The correct diameter of trivalent Cayley graphs **

Chang-Hsiung Tsai ${ }^{\mathrm{a}}$, Chun-Nan Hung ${ }^{\mathrm{a}}$, Lih-Hsing Hsu ${ }^{\mathrm{a}, *}$, Chung-Haw Chang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer and Information Science, National Chiao Tung University, Hsinchu, 300, Taiwan
${ }^{\mathrm{b}}$ Ming-Hsin Institute of Technology Hsinchu, 300, Taiwan

Received 26 October 1998; received in revised form 26 August 1999
Communicated by F.Y.L. Chin

Abstract

Let n be a positive integer with $n \geqslant 2$. The trivalent Cayley interconnection network, denoted by $\operatorname{TCIN}(n)$, is proposed by Vadapalli and Srimani (1995). Later, Vadapalli and Srimani (1996) claimed that the diameter of $\operatorname{TCIN}(n)$ is $2 n-1$. In this paper, we argue that the above claim is not correct. Instead, we show that the diameter of $\operatorname{TCIN}(n)$ is $2 n-1$ only for $n=2$ and $2 n-2$ for all other cases. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Trivalent Cayley graph; Interconnection networks; Diameter

1. Introduction

Most of the graph and interconnection network definitions used in this paper are standard (see, e.g., [1]). Let $G=(V, E)$ be a finite, undirected graph. Let u and v be two vertices of G. The distance between u and v, denoted by $d(u, v)$, is the length of the shortest path between them. The diameter of G, denoted by $D(G)$, is the maximum distance between every two vertices in G. Let n be a positive integer with $n \geqslant 2$. $\operatorname{TCIN}(n)$ is the trivalent Cayley graph, proposed by Vadapalli and Srimani [2]. Each node corresponds to a circular permutation in lexicographic order of n symbols, $t_{1}, t_{2}, \ldots, t_{n}$, complemented or uncomplemented. Each edge is of the type $(v, \delta(v))$, where $\delta \in\left\{g, f, f^{-1}\right\}$, defined in the following way:

[^0]\[

$$
\begin{aligned}
& f\left(t_{k}^{*} t_{k+1}^{*} \ldots t_{n}^{*} t_{1}^{*} t_{2}^{*} \ldots t_{k-1}^{*}\right) \\
& \quad=t_{k+1}^{*} t_{k+2}^{*} \ldots t_{n}^{*} t_{1}^{*} t_{2}^{*} \ldots t_{k-1}^{*} \bar{t}_{k}^{*} \\
& f^{-1}\left(t_{k}^{*} t_{k+1}^{*} \ldots t_{n}^{*} t_{1}^{*} t_{2}^{*} \ldots t_{k-1}^{*}\right) \\
& \quad=\bar{t}_{k-1}^{*} t_{k}^{*} \ldots t_{n}^{*} t_{1}^{*} t_{2}^{*} \ldots t_{k-2}^{*} \\
& g\left(t_{k}^{*} t_{k+1}^{*} \ldots t_{n}^{*} t_{1}^{*} t_{2}^{*} \ldots t_{k-1}^{*}\right) \\
& \quad=t_{k}^{*} t_{k+1}^{*} \ldots t_{n}^{*} t_{1}^{*} t_{2}^{*} \ldots \bar{t}_{k-1}^{*}
\end{aligned}
$$
\]

where $t_{k}, 1 \leqslant k \leqslant n$, denotes the k th symbol in the set of n symbols. The symbol t_{k}^{*} denotes either t_{k} or \bar{t}_{k}. We use English alphabets for symbols; thus for $n=4, t_{1}=a, t_{2}=b, t_{3}=c$ and $t_{4}=$ d.

The graph $\operatorname{TCIN}(n)$ is the trivalent Cayley graph with $n 2^{n}$ vertices. Due to the nice structure of $\operatorname{TCIN}(n)$, many studies have been on the investigation of its topological properties [2,3]. Vadapalli and Srimani [3] claimed that $D(\operatorname{TCIN}(n))$ is $2 n-1$. However, this result is not true except when $n=2$. For example, we consider the graph $\operatorname{TCIN}(3)$ shown in Fig. 1 of

Vadapalli and Srimani [3]. Since $\operatorname{TCIN}(3)$ is vertex transitive, we can compute $D(\operatorname{TCIN}(3))$ using the breadth-first search rooted at vertex $a b c$. Obviously $D(\operatorname{TCIN}(3))$ is 4. Thus the result obtained in [3] is incorrect. In this paper, we will show that $D(\operatorname{TCIN}(n))$ is $2 n-1$ only for $n=2$ and $2 n-2$ for all other cases.

