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PROPAGATION OF THERMAL WAVES IN A
COMPOSITE MED IUM WITH INTERFACE
THERMAL BOUNDARY RESISTANCE

Whey-Bin Lor and Hsin-Sen Chu
Department of Mechanical Engineering, National Chiao Tung University,
Hsinchu, Taiwan 300, Republic of China

This article numerically analyzes the hyperbolic heat conduction problem in a two-layer

composite medium under an initial temperature pulse emanating from the exterior surface

of one layer. Reflection and transmission occur when the initial pulse wave impacts the

contact surface of the dissimilar material. An interfacial layer with low conductivity and

narrow thickness exists at the interface, which is employed to model the thermal boundary

resistance at the contact surface. Analysis results indicate that the interface resistance

significantly influences the wave pattern and strength. The presentation of the wave nature

in the interfacial layer deforms the initial wave feature and induces secondary wavelets

behind the reflected and transmitted wave. In addition , the piecewise secondary wavelets

become smooth when the interfacial width is very thin. Also examined herein is the effect of

conducti vity and thickness width of the interfacial layer coupled with variation of the

two-layer properties ratio on the reflection-transmission-combinatio n phenomena.

INTRODUCTION

Among the variety of devices making use of composite materials are thin-film
superconductors, microelectronic layer packages, and fins. The devices have nu-

s .merous applications. Classical diffusion theory Fourier’s law has been extensively

applied toward the heat transfer problem in a composite medium, with results

indicating that the contact thermal resistance seriously affects the heat transfer

w xmechanism 1, 2 .

Fourier’s law analysis suggests that an infinite speed of propagation of the
thermal wave yields reliable results for most circumstances. However, recent

investigations involving an extremely low temperature near absolute zero, ex-

tremely short transient duration, and extremely high rate change of temperature or

heat flux have indicated that the heat propagation velocity under such circum-

w xstances becomes finite and dominant 3 ] 6 . While considering the finite speed of

w x w xwave propagation, Cattaneo 7 and Vernotte 8 independently suggested a modi-
fied heat flux model in the form of

s . s . s .q r , t q t s yk = T r , t 1
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W.-B. LOR AND H.-S. CHU682

NOMENCLATURE

c thermal wave speed t relaxation time

C specific heat capacityp

D interfacial layer thickness Subscriptsr

e thermal incident energy

k thermal conductivity ave average

q heat flux i control volume index

q heat flux vector i " 1 r2 value at control volume faces

r position vector j layer index

t time max maximum

T temperature r interfacial layer

T reference temperature 1 layer 1re f

s .s ec r r C a 2 layer 21 1 p 11

T initial temperature0

W characteristics variable Superscripts

a thermal diffusivity

d x skin depth iter iteration

e nondimensional incident energy n, n q 1 time levels n and n q 1d
y 1w xl eigenvalue inverse matrix

r density ) dimensionless variable

where t is relaxation time, k the thermal conductivity, r the position vector, and t
s .the physical time. According to Eq. 1 the temperature gradient established at

time t results in a heat flux vector at a later time t q t due to an insufficient

response time. Actually, the relaxation time t is associated with the communica-
s .tion `̀ time’ ’ between phonons phonon-phonon collisions deemed necessary for

commencement of the heat flow and is a measure of thermal inertia of the
2 w xmedium. Based on the collision theory of molecules, t is approximated to a rc 9 ,

where c represents the thermal wave velocity and a is the thermal diffusivity.
s .Clearly, for t s 0, Eq. 1 reduces to the classical diffusion theory, leading to an

w xinfinite propagation velocity. Several investigators 9 ] 12 have estimated the mag-

w xnitude of t for engineering materials. Recently, Mitra et al. 13 determined

experimentally the t value to be ; 16 s for a biological material and directly

validated the hyperbolic nature of heat conduction.
ÈWhile emphasizing engineering applications of thermal wave theory, Ozisik

w xand Tzou 14 thoroughly reviewed thermal wave propagation, including the sharp

wave-front and rate effects, thermal shock phenomenon, and thermal resonance

phenomena. Various analytical methods have been proposed to elucidate the

reflection, refraction, and transmission of thermal waves across a material inter-

