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Abstract

Let n be a positive integer with > 2. The trivalent Cayley interconnection network, denotedl®N(n), is proposed by
Vadapalli and Srimani (1995). Later, Vadapalli and Srimani (1996) claimed that the diaméi@iN¢n) is 2. — 1. In this
paper, we argue that the above claim is not correct. Instead, we show that the diarfi@i@f) is 2» — 1 only forn =2 and
2n — 2 for all other cases] 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction FE g s )
=t 1t G0
Most of the graph and interconnection network def-

initions used in this paper are standard (see, e.g., [1). f (o1 - - 61585 .. 17_4)
Let G = (V, E) be a finite, undirected graph. Let
and v be two vertices ofG. The distancebetween
u and v, denoted byd(u,v), is the length of the  g(iftf,1... 656565 .. .15 _4)
shortest path between them. THiameterof G, de-
noted by D(G), is the maximum distance between
every two vertices inG. Let n be a positive in-  wherer, 1 <k < n, denotes thekth symbol in
teger withn > 2. TCIN(n) is the trivalent Cayley  the set ofn symbols. The symbol denotes either
graph, proposed by Vadapalli and Srimani [2]. Each #, or 7. We use English alphabets for symbols;
node corresponds to a circular permutation in lexi- thus forn =4, 11 =a, o = b, t3 =c and 4 =
cographic order of: symbols,, to, ..., t,, comple- d.
mented or uncomplemented. Each edge is of the type The graphTCIN(®) is the trivalent Cayley graph
(v,8(v)), wheres € {g, f, f~1}, defined in the follow- with n2" vertices. Due to the nice structure BEIN(n),
ing way: many studies have been on the investigation of its

topological properties [2,3]. Vadapalli and Srimani [3]
morkwassupported in part by the National Science Council claimed thatD(TCIN(n)) is 22 — 1. However, this

of the Republic of China under Contract NSC 87-2213-E-009-100. e€sult is _nOt true except whem = 2. F(_)r e?(ample,
* Corresponding author. Email: Ihhsu@cc.nctu.edu.tw. we consider the grap@CIN(3) shown in Fig. 1 of
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Vadapalli and Srimani [3]. Sinc@CIN(3) is vertex
transitive, we can comput®(TCIN(3)) using the
breadth-first search rooted at vertekc. Obviously

D(TCIN(3)) is 4. Thus the result obtained in [3] is in-

correct. In this paper, we will show th#@(TCIN(n))

is 2n — 1 only forn = 2 and 2 — 2 for all other cases.

2. Diameter of TCIN(n)

Let I denote thédentity nodeizs. . .1, in TCIN(n).
For any nodes of TCIN(n), we used(s) to denote
the distance betweenand!/. SinceTCIN(n) is vertex
transitive,

D(TCIN(n)) =max{d(s) | s € TCIN(n)}.
As noted in the above sectio®,(TCIN(2)) = 3. In

the following, we adopt all the notations that are used

in [3] and assume that> 3. In [3], we have
d(s) =min{dL(s), dr(s)}.

Let A(n), B(n), C(n), and D(n) be the partition of a
vertex set ofTCIN(n) where

A(n)={s € V(TCIN(n)) |
jL+m1<kandjg +m2<n};

B(n) = {s € V(TCIN(n)) |
JL +ml<kande+m2>n};
C(n)={s € V(TCIN()) |
jr+m1>kandjg +mo<nl;
D(n) ={s € V(TCIN(n)) |

JjL +m12kande+m2>n}.

Lemma 1. Forall s € A(n), d(s) < 2n— 2. Moreover,
d(s) =2n — 2 if and only if n is even ands =
t_n/2+1t_n/2+2 .. .fnflfz c. t_n/z.

Proof. Sinced(s) = min{d.(s), dr(s)},

d(s) = min{2(n —1—m1)+c1—co,
2(n — 1—m2)+cz—cl}

=2n—2— max{cz — 1+ 2m1,
c1—cCc2+ 2m2}.