2. Diameter of $\operatorname{TCIN}(n)$

Let I denote the identity node $t_{1} t_{2} \ldots t_{n}$ in $\operatorname{TCIN}(n)$. For any node s of $\operatorname{TCIN}(n)$, we use $d(s)$ to denote the distance between s and I. Since $\operatorname{TCIN}(n)$ is vertex transitive,
$D(\operatorname{TCIN}(n))=\max \{d(s) \mid s \in \operatorname{TCIN}(n)\}$.
As noted in the above section, $D(\operatorname{TCIN}(2))=3$. In the following, we adopt all the notations that are used in [3] and assume that $n \geqslant 3$. In [3], we have
$d(s)=\min \left\{d_{L}(s), d_{R}(s)\right\}$.
Let $A(n), B(n), C(n)$, and $D(n)$ be the partition of a vertex set of $\operatorname{TCIN}(n)$ where

$$
\begin{gathered}
A(n)=\{s \in V(\operatorname{TCIN}(n)) \mid \\
\left.j_{L}+m_{1}<k \text { and } j_{R}+m_{2} \leqslant n\right\} \\
B(n)=\{s \in V(\operatorname{TCIN}(n)) \mid \\
\left.j_{L}+m_{1}<k \text { and } j_{R}+m_{2}>n\right\} \\
C(n)=\{s \in V(\operatorname{TCIN}(n)) \mid \\
\left.j_{L}+m_{1} \geqslant k \text { and } j_{R}+m_{2} \leqslant n\right\} \\
D(n)=\{s \in V(\operatorname{TCIN}(n)) \mid \\
\left.j_{L}+m_{1} \geqslant k \text { and } j_{R}+m_{2}>n\right\}
\end{gathered}
$$

Lemma 1. For all $s \in A(n), d(s) \leqslant 2 n-2$. Moreover, $d(s)=2 n-2$ if and only if n is even and $s=$ $\bar{t}_{n / 2+1} \bar{t}_{n / 2+2} \ldots \bar{t}_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{n / 2}$.

Proof. Since $d(s)=\min \left\{d_{L}(s), d_{R}(s)\right\}$,

$$
\begin{array}{r}
d(s)=\min \left\{2\left(n-1-m_{1}\right)+c_{1}-c_{2}\right. \\
\left.2\left(n-1-m_{2}\right)+c_{2}-c_{1}\right\} \\
=2 n-2-\max \left\{c_{2}-c_{1}+2 m_{1}\right. \\
\left.c_{1}-c_{2}+2 m_{2}\right\}
\end{array}
$$

Since $\left|c_{1}-c_{2}\right| \geqslant 0, m_{1} \geqslant 0$, and $m_{2} \geqslant 0, d(s) \leqslant$ $2 n-2$. Moreover, $d(s)=2 n-2$ if and only if $c_{1}=c_{2}$
and $m_{1}=m_{2}=0$. In other words, n is even and $s=\bar{t}_{n / 2+1} \bar{t}_{n / 2+2} \ldots \bar{t}_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{n / 2}$.

Lemma 2. For all $s \in B(n), d(s) \leqslant 2 n-2$. Moreover, $d(s)=2 n-2$ if and only if n is odd and $s=$ $\bar{t}_{(n+1) / 2+1} \bar{t}_{(n+1) / 2+2} \ldots \bar{t}_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{(n+1) / 2-1} t_{(n+1) / 2}$.