w xface. Frankel et al. 15 proposed a flux formulation to investigate thermal waves in

w xa composite medium. Tzou 16 performed harmonic analysis to examine the
reflection and refraction thermal wave patterns from a surface and an interface

between dissimilar material. Previous investigations did not consider thermal

w xboundary resistance at the interface. Bai and Lavine 17 treated boundary resis-

tance as a jump boundary condition of a thin layer, indicating that it significantly

affects the thermal wave solution. To our knowledge, the reflection rtransmission

of thermal waves in a composite medium while considering the thermal boundary
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PROPAGATION OF THERMAL WAVES IN A COMPOSITE MEDIUM 683

resistance at the interface of contact surfaces has not yet been investigated in

detail.

w xTo predict the boundary resistance, Streiffer et al. 18 indicated that a

significant thermal barrier exists at the superconductor film-substrate interface.

w xMarshall et al. 19 reported that a thermal barrier significantly restricts heat

w xtransfer from the film into the substrate . Das and Sadhal 20, 21 developed a

model for two solids in contact with a finite thickness gap to evaluate the thermal

constriction resistance. In this study, the interfacial layer model is employed to
consider the thermal boundary resistance at the contact interface of two dissimilar

materials. This model assumes an interfacial layer of variable thickness and

conductivity in between the two different layers. The influence of interface resis-

tance on the wave propagating in a composite medium under an initial pulsed

temperature wave emanating from one layer is examined. The results demonstrate

that the interface resistance heavily influences the reflected and transmitted wave
patterns and related strengths.

PHYSICAL MODEL AND THEORETICAL ANALYSIS

Figure 1 depicts the composite medium, which consists of two different

materials: layer 1 and layer 2. To predict the thermal boundary resistance, an
interfacial layer of a variable thickness D with low conductivity k in between ther r

two different layers is assumed. A pulsed incident energy e is exerted on the front

surface of layer 1 and is absorbed within a skin depth of d x of layer l. At

time s 0 q the thermal energy within d x is released and then emanates into the

second layer.
s .By applying Taylor’s series expansion to q in Eq. 1 with respect to t , the

linearized constitutive equation and energy conservation equations are written as

s .­ q x, t
s . s . s .q x, t q t s yk = T x, t 2

­ t

s .­ T x, t
s . s .r C q = q x, t s 0 3p ­ t

Figure 1. Schematic diagram of the physical system.
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W.-B. LOR AND H.-S. CHU684

For convenience , in the subsequent analysis, the nondimensional variable s are

de fined in the transformed system as follows:

c x c
2
t T y T a q1 1 j 0 1 jU U ( )x* s t* s T s q s 4j j

2 a 2 a T T k c1 1 re f re f 1 1

and the dimensionle ss property ratios

a t kj j jU U U ( )a s t s k s 5j j ja t k1 1 1

where j s 1, r, and 2 represent laye r 1, the inte rfacial layer, and laye r 2, re spec-

tive ly. Clearly, we have a U s t U s k
U s 1. The energy equation and non-Fourie r1 1 1

constitutive equation are expre ssed in te rms of the above dimensionle ss variable s

( )as with aste risks omitted

­ T 1 1 ­ qj j
( )q s 0 6

­ t k a ­ xj j

­ q k ­ T 1j j j
( )q s y 2 q 7j­ t t ­ x tj j

( ) ( )Equations 6 and 7 can be written in dimensionle ss ve ctor form as

­ U ­ Fj j
( )q s S 8j­ t ­ x

where

1 1I K
q 0j I Kk aT j jj 1í ý í ý ( )U s F s S s 9j j j y 2 qw 5q k jj j

J Lt jTj

J Lt j

( )Equation 8 can be written as

­ U ­ Uj j
w x ( )q A s S 10j j­ t ­ x

and the Jacobian matrice s are

­ Fj
w x ( )A s 11j

­ Uj

w xThen A can be diagonalized through the e igenvectorsj

y 1
w x w x w x w x ( )A s R l R 12j j j j
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PROPAGATION OF THERMAL WAVES IN A COMPOSITE MEDIUM 685

