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Abstract

Process capability indices are useful for assessing the capability of manufacturing processes. Most traditional methods
are obtained from the frequentist point of view. We view the problem from the Bayes and empirical Bayes approaches
by using non-informative and conjugate priors, respectively. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

Process capability indices (PCIs), as a process performance measure, have become very popular in assessing
the capability of manufacturing processes in practice during the past decade. More and more e�orts have
been devoted to studies and applications of PCIs. For example, Rado (1989) demonstrated how Imprimis
Technology, Inc. used the PCIs for program planning and growth to enhance product development. The Cp
and Cpk indices have been used in Japan and in the US automotive industry such as Ford Motor Company
(see Kane, 1986a, b). For more information on PCIs, see Kotz and Johnson (1993), Kotz et al. (1993), and
the references cited therein.
The usual practice is to estimate these PCIs from data and then judge the capability of the process by

these estimates. Commonly used estimators are reviewed in Section 2. Most studies on PCIs are based on
the traditional frequentist point of view. The main objective of this note is to provide both point and interval
estimators of some popular PCIs from the Bayesian point of view. We believe this e�ort is well justi�ed
since Bayesian estimation has become one of popular approaches in estimation nowadays and resulting Bayes
estimators in general have good theoretical properties, such as admissibility (Bernardo and Smith, 1993).
In addition, the Bayesian approach has one great advantage over the traditional frequentist approach—the
posterior distribution is very easy to derive and then credible intervals, which is the Bayesian analogue of

∗ Corresponding author. Present address: Department of Statistics, Sequoia Hall, Stanford University, Stanford, CA 94305-4065, USA.
Tel.: +1-650-725-5976; fax: +1-650-725-8977.

0167-7152/99/$ - see front matter c© 1999 Elsevier Science B.V. All rights reserved
PII: S0167 -7152(99)00061 -9



216 J.-J.H. Shiau et al. / Statistics & Probability Letters 45 (1999) 215–224

the classical con�dence interval, can be easily obtained either by theoretical derivation or by Monte Carlo
methods (Tanner, 1993). A simple estimate of the index is not very useful in making reasonable decision on
the capability of a process. An interval estimate approach is more appropriate.
This paper is organized as follows. We give a brief review on the most popular PCIs, Cp, Cpk, and Cpm in

Section 2. In Section 3, we derive Bayes estimators for C2p , C
2
pm (with the process mean � being the target

value T ) and C2pk (with the process mean � being the middle point m of the two speci�cation limits), with
respect to some chosen priors. In Sections 3.1 and 3.2, we consider the non-informative and the Gamma
prior, respectively, and derive Bayes estimators and credible intervals for each prior. For the Gamma prior,
the maximum-likelihood method in empirical Bayes approach is adopted for choosing the parameters in the
prior. The derivation is given in the appendix. In Section 4, we propose a Bayesian procedure based on the
credible intervals derived in Section 3. An example is given to demonstrate the application of the proposed
Bayesian procedure. Finally, we conclude this note by a brief summary in Section 5.
Throughout this paper, it is assumed that the process measurements are independently and identically dis-

tributed from a normal distribution. In other words, the process is under statistical control. We remark that
estimation of PCIs is meaningful only when the process is under statistical control.

2. A review of some process capability indices

The most popular PCIs are Cp, Cpk, Cpm, and Cpmk. The Cp index is de�ned as

Cp =
USL− LSL

6�
;

where LSL and USL are the lower and upper speci�cation limits, respectively, and � is the process standard
deviation. Note that Cp does not depend on the process mean. The Cpk is then introduced to re
ect the impact
of � on the process capability indices. The Cpk index is de�ned as

Cpk = min
{
USL− �
3�

;
� − LSL
3�

}
:

The Cpm index was introduced by Chan et al. (1988). This index takes into account the in
uence of the
departure of the process mean � from the process target T . The Cpm is de�ned as

Cpm =
USL− LSL

6
√
�2 + (� − T )2 :

Combining the three indices, Cp, Cpk, and Cpm, Pearn et al. (1992) proposed the Cpmk index. This index is
de�ned as

Cpmk = min

{
USL− �

3
√
�2 + (� − T )2 ;

� − LSL
3
√
�2 + (� − T )2

}
:

The natural and most commonly used estimators of Cp, Cpk, Cpm, and Cpmk are

Ĉp =
USL− LSL

6s
;

Ĉpk = min
{
USL− �x
3s

;
�x − LSL
3s

}
;

Ĉpm =
USL− LSL

6
√
s2 + ( �x − T )2
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and

Ĉpmk = min

{
USL− �x

3
√
s2 + ( �x − T )2 ;

�x − LSL
3
√
s2 + ( �x − T )2

}
;

respectively, where �x is the sample mean and s is the sample standard deviation.

