1 t
∗
2 . . . t̄

∗
k−1,

where tk, 1 6 k 6 n, denotes thekth symbol in
the set ofn symbols. The symbolt∗k denotes either
tk or t̄k . We use English alphabets for symbols;
thus for n = 4, t1 = a, t2 = b, t3 = c and t4 =
d .

The graphTCIN(n) is the trivalent Cayley graph
with n2n vertices. Due to the nice structure ofTCIN(n),
many studies have been on the investigation of its
topological properties [2,3]. Vadapalli and Srimani [3]
claimed thatD(TCIN(n)) is 2n − 1. However, this
result is not true except whenn = 2. For example,
we consider the graphTCIN(3) shown in Fig. 1 of
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Vadapalli and Srimani [3]. SinceTCIN(3) is vertex
transitive, we can computeD(TCIN(3)) using the
breadth-first search rooted at vertexabc. Obviously
D(TCIN(3)) is 4. Thus the result obtained in [3] is in-
correct. In this paper, we will show thatD(TCIN(n))
is 2n− 1 only forn= 2 and 2n− 2 for all other cases.

2. Diameter ofTCIN(n)

Let I denote theidentity nodet1t2 . . . tn in TCIN(n).
For any nodes of TCIN(n), we used(s) to denote
the distance betweens andI . SinceTCIN(n) is vertex
transitive,

D
(
TCIN(n)

)=max
{
d(s) | s ∈ TCIN(n)

}
.

As noted in the above section,D(TCIN(2))= 3. In
the following, we adopt all the notations that are used
in [3] and assume thatn> 3. In [3], we have

d(s)=min
{
dL(s), dR(s)

}
.

Let A(n), B(n), C(n), andD(n) be the partition of a
vertex set ofTCIN(n) where

A(n)= {s ∈ V (TCIN(n)) |
jL +m1< k andjR +m26 n

};
B(n)= {s ∈ V (TCIN(n)) |

jL +m1< k andjR +m2> n
};

C(n)= {s ∈ V (TCIN(n)) |
jL +m1> k andjR +m26 n

};
D(n)= {s ∈ V (TCIN(n)) |

jL +m1> k andjR +m2> n
}
.

Lemma 1. For all s ∈A(n), d(s)6 2n−2. Moreover,
d(s) = 2n − 2 if and only if n is even ands =
t̄n/2+1t̄n/2+2 . . . t̄nt̄1t̄2 . . . t̄n/2.

Proof. Sinced(s)=min{dL(s), dR(s)},
d(s)=min

{
2(n− 1−m1)+ c1− c2,

2(n− 1−m2)+ c2− c1
}

= 2n− 2−max
{
c2− c1+ 2m1,

c1− c2+ 2m2
}
.

Since |c1 − c2| > 0, m1 > 0, andm2 > 0, d(s) 6
2n−2. Moreover,d(s)= 2n−2 if and only ifc1= c2

and m1 = m2 = 0. In other words,n is even and
s = t̄n/2+1t̄n/2+2 . . . t̄nt̄1t̄2 . . . t̄n/2. 2
Lemma 2. For all s ∈ B(n), d(s)6 2n−2. Moreover,
d(s) = 2n − 2 if and only if n is odd and s =
t̄(n+1)/2+1t̄(n+1)/2+2 . . . t̄nt̄1t̄2 . . . t̄(n+1)/2−1t(n+1)/2.

Proof. Since s ∈ B(n), m2 > 1. Since d(s) =
min{dL(s), dR(s)},
d(s)=min

{
2(n− 1−m1)+ c1− c2,

2(n−m2)+ c2− c1
}

= 2n− 2−max
{
c2− c1+ 2m1,

c1− c2+ 2m2− 2
}
.

Since |c1 − c2| > 0, m1 > 0, andm2 > 1, d(s) 6
2n−2. Moreover,d(s)= 2n−2 if and only ifc1= c2,
m1= 0 andm2 = 1. In other words,n is odd ands =
t̄(n+1)/2+1t̄(n+1)/2+2 . . . t̄nt̄1t̄2 . . . t̄(n+1)/2−1t(n+1)/2. 2
Lemma 3. For all s = a1a2 . . . an ∈ C(n), d(s) 6
2n − 2. Moreover,d(s) = 2n − 2 if and only if s =
t̄(n−1)/2+1t̄(n−1)/2+2 . . . t̄n−1tnt̄1t̄2 . . . t̄(n−1)/2 where n
is an odd integer ors = t1t̄2t̄3, or t̄1t2t̄3 for n = 3;
s = t̄1t2t̄3t4, t1t̄2t3t̄4, or t1t̄2t̄3t4 for n = 4; and s =
t1t̄2t3t̄4t5 for n= 5.

