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Abstract

The Common Object Request Broker Architecture (CORBA), is a major industrial standard for distributed object-based ap-

plications. Today's large-scale CORBA applications have to deal with object crashes, node failures, networks partitioning and

unpredictable communication delays. Existing e�orts to enhance the CORBA reliability can be roughly categorized into three

approaches: integration approach, interception approach and service approach. Each approach has its own merits and prices. In this

paper, we propose a service approach solution called Object Fault±tolerance Service (OFS). Solutions that adopt the service ap-

proach usually specify their service in terms of CORBA IDL interfaces. The implementations of such solutions in general do not

modify the ORB infrastructure or IDL language mappings, and thus applications developed with those systems appear to be more

portable. OFS di�ers from other service approach solutions in that OFS does not assume underlying support of reliable group

communication. Applications with advance registration can rely on OFS for detection of object and node crashes, and for cus-

tomized recovery. In this paper, we ®rst present the service speci®cation of OFS. We then give the system architecture of an OFS

implementation. This OFS implementation is developed on the Solaris 2.5 platform and with IONA's Orbix 2.0. The performance

evaluation of the OFS implementation is also presented. The preliminary experiments indicate that OFS overhead is minimal and

client objects experience little response delay when a service object is under OFS surveillance. Ó 1999 Elsevier Science Inc. All

rights reserved.
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1. Introduction

With the advance of computer and communication technology, distributed computing systems have become in-
creasingly popular in recent years for their better price-performance ratio. As the number of installation increases and
application domains expand, the complexity of the distributed software developed for these systems explodes as well.
Many of these distributed softwares are designed to handle critical tasks that involve the safety of human lives. This
trend has led to an urgent demand for highly reliable distributed softwares or techniques to develop them. Software
fault±tolerance is an approach for this purpose. Since heterogeneous distributed systems tend to be less reliable in
nature, software fault±tolerance for distributed softwares becomes an important design issue.

Fault±tolerance design for distributed systems requires comprehensive knowledge of all aspects of system engi-
neering, from detail hardware characteristics to complex software speci®cation. Fault±tolerant applications designed
and implemented from scratch are often complicated, proprietary and error-prone. Thus user-friendly fault±tolerance
tools are in great demand. Existing fault±tolerance tool-kits such as ANSA (APM, 1993), ISIS (Birman, 1993),
PSYNC (Peterson et al., 1989) and HORUS (Renesse et al., 1992) are now widely available. These products however
are all designed for process-based distributed applications where process is the basic entity subject to monitoring and
recovery.

Recently, object-oriented design (OOD) (Booch, 1991) has been widely applied to software design and development
since, it o�ers greater potential in portability and reusability. Several distributed object-oriented middlewares have
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been proposed lately, notably, Object Management Group's (OMG) CORBA (OMG, 1993), Microsoft's DCOM
(Brown and Kindel, 1996; Redmond, 1997) and JAVA RMI [http://www.javasoft.com]. Though these middlewares
greatly enhance the quality and reusability of the distributed object-based applications, they do not, however, o�er
adequate support for developing distributed ``fault±tolerant'' object-based applications. The issues of developing fault±
tolerant object-based applications di�er from that of process-based applications in several aspects. Firstly, a server
process often contains many objects. An object death (destroyed from the addressing space) does not necessarily lead
to a process crash. The detection mechanism for process crash is not su�cient to detect the object crash. Furthermore,
many object servers are implemented as multi-threaded servers, and each object is running runs in a separate thread.
Thus, the detection mechanism for process hang may not be able to detect an object hang (or a thread hang). As a
result, there is a need for object-based fault±tolerance support within these distributed middlewares.

In this paper, we propose a fault±tolerance service over CORBA ORB. Though the proposed service in this paper is
based on OMG's CORBA model, we believe similar service or concept can be ported to DCOM or JAVA RMI. In
Section 1.1, we brie¯y review the CORBA architecture. In Section 1.2, we compare the existing e�orts to enhance the
reliability of CORBA ORB or CORBA applications running on top of ORB. Section 1.3 gives the motivation and
claims the contributions of this research.