3. Bayesian estimation for some PCIs

In this section, we derive the Bayes estimators for C2p , C
2
pm with � = T , and C

2
pk with � = m with respect

to some priors. Two prior distributions are considered. The �rst prior is the non-informative prior, and the
second prior is Gamma(a; b). Reasons for choosing these priors are given at the beginning of the following
two subsections, respectively. For the Gamma prior, the maximum-likelihood method in the empirical Bayes
approach is adopted for choosing the parameters a and b in the prior.
Recall that the natural (most common) estimator of Cp is Ĉp=(USL−LSL)=(6s). Assuming that the process

measurements follow a N(�; �2), Cheng and Spiring (1989) derived that the probability density function (p.d.f.)
for Ĉp is

f(y|Cp) = 2
(
�
(
n− 1
2

))−1( (n− 1)C2p
2

)(n−1)=2
y−nexp

[
− (n− 1)C

2
p

2y2

]
for 0¡y¡∞:

Let W = Ĉ2p, then the p.d.f. of W is

f(w|Cp) =
(
�
(
n− 1
2

))−1( (n− 1)C2p
2

)(n−1)=2
w−((n+1)=2)exp

[
− (n− 1)C

2
p

2w

]
for 0¡w¡∞:

That is, Ĉ2p follows an Inverse Gamma(�; �) with parameters �= (n− 1)=2 and �= ((n− 1)C2p =2)−1.
Set the parameter �= C2p . Them the likelihood function L(�|w) of �,

L(�|w) =
(
�
(
n− 1
2

))−1( (n− 1)
2

)(n−1)=2
�(n−1)=2w−((n+1)=2)exp

[
− (n− 1)�

2w

]
:

We now derive the posterior distributions for � under two di�erent prior distributions.

3.1. Non-informative prior

For the choice of the prior, in this subsection, we consider the prior �(�) = 1=�, for 0¡�¡∞. There are
two reasons for choosing this prior. The �rst one is that the above prior can maximize the di�erence between
the information (entropy) of the parameter provided by the prior and posterior distributions. In other words,
the above prior allows the prior to provide information about the parameter as little as possible (see Bernardo
and Smith, 1993). This prior is usually referred as a reference prior. The second reason is that with the above
prior, the p × 100% credible interval has coverage probability p up to the second order (in contrast to the
�rst order for any other priors) in the frequentist sense (Welch and Peers, 1963). In other words, the credible
interval obtained from the above prior has a more precise coverage probability than that obtained from any
other priors.
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With this non-informative prior, we have the joint p.d.f. of (�; w)

f(�; w) =f(w|�)× �(�)

= (�(�))−1
(
n− 1
2

)(n−1)=2
�(�−1)w−((n+1)=2)exp

(
−�
�

)
; (1)

where �= (n− 1)=2 and � = 2w=(n− 1) = 2Ĉ2p=(n− 1).
Hence the posterior distribution of � given w is

f(�|w) = �
(�−1)exp(−�=�)
�(�)��

:

That is, the posterior distribution of � given w is a Gamma(�; �).
So, the posterior mean for �= C2p is

E(�|Ĉ2p) = �� =
n− 1
2

· 2Ĉ
2
p

n− 1 = Ĉ
2
p:

Therefore, Ĉ2p is a Bayes estimator of C
2
p , and we have a nice Bayesian interpretation for the estimator Ĉ

2
p

of C2p .
In addition, it can be shown that the mode of f(�|w) is (�−1)�=((n−3)=(n−1))Ĉ2p, which is the Bayes

estimator of C2p is the sense of extended zero-one loss.
Next, consider Cpm under � = T and Cpk under � = m. Recall that these two indices (with the spe-

cial restrictions on �) are both reduced to Cp. Chan et al. (1988) considered Ĉpm = (USL − LSL)=(6�̂′),
where �̂′= ((1=(n− 1))∑n

i=1(xi − T )2)1=2. The p.d.f. of Ĉpm when �= T , given by Theorem 8 in Chan et al.
(1988), is

f(y|Cpm) = 2
(
�
(n
2

))−1( (n− 1)C2pm
2

)n=2
y−(n+1)exp

(
− (n− 1)C

2
pm

2y2

)
for 0¡y¡∞:

By the same technique as that for Cp, we can obtain that the posterior p.d.f. of �= C2pm given Ĉpm is

f(�|Ĉ2pm) =
��̃−1exp(−�=�̃)

�(�̃)�̃
�̃ ;

which is a Gamma(�̃; �̃) distribution with �̃= n=2 and �̃ = 2Ĉ2pm=(n− 1). So, the posterior mean for C2pm is

E(C2pm|Ĉ2pm) = �̃�̃ =
n
2
· 2Ĉ

2
pm

n− 1 =
n

n− 1 Ĉ
2
pm ;

and thus a Bayes estimator for C2pm is (n=(n− 1))Ĉ2pm.
However, it seems more natural to consider the estimator �̂′′ = ((1=n)

∑n
i=1(xi − T )2)1=2, since, under the

assumption �=T; �̂′′ 2 is both an unbiased estimator and the maximum-likelihood estimator (MLE) of �2. Then,
in this case, it is easily seen that the posterior mean of C2pm is exactly Ĉ2pm. Also, by the same technique
as that for Cp, the posterior mode for C2pm is (n=2 − 1) · (2Ĉ2pm=n) = ((n − 2)=n)Ĉ2pm. Likewise, if we let
Ĉpk = (USL − LSL)=(6�̂∗) with �̂∗ = ((1=n)∑n

i=1(xi − m)2)1=2, we can also obtain that Ĉpk is the posterior
mean of C2pk and that the posterior mode is ((n− 2)=n)Ĉ2pk.
Next, we consider the interval estimation of these PCIs. Recall that the posterior distribution of �=C2p given

Ĉp is a Gamma((n− 1)=2; �), with � = 2Ĉ2p=(n− 1). Then 2�=� is a �2 distribution with degrees of freedom
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Table 1
Summary of the point and interval estimators for PCIs under non-informative
prior

Index Posterior mean Postetrior mode Credible interval

C2p Ĉ2p
n− 3
n− 1

Ĉ2p

[
Ĉ2p
n− 1

�2n−1;1−p;∞
)

C2pm Ĉ2pm
n− 2
n

Ĉ2pm

[
Ĉ2pm
n
�2n;1−p;∞

)

C2pk Ĉ2pk
n− 2
n

Ĉ2pk

[
Ĉ2pk
n
�2n;1−p;∞

)

n− 1. Denote the (1−p)× 100th percentile of a �2 distribution with degrees of freedom n− 1 by �2n−1;1−p.
Then a useful p× 100% credible interval of C2p is [�p;∞), where �p = (�=2)�2n−1;1−p= (Ĉ2p=(n− 1))�2n−1;1−p.
Similarly, [(Ĉ2pm=n)�

2
n;1−p;∞) is the corresponding p × 100% credible interval of C2pm, when � = T ; and

[(Ĉ2pk=n)�
2
n;1−p;∞) is the interval for C2pk, when � = m.

We summarize the results derived above in Table 1 for quick reference. Note that in this table Ĉp=(USL−
LSL)=(6s); Ĉpm = (USL− LSL)=(6�̂′′); and Ĉpk = (USL− LSL)=(6�̂∗).

3.2. Gamma prior

In the Bayesian literature, in addition to the non-informative prior, the conjugate prior is another important
prior (Bernardo and Smith, 1993). The most important reason for using the conjugate prior is that, with the
conjugate prior, the prior and posterior are in the same distribution family. That is, the prior and posterior
distribution functions have the same mathematical form. Since Ĉ2p follows an Inverse Gamma distribution, we
know that the conjugate prior must be a Gamma prior. Assume that � is distributed as Gamma(a; b) with p.d.f.