Proof. Sinced(s)=min{dL(s), dR(s)},
d(s)=min

{
2 · (n−m1)+ c1− c2,

2(n− 1−m2)+ c2− c1
}

= 2n− 2

−max
{
c2− c1+ 2m1− 2, c1− c2+ 2m2

}
.

Case1. a1 = t∗1 . Hencem1 = 0 andc1 = 0. Thus
d(s)= 2n− 2−max{c2− 2,2m2− c2}. Sincec2> 0
andm2> 0, d(s)6 2n− 2. Moreover,d(s)= 2n− 2
if and only if c2 = 2 andm2 = 1. In other words,
s = t1t̄2t̄3, t̄1t2t̄3 if n= 3; s = t̄1t2t̄3t4, t1t̄2t3t̄4, t1t̄2t̄3t4
if n= 4; ands = t1t̄2t3t̄4t5 if n= 5.

Case 2. a1 6= t∗1 . Hencem1 > 1. Thus d(s) =
2n− 2−max{c2− c1+ 2m1− 2, c1− c2+ 2m2}6
2n − 2 because|c1 − c2| > 0, m1 > 1, andm2 >
0. Therefore,d(s) = 2n − 2 if and only if c1 = c2,
m1 = 1, andm2 = 0. In other words,n is odd and
s = t̄(n−1)/2+1t̄(n−1)/2+2 . . . t̄n−1tnt̄1t̄2 . . . t̄(n−1)/2. 2
Lemma 4. For all s = a1a2 . . . an ∈ D(n), d(s) 6
2n − 2. Moreover,d(s) = 2n − 2 if and only if s =
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t̄n/2+1t̄n/2+2 . . . t̄n−1tnt̄1t̄2 . . . t̄n/2−1tn/2 wheren is an
even integer ors = t̄1t̄2t3 for n = 3; s = t̄1t̄2t3t4 for
n = 4; s = t̄1t2t̄3t4t5 or t1t̄2t̄3t4t5 for n = 5; and s =
t1t̄2t3t̄4t5t6 for n= 6.

Proof. Since s ∈ D(n), m2 > 1. Since d(s) =
min{dL(s), dR(s)},
d(s)=min

{
2(n−m1)+ c1− c2,

2(n−m2)+ c2− c1
}

= 2n− 2−max
{
c2− c1+ 2m1− 2,

c1− c2+ 2m2− 2
}
.

Case1. a1 = t∗1 . Hencem1 = 0 andc1 = 0. Thus
d(s)= 2n− 2−max{c2− 2, 2m2− c2− 2}. Suppose
thatm2 > 2. Obviously,d(s) 6 2n− 2. Suppose that
m2= 1. By definition,c2= n−1. Sincen> 3,d(s)6
2n− 2. Moreover,d(s)= 2n− 2 if and only ifc2= 2,
m2= 2 orm2= 1, c2= 2. In other words,s = t̄1t̄2t3 if
n= 3; s = t̄1t̄2t3t4 if n= 4; s = t̄1t2t̄3t4t5, t1t̄2t̄3t4t5 if
n= 5; ands = t1t̄2t3t̄4t5t6 if n= 6.

Case2. a1 6= t∗1 . Hencem1> 1. Thusd(s)= 2n−
2− max{c2 − c1 + 2m1 − 2, c1 − c2 + 2m2 − 2} 6

2n − 2 because|c1 − c2| > 0, m1 > 1, andm2 > 1.
Therefored(s) = 2n − 2 if and only if c1 = c2 and
m1 = m2 = 1. In other words,n is even ands =
t̄n/2+1t̄n/2+2 . . . t̄n−1tnt̄1t̄2 . . . t̄n/2−1tn/2. 2

From the above discussion, we have the following
theorem.

Theorem 1. D(TCIN(n))= 2n−1 if n= 2 and2n−
2 if n> 3.
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