1.1. Introduction to CORBA

The CORBA reference model consists of four major components: object request broker (ORB), common object
service speci®cation (COSS), common facility architecture (CFA) and application objects. An object that implements a
service speci®cation and exposes its service to clients over the network is called object implementation for that service
speci®cation. We feel that the term ``object implementation'' is not self-explanatory and sometimes confusing. Instead
we use the term ``service object'' throughout the paper whenever we feel this term is a more intuitive than ``object
implementation''. A service object usually resides in an address space of a server process in most of the current
commercial ORBs. A server process may contain multiple service objects. ORB serves as a software interconnection
bus between clients and service objects. COSS de®nes several useful services in distributed systems, such as transaction
service, persistence service, etc. CFA speci®es a few facilities that are closer to the application level and are more
towards speci®c application domains, such as common task management tools and facilities for ®nancing and ac-
counting systems. CORBA speci®cation de®nes the interfaces and functionality of ORB via which clients may access
services from service objects and/or service provided by COSS and CFA.

In CORBA, the service o�ered by a service object is speci®ed in terms of the standard CORBA interface de®nition
language (IDL). The CORBA IDL compiler generates two software components with respect to each IDL speci®-
cation, namely, the client stub and implementation skeleton. A client needs to bind via ORB to a service object before it
can invoke operations on that service. ORB checks if a service object exists in the networks. If not, an instance of that
service object will be activated and an object handle (an instance of the client stub) is returned to the client. The client
with the object handle can make invocations on that service object and wait for the reply, all via ORB.

We notice that the client stub acts as a local proxy to the client object on behalf of a service object that provides the
actual service. This local proxy shields from the client object the complex operations, such as remote request prepa-
ration, parameters marshalling and unmarshalling and reply delivery. On the other hand, the implementation skeleton
acts as the local proxy of client objects that makes the requests where it handles the invocation dispatching and
marshalling and unmarshalling of the invocation parameters.

1.2. Related works

Numerous research e�orts in recent years have been devoted to enhance the fault±tolerance capability of CORBA
ORB and/or its applications. They have been categorized into three approaches: integration approach, interception
approach and service approach (Narasimhan et al., 1997).

The integration approach attempts to layer ORB on top of a reliable multicast communication subsystem. Examples
are Orbix+Isis (IONA and Isis, 1994) and Electra (Landis and Ma�eis, 1997). Orbix+Isis is the ®rst commercially
available system that supports the creation of fault±tolerant CORBA-compliant applications. The fault±tolerance of
an object implementation is gained through active replication with reliable multicast from the support of group
communication layer at lower level (Birman, 1993). Electra is another implementation of reliable ORB but di�ers from
Orbix+Isis mainly with respect to the ease of use and the adaptability of ORB to various communication subsystems.
Applications use the multicast ORB via the application program interface (API) as it would have normally used in
conventional ORB. This approach may require modi®cation of the ORB interface and language mapping. This may
lead to a less portable implementation of both server and client applications.
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The interception approach is used by the Eternal system (Narasimhan et al., 1997) to construct a reliable ORB
environment. The idea is to capture system calls made by the client object to a low level communication system such as
TCP/IP and map these system calls to the reliable multicast subsystem (Moser et al., 1996). Eternal di�ers from
Orbix+Isis or Electra in that Eternal does not modify ORB or language mapping. Thus, it ensures the transparency of
fault±tolerance from applications. Another example of the interception approach is the Phoinix system (Liang et al.,
1998). Object implementations in Phoinix obtain fault±tolerance by inheriting fault±tolerance interface speci®ed by
Phoinix at the IDL level. A proprietary IDL compiler (called Extended IDL) parses object's IDL interface and
generates object stubs and skeletons with extended fault±tolerance functionality. The Phoinix stub intercepts and
analyzes exceptions raised from ORB and performs object rebinds. The Phoinix skeleton, on the other hand, records
invocation logs and data checkpointing. The advantages of the Phoinix approach are that it ensures transparency from
both client and server implementations, and at the same time it does not require modi®cation to ORB. The drawback
though is that it introduces a proprietary IDL compiler, and this might reduce the portability of the Phoinix system.