Proof. Since $s \in B(n), m_{2} \geqslant 1$. Since $d(s)=$ $\min \left\{d_{L}(s), d_{R}(s)\right\}$,

$$
\begin{aligned}
d(s)= & \min \left\{2\left(n-1-m_{1}\right)+c_{1}-c_{2}\right. \\
& \left.2\left(n-m_{2}\right)+c_{2}-c_{1}\right\} \\
= & 2 n-2-\max \left\{c_{2}-c_{1}+2 m_{1}\right. \\
& \left.c_{1}-c_{2}+2 m_{2}-2\right\}
\end{aligned}
$$

Since $\left|c_{1}-c_{2}\right| \geqslant 0, m_{1} \geqslant 0$, and $m_{2} \geqslant 1, d(s) \leqslant$ $2 n-2$. Moreover, $d(s)=2 n-2$ if and only if $c_{1}=c_{2}$, $m_{1}=0$ and $m_{2}=1$. In other words, n is odd and $s=$ $\bar{t}_{(n+1) / 2+1} \bar{t}_{(n+1) / 2+2} \ldots \bar{t}_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{(n+1) / 2-1} t_{(n+1) / 2}$.

Lemma 3. For all $s=a_{1} a_{2} \ldots a_{n} \in C(n), d(s) \leqslant$ $2 n-2$. Moreover, $d(s)=2 n-2$ if and only if $s=$ $\bar{t}_{(n-1) / 2+1} \bar{t}_{(n-1) / 2+2 \ldots} \ldots \bar{t}_{n-1} t_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{(n-1) / 2}$ where n is an odd integer or $s=t_{1} \bar{t}_{2} \bar{t}_{3}$, or $\bar{t}_{1} t_{2} \bar{t}_{3}$ for $n=3$; $s=\bar{t}_{1} t_{2} \bar{t}_{3} t_{4}, t_{1} \bar{t}_{2} t_{3} \bar{t}_{4}$, or $t_{1} \bar{t}_{2} \bar{t}_{3} t_{4}$ for $n=4 ;$ and $s=$ $t_{1} \bar{t}_{2} t_{3} \bar{t}_{4} t_{5}$ for $n=5$.

Proof. Since $d(s)=\min \left\{d_{L}(s), d_{R}(s)\right\}$,

$$
\begin{aligned}
d(s)= & \min \left\{2 \cdot\left(n-m_{1}\right)+c_{1}-c_{2}\right. \\
& \left.2\left(n-1-m_{2}\right)+c_{2}-c_{1}\right\} \\
= & 2 n-2 \\
& -\max \left\{c_{2}-c_{1}+2 m_{1}-2, c_{1}-c_{2}+2 m_{2}\right\}
\end{aligned}
$$

Case 1. $a_{1}=t_{1}^{*}$. Hence $m_{1}=0$ and $c_{1}=0$. Thus $d(s)=2 n-2-\max \left\{c_{2}-2,2 m_{2}-c_{2}\right\}$. Since $c_{2} \geqslant 0$ and $m_{2} \geqslant 0, d(s) \leqslant 2 n-2$. Moreover, $d(s)=2 n-2$ if and only if $c_{2}=2$ and $m_{2}=1$. In other words, $s=t_{1} \bar{t}_{2} \bar{t}_{3}, \bar{t}_{1} t_{2} \bar{t}_{3}$ if $n=3 ; s=\bar{t}_{1} t_{2} \bar{t}_{3} t_{4}, t_{1} \bar{t}_{2} t_{3} \bar{t}_{4}, t_{1} \bar{t}_{2} \bar{t}_{3} t_{4}$ if $n=4$; and $s=t_{1} \bar{t}_{2} t_{3} \bar{t}_{4} t_{5}$ if $n=5$.

Case 2. $a_{1} \neq t_{1}^{*}$. Hence $m_{1} \geqslant 1$. Thus $d(s)=$ $2 n-2-\max \left\{c_{2}-c_{1}+2 m_{1}-2, c_{1}-c_{2}+2 m_{2}\right\} \leqslant$ $2 n-2$ because $\left|c_{1}-c_{2}\right| \geqslant 0, m_{1} \geqslant 1$, and $m_{2} \geqslant$ 0 . Therefore, $d(s)=2 n-2$ if and only if $c_{1}=c_{2}$, $m_{1}=1$, and $m_{2}=0$. In other words, n is odd and $s=\bar{t}_{(n-1) / 2+1} \bar{t}_{(n-1) / 2+2 \ldots} \bar{t}_{n-1} t_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{(n-1) / 2}$.