w xwhere l denotes the diagonal matrices consisting of two eigenvalues of A for

each layer. The superscript y1 represents the inverse eigenmatrix. The diagonal

matrices and the right eigenmatrices indicate that

1 r 2a j
y 0t /t j

w x s .l s 13j
1 r2a j

0 t /t j

1 1
1 r 2 1 r2

1 1 1 1w x s .R s 14j
yk kj jt / t /a t a tj j j j

The continuities for both temperature and heat flux are imposed as the boundary

conditions of the interfacial layer at the interfaces with layer 1 and layer 2, i.e.,

s .T s T q s q x s x 15a1 r 1 r 1

and

s .T s T q s q x s x q D 15b2 r 2 r 1 r

In this study the total nondimensional length is set to unity. In addition, the

nondimensional length of layer 2 is set to 0.5. Thus the value of x q D in Eq.1 r

s .15b is 0.5. The dimensionless initial conditions are given as

s .t s 0 T s q s 0 16

Moreover, at time s 0 q the dimensionless thermal energy e of width d isd x

released. Release of the thermal disturbance leads immediately to an additional

initial condition for the temperature

e dI
d 0 F xF d xx

í s .T dxs e T s t s 0 17d xH d

J0 0 otherwise

ec1
s .e s 18d

2 r C a T1 p1 1 ref

The two external boundaries are insulated for all time t ) 0, i.e.,

s .q s 0 x s 0 19 a1

and

s .q s 0 x s 1 19b2
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W.-B. LOR AND H.-S. CHU686

NUMERICAL METHOD

This study uses the characteristics-based numerical method developed by

w x s . w xy1Yang 22 to solve the system of equations. First, multiply Eq. 10 by R ; thenj

obtain

­ W ­ Mi i
s .q s G 20j­ t ­ x

where

yW y1 y 1w x w x w x w x w x w x w x w x w xW s s R ? U M s l ? W G s R ? Sj j j j j j j j jqW

s .21

The Wy and Wq represent the waves propagating to the negative and positive xj j

s .directions, respectively. Then, Eq. 20 is expanded by the finite difference and

explicit method; therefore we have

D t
iter n i ters . s .W s W y M y M q D tG 22i i i q1 r2 iy 1 r2 iD x

where D x s x y x and D t s tn q1 y tn. Superscript `̀ iter’ ’ denotes thei q1 r2 iy 1 r2
s .iteration value at a new time step of n q 1 .

w xNow the problem attempts to solve the characteristics variable W instead of

w iter xthe original T and q coupled equation. Once W is known, the iteration values
s .of T and q at time n q 1 can be evaluated by

T iter
iter iterw x w x w x s .U s s R ? W 23iterw 5q

It appears that the specified T and q are required to transfer into the
s s . s ..characteristic variable W see Eqs. 9 and 21 . However, there are no specified T

and q at the interfaces of x s x and x q D . In addition, only q is specified at1 1 r

the boundaries of x s 0 and 1. These two barriers to solving the characteristics
variable are treated in the following numerical algorithm:

w x w x s . s .1. Compute the values of G and W at time step n q 1 using Eq. 21 .j j

w qx w y x2. Determine the W and W by using the characteristics equation, Eq.1 2

s . w x22 . Notably, the TVD scheme 22 is used to compute the characteristics

w xvariable W at the interior points. In addition, the simple Godunov

w x w xupwind scheme 23 is employed to compute the W value at the point

w qx w yxnext to the boundaries. The new iteration values of W and W are1 2

s .obtained at time step n q 1 with the exception of the values on the

boundaries of x s 0 and x s 1.

3. Transfer the continuity temperature and heat flux interface conditions of
s .Eq. 15 into characteristic variables W. The two interface equations that

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
48

 2
8 

A
pr

il 
20

14
 



PROPAGATION OF THERMAL WAVES IN A COMPOSITE MEDIUM 687

contain the four unknown W variables can be solved when two W values

w qx w yxare assigned. Thus the new iteration values of W and W at the2 r

w yxinterface of x s x q D , which relates to the new iteration W value1 r 2

w qxand the old iteration W value, are achieved. Likewise, the new iterationr

w yx w qxvalues of W and W at the interface of x s x , which relates to the1 r 1

w qx w yxnew iteration W value and the old iteration W value, are also1 r

obtained.