The service approach de®nes a set of objects and their interfaces to provide fault±tolerance. As an example, GCS

(Felber et al., 1996) provides a group communication service with which client's requests and server's replies are
coordinated. GCS de®nes a set of IDL interfaces so that replications of server implementations can form a group with
a single group identi®er (object reference of the group). A client thus can make invocations and retrieve replies with
this single identi®er. Group communication is adopted as the communication basis in GCS to achieve fault±tolerance
regardless of the nature of fault±tolerance strategy. This implicitly contributes to the non-transparency issue on the
client's side and reduces the ¯exibility at the server's side. Another work that uses the service approach is FTS-ORB
(Sheu et al., 1997). In this work, the authors use a checkpoint and message logging approach to provide fault±tolerance
to an application. However, the responsibility of failure detection lies with the client and the responsibility of handling
its replicas lies with the application itself.

1.3. Objectives and contributions

Software fault±tolerance often requires some degree of redundancy in both time and space domain. Deploying
multiple copies of the same application as backups is a common approach. Backup schemes can be categorized in three
classes; cold, warm and hot backups (Chen and Bastani, 1992). A cold backup is usually not running in the systems
until its primary application fails. In the warm backup scheme, several backups are running as the primary application
is running, but only the primary application responds to client's requests. The primary may checkpoint its states to
warm backups from time to time. One of the warm backups is promoted to primary if the primary application is found
crashed. In the hot backup scheme, all copies of application respond to the client's requests in some type of synchrony.
This scheme maintains the highest level of reliability and availability, but also su�ers the most performance degra-
dation.

Most of the related research works described above focus on hot backup approach using group communication.
However, various research reports suggest that software implemented fault±tolerant systems in many application
domains use cold backup (fail-over) or warm backup approaches (Huang and Kintala, 1993). Furthermore, most of
the previous research works using integration or interception approach require changes in the ORB layer, in the IDL
language compiler, or in the communication layer in order to provide mechanisms for group communication and
membership management. As a result, their solutions may be di�cult to port to di�erent operating systems (such as
UNIX and Windows NT) and to di�erent ORBs (such as IONA Orbix or SUN NEO). In this paper, we propose a
fault±tolerance service called Object Fault±tolerance Service (OFS) that supports both cold and warm backup schemes.
The implementation of OFS does not require any modi®cations to ORB or IDL language mapping, nor does it assume
any underlining group communication support.

The rest of this paper is organized as follows. In Section 2, we present the interface speci®ed in OFS and their
functionality. Section 3 presents an implementation of OFS on the Solaris platform using IONA's Orbix. We also
discuss a few implementation issues. The performance evaluation of OFS implementation is discussed and presented in
Section 4. The concluding remarks are in Section 5.

2. The design of the fault±tolerance service interfaces

2.1. Overview of OFS

We believe a fault±tolerance object service over CORBA platform shall provide a few features that include failure
detection, replica management, recovery handling and consistency management of object states. A primary object or
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other manager object may register a list of backup objects to OFS with desired fault±tolerance degree. It is the re-
sponsibility of OFS to monitor the liveliness of all active objects, primary or backup, and to maintain enough number
of replicas in the networks. The OFS also needs to coordinate the recovery process whenever an object failure is
detected. Furthermore, a primary object shall be able to checkpoint its critical internal states to its backups via OFS.
OFS shall o�er mechanisms with which a primary object can select appropriate checkpointing policy most suitable to
that application. These services are realized through three major interfaces in our OFS: ReplicaManager, Primary and
Secondary.

ReplicaManager exposes major services o�ered by OFS. The ReplicaManager object accepts registration of primary
and secondary objects, it selects and activates enough number of replicas as required, and it coordinates the recovery
process should an object crash be detected. In addition to ReplicaManager, OFS de®nes two callback interfaces, one
for primary objects and one for secondary objects. Objects that support the primary interface allow other backups to
access its critical states and message logs whereas objects that support secondary interface allow ReplicaManager to
activate them as backups or to promote them as primary. The detailed de®nition of these interfaces will be covered in
the next section.