�(�) = (�(a)ba)−1�a−1exp
(
−�
b

)
for 0¡�¡∞; 0¡a¡∞; 0¡b¡∞:

Then, the joint p.d.f. for �= C2p and W is

f(�; w) =
((n− 1)=2)(n−1)=2
�(�)�(a)baw�+1

��+a−1exp
[
−�
(
1
�
+
1
b

)]
:

Thus, the posterior distribution becomes

f(� |w) = �
a′−1exp(−�=b′)
�(a′)b′a′

;

where a′ = �+ a= (n− 1)=2 + a and b′ = (1=� + 1=b)−1 = ((n− 1)=2w + 1=b)−1.
Note that f(�|w) is a Gamma(a′; b′) density. Therefore, the posterior mean for C2p is

E(C2p |Ĉ2p) = a′b′ =
(
n− 1
2

+ a
)(

n− 1
2Ĉ2p

+
1
b

)−1
:
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And the posterior mode for C2p is

(a′ − 1)b′ =
(
n− 3
2

+ a
)(

n− 1
2Ĉ2p

+
1
b

)−1
:

The parameters a and b in the prior distribution can be given either subjectively or objectively. To obtain the
hyperparameters a and b objectively, we may adopt the maximum-likelihood method in the empirical Bayes
approach (Bernardo and Smith, 1993). Consider for any �xed a and b,

f(w | a; b) =
∫ ∞

0
f(�; w|a; b) d�

=
∫ ∞

0

((n− 1)=2)(n−1)=2
�(�)�(a)baw�+1

��+a−1exp
[
−�
(
1
�
+
1
b

)]
d�

=
((n− 1)=2)(n−1)=2
�(�)�(a)baw�+1

�(a′)b′a
′
: (2)

If a is given, then, by maximizing (2) when w is �xed, we obtain that the maximum-likelihood estimator
of b is b̂= Ĉ2p=a. The derivation is given in the appendix.
So, when b= b̂, the posterior mean for C2p is

(
n− 1
2

+ a
)(

n− 1
2Ĉ2p

+
1

b̂

)−1
= Ĉ2p :

This shows that Ĉ2p is the Bayes estimator of C
2
p in the sense of the empirical Bayes.

Also, the posterior mode for C2p is

(
n− 3
2

+ a
)(

n− 1
2Ĉ2p

+
1

b̂

)−1
=
(
n− 3
2

+ a
)(

n− 1
2

+ a
)−1

Ĉ2p:

For Gamma(a; b) prior, again consider the estimator �̂′′ = ((1=n)
∑n

i=1(xi − T )2)1=2 for Ĉpm under � = T ,
and the estimator �̂∗ = ((1=n)

∑n
i=1(xi − m)2)1=2 for Ĉpk under � = m. Then, in these cases, it can be easily

seen that the posterior distribution of �= C2pm is a gamma distribution with p.d.f.

f(�|w) = �
a′′−1exp(−�=b′′)
�(a′′)b′′a

′′ ;

where a′′ = �̃+ a= n=2+ a and b′′ = (n=(2Ĉ2pm) + 1=b)
−1. Then we obtain that the posterior mean for C2pm is

a′′b′′=(n=2+a) (n=(2Ĉ2pm)+1=b)
−1 and the posterior mode for C2pm is (a

′′−1)b′′=((n−2)=2+a) (n=(2Ĉ2pm)+
1=b)−1. Similarly, the posterior mean for C2pk is (n=2 + a)(n=(2Ĉ

2
pk) + 1=b)

−1 and the posterior mode for C2pk
is ((n− 2)=2 + a) (n=(2Ĉ2pk) + 1=b)−1.
Assume a is given. To estimate b empirically for Cpm under � = T and Cpk under � = m, we adopt the

maximum-likelihood method. Similar results as that for Cp hold for these two cases. That is, for C2pm ; b̂=Ĉ
2
pm=a;

the posterior mean is Ĉ2pm, and the posterior mode is ((n−2)=2+a) (n=2+a)−1Ĉ2pm (=((n−2+2a)=(n+2a))Ĉ2pm)
in the sense of the empirical Bayes. Similarly, for C2pk ; b̂= Ĉ

2
pk=a, the posterior mean is Ĉ

2
pk, and the posterior

mode is ((n− 2)=2 + a) (n=2 + a)−1Ĉ2pk (=((n− 2 + 2a)=(n+ 2a))Ĉ2pk) in the sense of the empirical Bayes.
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Table 2
Summary of the point and interval estimators for PCIs under gamma prior
when a is given and b is estimated by the maximum-likelihood method

Index Posterior mean Postetrior mode Credible interval

C2p Ĉ2p
n− 3 + 2a
n− 1 + 2a

Ĉ2p

[
Ĉ2p

n− 1 + 2a
�2n−1;1−p;∞

)