4. Take the same procedure as in step 2 to evaluate the new iteration values

w qx w yx w yx w qx s .of W , W , W , and W at time step n q 1 .2 r 1 r

5. Eliminate the unknown temperature variable at the boundaries of x s 0
s . w qxand x s 1 by using Eq. 21 to acquire the new iteration values of W at1

w yxx s 0 and W at x s 1.2

s .6. Get all the new iteration values of T and q at time step n q 1 in the
s .composite medium by using Eq. 23 .

s .Procedures 1 ] 6 are repeated for time step n q 1 until the T and q values

in the composite medium are valid for the criterion of convergence:

iter iterT y T q y q
y7 y 7 s .F 10 F 10 24

T qmax max

s .Then the values of T and q at time n q 1 can be fully evaluated.

RESULTS AND DISCUSSION

The study focuses on thermal wave propagation in a composite medium with
boundary resistance at the interface. To consider the interface resistance, the

w xinterfacial layer model is employed 19 ] 21 . This model assumes a layer of a
s .variable thickness D ; 1 ] 10% of the layer 1 thickness x , where the conductiv-r 1

sity is significantly lower than that of layer 1 k ; 1 ] 10% of the layer 1r

. s .conductivity k . The remaining properties a and t are the same as in layer 1. In1

addition, the pulsed incident energy is absorbed by skin depth d x s 0.05 adjacent
to the exterior surface at x s 0. By choosing T as ec r r C a , we obtainref 1 1 p1 1

10 0 F xF 0.05 q s .T s t s 0 25w 0 otherwise

A one-dimensional computer code was written on the basis of the above

calculation procedure. Grid refinement and time step sensitivity studies have also

been performed for the physical model to ensure that the essential physics are

independent of grid size and time interval. The physical domain reduces to become

a finite medium when layer 1 and layer 2 embody the same material properties and
the interface is in perfect contact. The analytical solution of the finite medium has

È w xbeen given by Ozisik and Vick 24 and is used to demonstrate the validity of the

numerical solutions in this study. Figure 2 is a comparison of the numerical and

analytical solutions in a finite medium. The numerical solutions clearly exhibit free
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W.-B. LOR AND H.-S. CHU688

Figure 2. Comparison of numerical and analytical

temperature in a finite medium at t s 0.3 and 1.3.

oscillations around the sharp discontinuity. In addition, the dissipation error at the

wave front is almost invisible when a grid size less than 10y3 with a time interval of

5 = 10y4 is utilized. Therefore the uniform 1000 grid system with D t s 5 = 10y4

is used to generate the presented results. Corresponding to the step sizes in space

and time, the Courant number D t r D x is 0.5.

Figure 3 illustrates the temperature distribution for both perfect contact

interface and imperfect contact cases at t s 0.1 and 0.7. The hyperbolic heat

Figure 3. Temperature distributions at t s 0.1 and
s .0.7, a s t s 1 for a the perfect contact case2 2

s .and b the thermal resistance existence case,

D s 0.02, k s 0.1.r r
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PROPAGATION OF THERMAL WAVES IN A COMPOSITE MEDIUM 689

conduction equation predicts that a thermal wave disturbance tends to propagate

in a given direction until its course is impeded by a wall or barrier. When the
temperature is suddenly increased to 10 within d x at t s 0q, a thermal wave is

generated and propagates. Initially, owing to the reflection of the pulse wave from

the insulated surface at x s 0, the wave width is doubled. This gives the leading
s .edge of the wave-front impact at the contact interface at t s 0.45 and 0.45 y Dr

for a perfect contact and an imperfect contact interface, respectively. At t s 0.7 a

reflected wave traveling toward the left and a transmitted wave traveling toward
the right are observed. For a perfect contact case, both waves retain the initial

waveform and k affects their strength, as evidenced in Figure 3a. The reflected2

waves in layer 1 may be positive or negative in magnitude, depending on the

thermal conductivity ratio of two layers, which is consistent with energy conserva-

w xtion. The results are analogous to those in the analysis of Frankel et al. 15 for an

initial pulsed volumetric source. Figure 3b presents the results for an imperfect
contact interface. The wave feature at t s 0.1 is identical to the perfect contact

case, as attributed to the fact that the wave front is unaware of the thermal barrier.