0, andmy > 0, d(s) <
2n—2ifandonlyifcy =c2

Since|cy —c2] > 0, m1 >
2n — 2. Moreoverd(s) =

and m1 = m = 0. In other words,n is even and
S =TIpj241lnj2+2. . -htat2 .. . tyy2. 0O

Lemma 2. Forall s € B(n), d(s) < 2n— 2. Moreover,
d(s) =2n — 2 if and only if n is odd ands =

Hn4D) /2418 (n4+1) /242 - - - In 182 . . T(n 1) j2—1E (1) /2-

Proof. Since s € B(n),
min{dy(s), dr(s)},

d(s) = min{Z(n —1—m1)+c1—co,

my > 1. Since d(s) =

2(n —m2) +c2 —c1}
=2n—2-— maX{cz —c1+ 2m1,
c1—C2+2mo — 2}.
Since|cy —c2] >0, m1 >0, andmo > 1, d(s) <
2n — 2. Moreoverd(s) =2n—2ifand only ifc1 = ¢3,
m1 = 0 andm2 = 1. In other wordsz is odd ands =
LD /241 (n41) /242 - - - 112 . . E(ng 1) j2— 1t (nt1) /2. O

Lemma 3. For all s = aias...a, € C(n), d(s) <
2n — 2. Moreover,d(s) = 2n — 2 if and only if s =
f(n—1)/24+1 (1—1)/242 - - - In—1In 1102 . . [(n—1)/2 Where n
is an odd integer ors = t17yt3, Or f1t2t3 for n = 3;
s = Miotata, iotsts, OF tifotsts for n = 4; and s =
t1f2t3f4t5 forn =5.

Proof. Sinced(s) = min{d.(s),dr(s)},

d(s) =min{2~ (n—m1)+c1—co,
2(n—1—m2)+cz—cl}
=2n-2
—maX{cz—c1+2m1—2, c1—cz+2mz}.

Casel. a; =t]. Hencem; =0 andcy = 0. Thus
d(s)=2n—2—maxc2 — 2,2m» — c2}. Sincecy >0
andma2 > 0,d(s) < 2n — 2. Moreoverd(s) =2n — 2
if and only if c; =2 andmy = 1. In other words,
§ = t]fzt_:g, t_]_tzt_:g fn=3;s= t_ltzt_3t4, tlt_2t3t_4, tlfzt_3t4
if n =4; ands = r1fo13t4t5 if n =

Case2. a1 # t]. Henceml 1. Thusd(s) =
2n —2—maX{cy —c1+ 2m1 — 2,c1 — ¢c2 + 2my} <
2n — 2 becausdgc1 —c2] >0, my > 1, andmy >
0. Therefored(s) = 2n — 2 if and only if ¢c1 = ¢3,
m1 =1, andmy = 0. In other wordsy is odd and
§=1In— 1)/2+1t(n 1)/242- - dp—1tafil .. Hn— /2. O

Lemma4. For all s = ajaz...a, € D(n), d(s) <
2n — 2. Moreover,d(s) = 2n — 2 if and only ifs =
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t_n/2+1t_n/2+2 .. .t_n_ltnt_lfz .. -f_n/2—lfn/2 wheren is an
even integer ok = f1fot3 for n = 3; s = fitotsts for
n =4; s = titotatats Of t1iotstats for n =5; ands =
t1?2t3t_4t5t6 forn = 6.

Proof. Since s € D(n), mp> > 1. Since d(s) =
min{dy (s), dr(s)},
d(s) = min{2(n —my) +c1—c2,
2(n —m2) +c2 — c1}
=2n—2—max{c2—cl+2m1—2,
cl—cz+2m2—2}.

Casel. a; =t;. Hencem; = 0 andc1 = 0. Thus
d(s)=2n —2—max{ca2 — 2, 2mp — co — 2}. Suppose
thatmyo > 2. Obviously,d(s) < 2n — 2. Suppose that
mg = 1. By definition,c; =n — 1. Sincen > 3,d(s) <
2n — 2. Moreoverd(s) =2n — 2 ifand only ifcp = 2,
mo=20rmo=1,c2 =2. In other wordsy = r11ot3 if
n=3,s= flfzt3t4 ifn=4;s = t_ltzfgt4t5, tlfzt_3t4t5 if
n =5; ands = notatatstg if n = 6.

Case2. a1 #t;. Hencemy > 1. Thusd(s) =2n —
2—maX{cy —c1+2m1—2,¢c1—c2+ 2mpy — 2} <

2n — 2 becausécy — c2| > 0, m1 > 1, andmy > 1.
Therefored(s) = 2n — 2 if and only if ¢1 = ¢2 and
m1 = my = 1. In other words,n is even ands =
tnj241ln/242 - - - In—1tnf1l2 . . . Tpyj2—1tpj2. O

From the above discussion, we have the following
theorem.

Theorem 1. D(TCIN(n)) =2n —1if n =2and2n —
2ifn>3.
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