The interfaces and various objects involved in OFS are shown in Fig. 1. The dark circles represent the objects,
including the application objects, application manager, etc. An arrow with a vertical bar is used to show that the target
object supports the interface named next to the arrow; and those clients holding an object reference of this type can
invoke the operations de®ned by the interface. The dashed lines de®ne the machine boundaries. We are now ready to
describe the three IDL interfaces of OFS.

2.2. Interfaces

In this section, we shall describe the three interfaces de®ned in OFS. The interface ReplicaManager de®nes the view
toward OFS. A primary object may register itself and a list of backups to ReplicaManager via register_secondary().
This operation takes two input parameters and one output parameter. The input parameter ObjList speci®es a list of
object references of backup objects whereas degree expresses the desired level of reliability. For example, object O1 is
the primary object and O2, O3 & O4 are its backups. The ReplicaManager probably would activate O2 and O3 if O1

invokes ReplicaManager::register_secondary({O2, O3, O4}, 2, key). The only output parameter group_key is used as an
index for primary or backup objects to perform group membership-related operations. ReplicaManager de®nes ®ve
such operations: insert_secondary(), delete_secondary(), get_secondary(), get_active_secondary() and get_primary().
The ®rst two methods can be used to update the backup list. The method get_active_secondary() may be invoked when
a primary wishes to checkpoint its states or logs to its active backups. (Note that active backups may vary over time
due to crashes.) Finally, the method get_primary() can be used to get the current object reference of primary when a
backup needs to get the current object state when it is activated as warm backup. The de®nitions of these methods are
listed below.

// IDL
interface ReplicaManager {

Boolean register_secondary(in ObjList secondary_list, in degree, out unsigned short group_key);
Boolean insert_secondary(in unsigned short group_key, in Object secondary);

Fig. 1. Structure of OFS.
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Boolean delete_secondary(in unsigned short group_key, in Object secondary);
Boolean get_secondary(in unsigned short group_key, out ObjList secondary_list);
Boolean get_active_secondary(in unsigned short group_key, out ObjList secondary_list);
Object get_primary(in unsigned integer group_key);

}
Interface Primary provides the methods to access the internal states and logs of the primary object. A secondary

object may get its primary object interface through ReplicaManager and synchronize with the primary when it is
activated. Two methods are de®ned: get_state() and get_log() where the method names suggest their functionality.
Notice that the input parameters are all String types, which implies that semantics of these data are application de-
pendent.

//IDL interface Primary
interface Primary{

Boolean get_state(out String objectstate);
Boolean get_log(out String message_log);

}
Interface Secondary provides the view of a secondary object. Upon the registration of the primary object, RM

can form a replica group by selecting enough secondary objects. OFS then activates these secondary objects via
invoking Secondary::start() and passes the group_key for further reference of the group. (See the de®nition shown
in the box below). OFS can activate any of the secondary objects from the list using the same procedure if it
detects a crash of an active secondary object. Furthermore, RM can promote an active secondary to primary by
invoking Secondary::turn_primary() if it detects that the primary is crashed. To maintain a consistent view, the
primary may checkpoint its states or save its current message logs to secondary backups via methods set_state()
and set_log().

interface Secondary{
Boolean start(in unsigned short key);
Boolean turn_primary();
Boolean set_log(in String messageLog);
Boolean set_state(in String state);

}

2.3. The interaction of interfaces

We now describe the interaction among all components in our system in this section. We ®rst describe the normal
execution ¯ow without failures. Then we go on to discuss how the protocol reacts to keep the execution going when
failures occur.

2.3.1. Object registration
A primary that requests fault±tolerance support from OFS requires pre-registration via interface ReplicaManager.

A primary can register with a list of secondary objects (using their object references) and the degree of fault±tolerance.
OFS then activates enough number of secondary objects to form a secondary replica group and to continue monitoring
these active objects afterwards. The implementation of the object monitoring in Orbix will be covered in the next
section.