C2pm Ĉ2pm
n− 2 + 2a
n + 2a

Ĉ2pm

[
Ĉ2pm
n + 2a

�2n;1−p;∞
)

C2pk Ĉ2pk
n− 2 + 2a
n + 2a

Ĉ2pk

[
Ĉ2pk
n + 2a

�2n;1−p;∞
)

Next, we consider the interval estimation. Again assume that a is given. If 2a is an integer, then a p×100%
credible interval for C2p is [((n − 1)=Ĉ2p + 2=b̂)−1�2n−1+2a;1−p;∞); which can be simpli�ed to [(Ĉ2p=(n − 1 +
2a))�2n−1+2a;1−p;∞) when b̂= Ĉ2p=a. For C2pm and C2pk under the special cases, the p× 100% credible interval

are [(n=Ĉ2pm + 2=b̂))
−1�2n+2a;1−p;∞); and [(n=Ĉ2pk + 2=b̂)−1�2n+2a;1−p;∞); respectively. These two intervals can

also be simpli�ed to [(Ĉ2pm=(n + 2a))�
2
n+2a;1−p;∞); when b̂ = Ĉ2p=a and [(Ĉ2pk=(n + 2a))�2n+2a;1−p;∞); when

b̂= Ĉ2pk=a; respectively. If 2a is not an integer, then we may approximate �
2
n+2a;1−p by interpolating values of

�2n+d2ae;1−p and �
2
n+d2ae+1;1−p, where dxe denotes the largest integer less than or equal to x.

If both a and b need to be estimated, there is no explicit form for â, the MLE of a. â can only be obtained
numerically.
We now summarize the above results in Table 2. As in Table 1, here we use Ĉp=(USL−LSL)=(6s); Ĉpm=

(USL− LSL)=(6�̂′′), and Ĉpk = (USL− LSL)=(6�̂∗).
Note that Table 2 is reduced to Table 1 when a= 0. This is not surprising since the non-informative prior

considered in Section 3.1 is the limiting case of Gamma(a; b̂) when a goes to 0.
When using these point and interval estimates in practice, all the quantities in Tables 1 and 2 should be

square-rooted for better interpretation.

4. A Bayesian procedure and an example

In this section, we describe how to use the estimators described in the previous section in real-life appli-
cations. Point estimates can give some assessment on the process capability. However, as mentioned before,
it is more appropriate to use interval estimates when it comes to determine whether the process is capable or
not. With these interval estimates at hand, we now describe a Bayesian procedure in the following.
A p × 100% credible interval means the posterior probability that the true PCI lies in this interval is p.

Let p be a high probability, say, 0.95. Suppose for this particular process under consideration to be capable,
the process index must reach at least a certain level C∗, say, 1.33. Now, from the process data, we compute
the lower bound of the credible interval for the index (not for the squared index) and denote it by C. The
Bayesian procedure is very simple — if C¿C∗, then we say that the process is capable in a Bayesian sense.
We use the data given in Table 6–1 of Montgomery (1990, p. 207) to demonstrate this Bayesian procedure.

This example is about a manufacturing process which produced piston rings for an automotive engine. The
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Table 3
Point estimates of the three indices obtained by the posterior mean and posterior
mode under the non-informative prior

Index Estimate by posterior mean Estimate by posterior mode

Cp 1.6551 1.6417
Cpm 1.6439 1.6307
Cpk 1.6162 1.6032

Table 4
The lower bound of the interval estimates of the three indices under the
non-informative prior obtained with the posterior probability being 0.9, 0.95,
0.99, and 0.999

Posterior probability p

Index 0.9 0.95 0.99 0.999

Cp 1.5179 1.4810 1.4126 1.3374
Cpm 1.5082 1.4717 1.4040 1.3296
Cpk 1.4827 1.4468 1.3803 1.3071

Table 5
The lower bound of the credible intervals C of the three indices for various a
and p

a

Index p 0.01 0.1 1 10 50 100

Cp 0.9 1.5179 1.5180 1.5190 1.5279 1.5535 1.5708
0.95 1.4810 1.4811 1.4824 1.4936 1.5257 1.5476
0.99 1.4126 1.4128 1.4145 1.4299 1.4742 1.5045
0.999 1.3374 1.3376 1.3340 1.3597 1.4172 1.4567