However, it shows the interface resistance significantly influences the wave pattern

and strength after the initial wave impact of the interface. The secondary wavelets

behind the reflected and transmitted wave are observed for k s 1 and 10 but do2

not exist for k s 0.1 because the interfacial layer with k s 0.1 becomes a part of2 r

layer 2. This explains that the wavelets are induced by the interfacial layer instead

of the numerical instabilities. The remaining figures thoroughly describe reflection

and transmission phenomena with interface resistance.

Figures 4 and 5 display the heat flux and temperature distribution, respec-

tively, at various time intervals when the interfacial layer exists at the interface. At
t s 0.1 the leading edge of the wave locates at x s 0.15. With an increase of time,

the traveling wave approaches the interface of the composite. Most of the energy is

reflected back when the initial wave impacts the interfacial layer due to k < k .r 1

The wave transmitted through x further divides into two waves when it impacts1

the surface at x q D . One wave reflects back toward surface x , while the other1 r 1

transmits into layer 2. For each time interval of 0.02, a situation when the wave in

the interfacial layer impacts the interface with layer 1 or 2 causes a transmitted

wave to travel into layer 1 or layer 2. This subsequently leads to secondary wavelets
s .in both layers Figures 4b and 4c . The secondary wavelets are continuously

transmitted from the interfacial layer with the strength decreasing with time due to

the energy exchanged with both layers. Since the heat capacity of r C changes inp

proportion to k when a is held constant, the nature of the wave for the
s .temperature distribution in layer 2 is insignificant Figures 5b and 5c . After the

wave is reflected by the external insulated boundaries, the heat flux wave is
s .converted into an inverse wave front Figure 4d . In addition, the temperature

s .wave retains the original wave sign Figure 5d , moving toward the center of the

composite. At this moment, diffusion dominates the heat transfer in the interfacial
layer. According to Figures 4 e and 5e, the reflection and transmission at the

interfaces of the interfacial layer occur again by t s 1.7. The reflection-transmis-

sion combination persists until diffusion dominates in both layers.

w xIn light of the experiments in superfluid helium 25 , the initial waveform is

modified by the reflected waves at the interface of dissimilar materials. The
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W.-B. LOR AND H.-S. CHU690

Figure 4. Heat flux distributions for a sequence of

times with D s 0.02, k s 0.05, a s t s 1, andr r 2 2

k s 10.2

Figure 5. Temperature distributions for a sequence

of times with D s 0.02, k s 0.05, a s t s 1,r r 2 2

and k s 10.2
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PROPAGATION OF THERMAL WAVES IN A COMPOSITE MEDIUM 691

superfluid helium is characterized as a mixture of two fluid components: the

normal and super components. The vortex layer between the normal and super
components is produced when a strong second sound shock wave passes through

w xthe fluid 25, 26 . It can be hypothesized that the interfacial layer that mediates the

exchanges of energy between two dissimilar layers is the vortex layer that mediates

the exchanges of momentum layer between the two fluid components. The wave-

form of the secondary wavelets traveling behind the reflected and transmitted wave

w xresembles that of the experimental observation in superfluid helium 25 .
Figure 6 depicts a sequence of temperature distributions with only a slight

time interval change to understand the wave nature within the interfacial layer and

the interaction with the incoming wave from the neighborhood. Because of the
s .dissipation of energy by diffusion, a slant across the top of the wave ­ T r ­ x - 0

is presented in Figure 6a. At t s 0.43, the leading edge of the original wave

impacts the surface at x . Owing to the wave width being 0.1, it takes 0.11

dimensionless time for the initial wave to complete the interaction at x . The1

superposition of the reflected wave by the interfacial layer with the original wave
s .increases the temperature at x s x Figure 6b . Meanwhile, a positive tempera-1