Fig. 2 illustrates interactions among objects when a primary registers to OFS. Each vertical line represents the
activities of an object, whose type is given on top of each vertical line. Time ¯ows from top to the bottom. A box
indicates an operation active inside that object. A horizontal line with arrow indicates object invocation whereas
dashed arrows represent service speci®c operation such as object creation or message delivery.

Suppose a primary object O1 registers its secondary objects O2, O3 and O4 to OFS and requests a degree 1 fault±
tolerance. Upon receiving such invocation, OFS activates O2 as an active backup by invoking O2::start(key). The
secondary backup O2 can synchronize its state with the primary via method call O1::get_state(). OFS shall keep
monitoring O1 and O2 in order to detect possible object crashes. The failure recovery process coordinated by OFS will
be discussed later. During idle periods, O1 may wish to checkpoint its states or logs to its active backups. O1 ®rst gets
the object references of its active backups from OFS via method call ReplicaManager::get_active_secondary(); in our
example, the only active backup of O1 is O2. Then O1 completes the checkpoint by invoking O2::set_state() or
O2::set_log().
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2.3.2. The failure recovery
As discussed earlier, one of OFS responsibilities is to detect object failures. Fig. 3 illustrates object interactions

involving failure recovery of the primary object. Upon the detection of primary failure, OFS examines the corre-
sponding replica group and ®nds out that O2 is the only active backup. OFS thus promotes O2 from secondary to
primary by a method invocation O2::turn_primary(). Furthermore, OFS searches the remaining inactive backup, i.e.,
O3 and O4 and randomly picks O4 to activate as a new secondary, as shown in Fig. 3 . Object O4 then synchronizes its
state with the current primary O2, and the system continues. The crash recovery of a secondary backup is similar.

2.4. Programming example

In this section, we demonstrate the code development of an account server that incorporates with OFS to enhance
its reliability. The Account server supports the interface ``account'' whose IDL de®nition is given below. This interface
declares two methods, makeLodgement() and makeWithdrawal(). Client may save funds into this account or retrieve
funds via method calls ::MakeLogement() and::MakeWithdrawal().

Fig. 3. The crash recovery of the primary object.

Fig. 2. Object activities during service registration.
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interface account {
void makeLodgement(in ¯oat f);
void makeWithdrawal(in ¯oat f);

}
Suppose an object wishes to implement the account interface and also obtains service from OFS, this object needs to

follow a three-step procedure. First, let interface account inherit two callback interfaces de®ned in OFS, primary and
secondary. This inheritance allows OFS to activate an account object either as a primary object or backup object. The
IDL de®nition of account now becomes:

/**account.idl*/
include ``OFS.idl''
interface account: OFS::Primary, OFS::Secondary{

void makeLodgement(in ¯oat f);
void makeWithdrawal(in ¯oat f);

}
The object implementation then needs to implement not only the methods de®ned in interface account but also those

methods in Primary and Secondary. They are get_state(), get_log() (Primary); start(), turn_primary(), set_state(),
set_log() (Secondary). The sample code of implementation is shown in Appendix A. The ®nal step is to register to OFS
when the account object is started. The registration can be done by the application itself or other managing AP. A code
excerpt from a sample program of account server is shown in Fig. 4. In this example, the AP constructs an account
object O1 and obtains the object reference of two account objects O2 and O3 (possibly remote objects). The AP then
binds to the RM and registers O1 as the primary object and O2, O3 are secondary backups with fault±tolerance degree
1. After the registration, RM may activate either O2 or O3 as the running backup (to satisfy the requirement of fault±
tolerance degree). Furthermore, both O1 and the running backup are under protection against failures.

Fig. 5 illustrates the development of the account server that incorporates with OFS. We notice that a client program
invokes a fault±tolerant account object the same way as it would invoke an ordinary account object. The client is not
aware of the fact that object O1 is fault±tolerant.