Cpm 0.9 1.5082 1.5083 1.5094 1.5195 1.5478 1.5668
0.95 1.4717 1.4718 1.4732 1.4854 1.5203 1.5438
0.99 1.4040 1.4042 1.4060 1.4223 1.4690 1.5008
0.999 1.3296 1.3299 1.3322 1.3528 1.4124 1.4532

Cpk 0.9 1.4828 1.4829 1.4844 1.4972 1.5331 1.5564
0.95 1.4468 1.4470 1.4487 1.4637 1.5058 1.5335
0.99 1.3803 1.3805 1.3827 1.4015 1.4550 1.4909
0.999 1.3072 1.3074 1.3100 1.3330 1.3989 1.4436

measurements are the inside diameter of the rings manufactured in this process. 125 measurements were taken
from the process when the process was in control. The upper speci�cation limit USL = 74:05 and the lower
speci�cation limit LSL= 73:95: The target value T =74: From the process data, we obtain that sample mean
�x = 74:00118 and the sample standard deviation s= 0:01006997. Ĉp = (USL− LSL)=(6s) = 1:655086; Ĉpm=
(USL− LSL)=(6�̂′′) = 1:643914; and Ĉpk = (USL− LSL)=(6�̂∗) = 1:616159.
Table 3 reports the point estimates and Table 4 reports the interval estimates under the non-informative

prior with p = 0:9; 0:95; 0:99; 0:999 for the piston ring example. Numbers given in Table 4 are the lower
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bound C of the credible interval for the indices (i.e., not squared). For C∗ = 1:33, these C values indicate
that the process is capable in the Bayesian sense, except for the two cases when the “con�dence level” is
very high (0.999). We also notice that these estimates are not much di�erent for the three indices. This can
be explained by the fact that the three values �x; T , and m are very close in this example.
To demonstrate the importance of the interval estimate, we now turn to a hypothetical example. Suppose

that the index Ĉp = 1:4, which is greater than the presumed level of capability 1.33. The C value obtained in
this case is 1.2840, which is below 1.33. So we cannot conclude that the process is capable. Point estimate
does not give us clue on how big the estimation error is, while a credible interval estimate can provide us a
statement about the true index based on the posterior probability.
Now, under the Gamma prior, Table 5 gives the C values for various a and p. It is noticed from this

table that the prior parameter a seems not a�ecting the C values much. Again, for p = 0:9; 0:95; 0:99, the
conclusions are all the same—the process is capable in the Bayesian sense.

5. Summary

PCIs are getting more and more popular in the e�orts of quality and productivity improvement. In this
paper, we provide both point and interval estimators by the Bayesian approach. We derive the posterior
distributions for C2p ; C

2
pm with � = T , and C2pk with � = m with respect to the two priors. We then derive

the Bayes estimators, posterior mean and mode, for each of these PCIs. We remark that in the Gamma(a; b)
prior with a �xed, the parameter b is estimated by the maximum-likelihood method in the empirical Bayes
approach. It is found that these Bayes estimators either are the traditional estimators themselves or just di�er
from the traditional estimators by a constant multiplier that converges to 1 as the sample size goes to in�nity.
In addition, Bayesian credible interval estimate are obtained analytically. Based on these interval estimates, a
simple Bayesian procedure for determining if the process is capable is proposed for practitioners to use.
For the special cases that we consider in this paper, interval estimators can also be easily derived from

the frequentist approach. We do not intend to replace the frequentist approach on PCIs. We simply provide a
Bayesian alternative. However, when the distribution of the PCI estimators are very complicated, as they often
are for some favorable estimators, such as Cpm with no restriction on the process mean, then our approach
becomes very valuable in obtaining an interval estimate of the index. Results for this particular problem is
given in a subsequent paper.
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Appendix

In this appendix, we derive the MLE of b by maximizing (2) given in Section 3.2. Let f(b) = b−a(1=�+
1=b)−(�+a) = el(b), where l(b) =−a log b− (�+ a)log(1=� + 1=b). Then we have

dl(b)
db

=−a
b
+ (�+ a)

�
b2 + b�

=
−a(b− ��=a)
b2 + b�

:

Since a; b, and � are positive numbers, we have dl(b)=db¿ 0 if b¡��=a; dl(b)=db = 0 if b = ��=a; and
dl(b)=db¡ 0 if b¿��=a. Hence b̂= ��=a= Ĉ2p=a is the MLE for b.
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