s .ture wave transmits into the interfacial layer Figure 6c . Once the transmission

wave impacts the surface at x q D , the reflection-transmission phenomena occur1 r

again. The temperature wave in the interfacial layer disappears owing to the

combination of the transmitted positive-sign wave from x with the negative-sign1

Figure 6. Temperature distributions for a sequence

of times with D s 0.02, k s 0.05, a s t s 1,r r 2 2

and k s 10 demonstrating the interaction of ther-2

mal waves in the interfacial layer and an initial

pulsed wave.
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W.-B. LOR AND H.-S. CHU692

s .reflected wave from x q D Figure 6d . The positive temperature wave periodic1 r

sappears and disappears in the interfacial layer for a time interval of D Figuresr

.6 e ] 6 g . Moreover, the transmitted negative wave through x into layer 1 weakens1

the incoming wave, resulting in deformation of the reflected wave feature. By

t s 0.55, the initial wave from layer 1 has completed the interaction with the

interfacial layer at x , and no positive-sign wave was transmitted into the interfa-1

cial layer to depress the negative-sign wave reflected from x q D . The tempera-1 r

sture wave in the interfacial layer changes sign for the 0.02 time interval Figures 6h
.and 6 i and transmits into layer 1 to produce the secondary wavelets in the wake of

the reflected wave until diffusion dominates in the interfacial layer.

Figure 7 together with Figure 3b display the effects of k and k on the2 r

temperature distribution at t s 0.7. Owing to the fact that the energy is an integral
sof r C T, the induced temperature distribution in layer 1 and 2 which correspondp

.to the energy transmitted from the interfacial layer depend on their conductivity

when diffusivity is held constant. Therefore the secondary temperature wavelets

are significant in layer 2 when k - 1 and are significant in layer 1 when k ) 1.2 2

The secondary temperature wavelets are observed in both layers when k s 1. In2

addition, when k approximately equals k , the interfacial layer becomes part of2 r

layer 2. This leads the secondary wavelets to disappear; meanwhile, the reflected
and transmitted waves retain the initial wave feature. Moreover, the magnitude of

the temperature in the interfacial layer increases with a decrease of k .r

Figure 8 illustrates the effect of k on the average temperature of layer 2.r

The leading edge of the initial pulsed wave front impacts at the interface of

Figure 7. Effect of k on temperature at t s 0.7r

with D s 0.02 and a s t s 1.r 2 2
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Figure 8. Effect of k on T with D s 0.02,r ave , 2 r

a s t s 1, and k s 0.1.2 2 2

x s 0.5 at t s 0.45. After a dimensionless time interval of 1, the waves reflected by

the exterior insulated surfaces impact the surface again. At these moments the
T abruptly changes. For the remaining times the average temperature graduallyave ,2

changing with time is attributed to the fact that the residual energy in the wake of

the propagating wave exchanges a slight amount of energy across that surface. The

energy passing through the interfacial layer to enter layer 2 is directly proportional

to k , thereby causing the higher average temperature in layer 2 for a higher valuer

of k at t s 0.45. Likewise, more energy passes through this surface to enter layerr

1 for a higher value of k when the waves are reflected by the exterior surfaces andr

impact the surface at x s 0.5. Thus T increases and decreases with changes inave, 2

k for a time interval of 1. The effect of k on T becomes less serious with anr r ave, 2

increase of time, since the diffusion dominates in the composite medium.

Figures 9 and 10 illustrate the effect of diffusivity and relaxation time of layer
2 on the reflected wave and transmitted wave at t s 0.7. In the transmitted

portion, Figure 9 displays the effects of a on the transmitted wave in two ways.2

Figure 9. Effect of a on temperature at t s 0.7,2

with D s 0.02, k s 0.05, and k s t s 1.r r 2 2
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The width of the wave at a standard case of a s 1 has been expanded for a ) 12 2

s .1 r 2due to the speed c s a r t becoming faster than 1. Meanwhile, the strength2 2 2

of the wave is amplified for a ) 1 for energy conservation. The opposite situation2

occurs when a - 1. The effect of t on the transmitted wave presented in Figure2 2