3. OFS implementation

We implemented an OFS prototype using IONA's Orbix 2.0 (IONA, 1994) and on Solaris platforms. We assume
that object crashes or host crashes behave in a fail-stop manner; i.e., a failed entity completely halts in such a way that
OFS can detect that this failure has occurred. This is a common assumption adopted in many fault±tolerant systems
(Schlichting and Schneider, 1983). We also assume that the Orbix ORB is reliable in the sense that all invocation
deliveries via ORB are reliable. In this section, we present the system architecture of this OFS prototype, and later
discuss some implementation experience we have gained.

3.1. The system architecture

OFS is designed to protect objects against failures such as object crashes or host crashes. The robustness of OFS
implementation itself also needs to be considered in our design. The system architecture is shown in Fig. 6. OFS

Fig. 4. The sample code of a server.
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implementation consists of two objects: RM and Guardian Angel (GA). RM exports the interface ReplicaManager and
accepts registration from application objects that requires fault±tolerance support. RM also manages each replica
group to ensure a large enough number so that enough number of replicas are up and running in the networks. GA is

Fig. 6. The system architecture of OFS implementation.

Fig. 5. The application development environment.
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an internal object and is invisible from external clients. The major functionality of GA includes monitoring active
objects, activating backup upon request from RM and monitoring host crashes. As shown in Fig. 6, our implemen-
tation installs an OFS on each host. GA in each OFS is actively polling all objects running locally. There are only two
active RM in the networks and each is a hot backup of the other. To detect host failures, GA periodically sends
heartbeats, on behalf of the host in which it resides, to the primary RM. The host is declared dead if a few heartbeats
from the GA to that RM are missing.

3.2. Failure recovery

In the next section, we discuss how OFS handles three types of failures: object crash, host crash and the crash of
RM. We use the same example presented in the previous section to illustrate the interaction between RM and GA.
When object O1 registers to RM, RM informs GA in Host 1 to monitor O1 and decides to activate O3 as the warm
backup. GA in Host 3 now is monitoring O3. This scenario is shown in Fig. 6.

3.2.1. Failure recovery of an object
Our OFS implementation takes advantage of an Orbix proprietary API Orbix._non_existent() to detect whether a

CORBA object is operational. In Orbix implementation, the basic object adapter (BOA) of an object registers its live
object reference to Orbix ORB when this object is ®rst instantiated. Thus Orbix ORB can detect whether an object
reference in the networks is still valid when the method ::_non_existent() is invoked. As shown in Fig. 7, GA3 informs
RM1 as soon as it detects the crash of O3 (Steps 1 and 2). RM1 then checks its internal repository and ®nds that O3 is a
warm backup of O1. It thus selects O2 to activate as a new backup via GA2. GA2 activates O2 via calling O2->start()
so that O2 can perform its initialization as a backup. Finally, RM1 updates its internal repository synchronously with
RM2. We notice that Steps (3)±(5) have to be atomic.

3.2.2. Failure recovery of a host
One of the functionality of GA is to send its heartbeats to RM on a periodical basis so that host crashes can be

identi®ed. GA is implemented with self-recovery capability using the techniques proposed in Huang and Kintala
(1993). It is assumed that GA is robust. Therefore, missing heartbeats from a GA over a period of time are considered
to show that the host on which that GA resides has crashed. As shown in Fig. 8, RM1 declares that Host 3 has been
down if GA3 has been failing to send heartbeats to it. RM1 then needs to ®gure out all running objects on Host 3 by
checking its internal repository. In our example, O3 is the only active object on Host 3. RM1 further ®nds that O3 is a
warm backup of O1 and thus selects O2 to activate as a new backup via GA2. GA2 activates O2 via calling O2->start()
so that O2 can perform its initialization as a backup. Finally, RM1 updates its internal repository synchronously with
RM2. We notice that Steps (2)±(4) have to be atomic.