Lemma 4. For all $s=a_{1} a_{2} \ldots a_{n} \in D(n), d(s) \leqslant$ $2 n-2$. Moreover, $d(s)=2 n-2$ if and only if $s=$
$\bar{t}_{n / 2+1} \bar{t}_{n / 2+2} \ldots \bar{t}_{n-1} t_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{n / 2-1} t_{n / 2}$ where n is an even integer or $s=\bar{t}_{1} \bar{t}_{2} t_{3}$ for $n=3 ; s=\bar{t}_{1} \bar{t}_{2} t_{3} t_{4}$ for $n=4 ; s=\bar{t}_{1} t_{2} \bar{t}_{3} t_{4} t_{5}$ or $t_{1} \bar{t}_{2} \bar{t}_{3} t_{4} t_{5}$ for $n=5$; and $s=$ $t_{1} \bar{t}_{2} t_{3} \bar{t}_{4} t_{5} t_{6}$ for $n=6$.

Proof. Since $s \in D(n), m_{2} \geqslant 1$. Since $d(s)=$ $\min \left\{d_{L}(s), d_{R}(s)\right\}$,

$$
\begin{aligned}
& d(s)= \min \left\{2\left(n-m_{1}\right)+c_{1}-c_{2},\right. \\
&\left.2\left(n-m_{2}\right)+c_{2}-c_{1}\right\} \\
&= 2 n-2-\max \left\{c_{2}-c_{1}+2 m_{1}-2,\right. \\
&\left.c_{1}-c_{2}+2 m_{2}-2\right\} .
\end{aligned}
$$

Case 1. $a_{1}=t_{1}^{*}$. Hence $m_{1}=0$ and $c_{1}=0$. Thus $d(s)=2 n-2-\max \left\{c_{2}-2,2 m_{2}-c_{2}-2\right\}$. Suppose that $m_{2} \geqslant 2$. Obviously, $d(s) \leqslant 2 n-2$. Suppose that $m_{2}=1$. By definition, $c_{2}=n-1$. Since $n \geqslant 3, d(s) \leqslant$ $2 n-2$. Moreover, $d(s)=2 n-2$ if and only if $c_{2}=2$, $m_{2}=2$ or $m_{2}=1, c_{2}=2$. In other words, $s=\bar{t}_{1} \bar{t}_{2} t_{3}$ if $n=3 ; s=\bar{t}_{1} \bar{t}_{2} t_{3} t_{4}$ if $n=4 ; s=\bar{t}_{1} t_{2} \bar{t}_{3} t_{4} t_{5}, t_{1} \bar{t}_{2} \bar{t}_{3} t_{4} t_{5}$ if $n=5$; and $s=t_{1} \bar{t}_{2} t_{3} \bar{t}_{4} t_{5} t_{6}$ if $n=6$.

Case 2. $a_{1} \neq t_{1}^{*}$. Hence $m_{1} \geqslant 1$. Thus $d(s)=2 n-$ $2-\max \left\{c_{2}-c_{1}+2 m_{1}-2, c_{1}-c_{2}+2 m_{2}-2\right\} \leqslant$
$2 n-2$ because $\left|c_{1}-c_{2}\right| \geqslant 0, m_{1} \geqslant 1$, and $m_{2} \geqslant 1$. Therefore $d(s)=2 n-2$ if and only if $c_{1}=c_{2}$ and $m_{1}=m_{2}=1$. In other words, n is even and $s=$ $\bar{t}_{n / 2+1} \bar{t}_{n / 2+2} \ldots \bar{t}_{n-1} t_{n} \bar{t}_{1} \bar{t}_{2} \ldots \bar{t}_{n / 2-1} t_{n / 2}$.

From the above discussion, we have the following theorem.

Theorem 1. $D(\operatorname{TCIN}(n))=2 n-1$ if $n=2$ and $2 n-$ 2 if $n \geqslant 3$.

References

[1] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, Los Altos, CA, 1992.
[2] P. Vadapalli, P.K. Srimani, Trivalent Cayley graphs for interconnection networks, Inform. Process. Lett. 54 (1995) 329-335.
[3] P. Vadapalli, P.K. Srimani, Shortest routing in trivalent Cayley graphs, Inform. Process. Lett. 57 (1996) 183-188.

[^0]: ${ }^{4}$ This work was supported in part by the National Science Council of the Republic of China under Contract NSC 87-2213-E-009-100.

 * Corresponding author. Email: lhhsu@cc.nctu.edu.tw.