10 is also based on the energy conservation and wave speed changes with relaxation

time t . These phenomena resemble those demonstrated in the perfect contact

w xproblems 15 . In the reflected portion of Figures 9 and 10, owing to the fact that
the wave speed in the interfacial layer is independent of the variation of a and t ,2 2

the interfacial-layer-induced secondary wavelet behind the reflected wave travels

with the same speed toward the origin. The magnitude of the secondary wavelets

increases with the decrease of a and t .2 2

Figure 11 illustrates the influences of interfacial layer thickness D on ther

temperature distributions with two different values of k at t s 0.7. The initial2

pulse wave takes 0.1 dimensionless time to complete the reflection and transmis-

sion at x . Within this time interval, the reflection-transmission-combinatio n1

phenomena in the interfacial layer assess the reflected and transmitted wave

figures and their strength. The transmitted wave through x traveling right couples1

with more of the positive wave, which is the reflected wave of the negative wave
traveling left from x q D when D is less thick. Consequently, the transmitted1 r r

wave strength in layer 2 increases with decreasing D ; the opposite occurs for ar

reflected wave in layer 1. The initial pulse wave completes the reflection and

transmission at x before the reflected wave from x q D arriving in this surface1 1 r

s .when D is equal, or greater than the absorption skin depth d x i.e., D G 0.05 .r r

Therefore the reflected wave retains the initial wave feature. Moreover, when the

interfacial thickness is very thin, the piecewise secondary wavelets become smooth.

Figure 12 illustrates the discrepancies of the maximum temperature in layer 2

at t s 0.7 between the perfect contact and imperfect contact interface. The

maximum temperature in layer 2 is located at the trailing edge of the transmitted
s .wave see Figures 7 and 11 . The interfacial layer becomes part of layer 2 when

k s k . Thus the solutions are independent of the interfacial layer thickness. Ar 2

decrease of k dramatizes the effect of resistance to cause less energy to enterr

Figure 10. Effect of t on temperature at t s 0.72

with D s 0.02, k s 0.05, and k s a s 1.r r 2 2
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Figure 11. Effect of D on temperature at t s 0.7r

with k s 0.05, and a s t s 1.r 2 2

layer 2. However, loss in the transmitted wave strength caused by k is compen-r

sated by the waves’ transmission-reflection-combination phenomena in the interfa-

cial layer for a very thin interfacial thickness, such as D s 0.005. This causes ther

T in layer 2 to become nearly independent of the variation of k for D s 0.005.max r r

More serious discrepancies arise between different interface conditions where the

interfacial layer has a lower conductivity and a higher thickness.

Figure 12. Effect of interface resistance on Tmax, 2

at t s 0.7 with k s 0.1 and a s t s 1.2 2 2
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CONCLUSIONS

By applying the hyperbolic heat conduction equation, this study numerically

analyzes transient thermal wave propagation in a two-layer composite medium with
an initial temperature pulse emanating from one layer. The interfacial layer model

is used to examine the thermal boundary resistance. The reflection and transmis-

sion at the interface of two dissimilar materials are presented as well.

According to the analysis results, the thermal boundary resistance restricts

the exchanges of energy between two dissimilar layers. The relative strengths of the

reflected wave and transmitted wave are varied with the conductivity and thickness
of the interfacial layer. Less energy transmits from the first layer through the

interfacial layer into the second layer for a lower conductivity and a higher

thickness of the interfacial layer.

Analysis results further demonstrate that thermal boundary resistance not

only mediates the energy transform from one layer to the other, but also markedly

influences the thermal wave transmission-reflection-combination phenomena. The
wave nature in the interfacial layer deforms the initial wavelike feature and

produces secondary wavelets behind the reflected and transmitted waves until the

diffusion phenomena dominate. The strength of the secondary wavelets depends on

the property ratios of each layer. Moreover, the reflected wave retains the initial

wave feature when the interfacial thickness is equal to or greater than the

absorption skin depth. Furthermore, the piecewise secondary wavelets smooth
when the interfacial layer thickness is very thin.
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