Fig. 7. The recovery of an object failure.
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3.2.3. Failure recovery of RM
RM receives heartbeats from GAs at each host to detect host failures. This design leads RM as a single point of

failure. Therefore, the design of RM itself must be fault±resilient. RM is implemented with self-recoverable codes,
using the techniques proposed in (Huang and Kintala, 1993) as discussed earlier, so that it can bypass software failures.
It, however, does not prevent RM failure from host crash. We solve this problem by replicating a hot backup of RM
on another host. This is done as illustrated in Fig. 9. GA1 sends heartbeats to RM2 so that RM1 crashes (as do all
other active objects on Host 1) can be detected by RM2. If it does happen, RM2 becomes the new RM and it starts the
recovery process as shown by steps (2)±(5) in Fig. 9. RM2 ®rst informs all GAs the fact that it is the new RM so that
GAs redirect their heartbeats thereafter. RM2 then selects its hot backup. In this example, RM3 is activated. GA2 now
sends heartbeats to RM3 so that RM2 will not be the single point of failure. Finally, RM2 start recovering all active
objects running on Host1 using the same recovery procedure of host crash as discussed above. Note that Steps (3)±(5)
have to be atomic.

3.3. Other implementation issues

As discussed earlier, an object is required to register itself and the object references of its backup to OFS if it wishes
reliability support. Backup objects may be instantiated or inactive at the registration time. Therefore object references
have to be persistent, i.e., a client can connect to an object with its persistent object reference regardless of its in-

Fig. 8. The recovery of a host crash.

Fig. 9. The recovery of RM.
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stantiation or existence in the networks. (Note that object reference of CORBA IOR or DCOM object reference is not
persistent.) Orbix ORB supports persistent object reference with two ORB API; CORBA::ORB::object_to_string()
and CORBA::ORB::string_to_object(). The ®rst API is to convert a live object reference to an Orbix proprietary string
representation whereas the second API does the opposite. OFS accepts string typed object references when an object
does the registration so that GA may activate or instantiate a backup object whenever necessary.

All the objects that register to OFS are under supervision and protection, however, their object references are not
fault±tolerant. Consider a client object holds an object reference of a reliable server object which later crashes; this
object reference becomes invalid even if this server object is recovered and is replaced by its backup. Exceptions will be
raised if the client object attempts to make invocations using that object reference. In the current OFS implementation,
automatic fail-over of object references at the client side is not supported. One possible approach to circumvent this
de®ciency is to install proper exception handling routines in the client program.

Fig. 10 demonstrates this approach using a sample client program implemented in Orbix environment. The client
application invokes an object that supports the account interface. As shown by the code segment in bold face, the client
always requests ORB to discover another valid object reference if it discovers the current object reference of the ac-
count object is no longer valid. An operational account object shall soon become available after the primary object
crashes if this account object is protected by OFS. We believe it is a good practice to check all possible exceptions after
each remote object invocation.

4. Performance evaluation

In this section, we evaluate the system performance of our OFS implementation. The OFS is implemented on Solaris
2.5 and IONA Orbix 2.0. The performance experiments are done using Sparc connected with 10M Ethernet. One copy
of OFS is installed in each node in the networks. Objects that implement and export account interface are used as server
objects in all our experiments. The IDL de®nition of the interface account is given in Section 2.4. The scenario of all
experiments is the same. We let an account object to register itself and all backups, one at each node, to OFS with
fault±tolerance degree of one, i.e., there exists one primary and one warm backup at any point of time. A client object
then binds to the primary account object and makes invocations repeatedly.

Fig. 10. The sample client code that deploys exception handling routines.
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We measure the performance of OFS in four di�erent categories; the response time to detecting a failure (object
crashes or host crashes), system load overhead due to OFS daemons, response time delay of client invocations and
checkpointing overhead (from primary object to its backups). Each experiment is repeatedly performed numerous times
to collect a large enough set of experimental results so that a measure with con®dence level of 95% can be obtained
using statistics methods. The reason that we apply the statistics method is to enhance the validity of our measured data.
It is usually the case that we observe two di�erent measures when we perform the same experiment on the same system
twice. This is due to various measurement errors, such as clock resolution, etc. A typical approach to minimize these
measurement errors is to repeat the same experiment many times so as to collect a large set of results. We then apply a
standard statistics method to obtain a trustable measure, such as an average of that set, and to obtain the con®dence
level of such a measure. Note that all results reported in this section are obtained with 95% of con®dence interval with
interval half-widths of less than 3%.

Next, we present the experimental results and discuss the OFS system performance in the context of the four
categories. The response time for object failure detection is de®ned as the time span from the primary object crash to
the warm backup object resume the primary responsibility. In OFS design, GA detects the possible object crashes via
active polling. Therefore, the polling frequency primarily determines the failure detection time. We vary the polling
period from 20 s to 5 min in our experiments. The experiment results show that the failure detection time is roughly
half of the polling period, which agrees with the theoretical values.

Next we consider the system overhead to machine load. We recall from Section 3.1 that a GA object is activated at
each node with OFS deployment, and there exists an RM object and one hot backup in the networks. All GA send
heartbeats to RM on a periodical basis, regardless of the number of application objects (served by OFS). Furthermore,
GA actively polls all activated local objects (registered to OFS). These activities all contribute to extra computation
load. We therefore design an experiment that has one client object repeatedly making invocations to the account
object, and thus CPU utilization approaches near 100%. We then measure the CPU utilization of a node that has the
primary RM as well as 1000 active service objects running on it. The GA polling periods ranges from 20 s (a very
aggressive polling policy) to 5 min. As shown in Fig. 11, the experimental results show that the overhead due to OFS
daemons is no more than 3.3% with 20 seconds polling period when monitoring a very large group (1000) of objects.

Clients experience delay when making invocations to the primary account object if it is checkpointing its internal
states to its backups. The e�ciency of state checkpointing thus has a great impact on the response time delay of client
invocations. The experiment to measure the checkpointing e�ciency is done in two steps. The ®rst step is to record the
response time for a primary object to checkpoint its backup at the same host, whereas the second step is to checkpoint
its backup at a di�erent host. The ®rst step helps us understand the local overhead due to OFS implementation as well
as Orbix ORB. The second step identi®es the networking overhead. Notice that the purpose of these experiments is to
analyze the overhead solely due to the OFS implementation.

In both experiments, we let the primary account object periodically checkpoint data of size from 1 to 512 KB to its
backup when there is no pending invocation to this object. This is known as o�ine checkpointing policy. The
checkpoint periods range from every 10 s to every 10 min, which is a typical checkpoint frequency. The experimental
results are shown in Fig. 12. The results indicate that local checkpointing as well as remote checkpointing are both
quite e�cient. Considering checkpointing 128 KB data, for example, local checkpoints take roughly 17 millisecond
(ms). Recall that a null object invocation in Orbix takes roughly 1.3 ms. Checkpointing the same amount of data to a
remote object takes 126 ms over a lightly loaded Ethernet. This indicates that most of the time is network transfer time,
thus OFS implementation imposes very light overhead.

Fig. 11. The overhead of GA.
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We also perform another experiment where we measure the response time of client invocations with or without
OFS support. The experiments are set with CPU utilization from 5% to 50% and network utilization from 10% to
80%. The primary account object checkpoints 128 KB of data to its remote backup every 20 s in those cases with
OFS support. The response time of local invocations ranges from 1.32 to 1.35 ms depending on the server load,
whereas the response time of remote invocations ranges from 1.77 to 5.64 ms depending on the network tra�c. We
compare the response time from account object with or without OFS support and ®nd that the di�erence is less than
3%, almost negligible. We ®nd those factors that contribute to this outcome are low overhead of OFS daemons, the
checkpoint frequency, the o�ine checkpoint policy and the implementation of account objects. The time scale of the
checkpoint period is in minutes whereas the time scale of the checkpoint time is in milliseconds. This implies that
checkpointing over network generates light tra�c on an average. Moreover, the chance is very slim that an incoming
invocation will arrive during the checkpoint period of a server object, in particular when the server load is less than
50%. Furthermore, the objects providing account services and the object performing checkpoints are implemented as
di�erent threads with di�erent priorities in account server. The checkpoint thread is assigned with a lower priority to
avoid interference with service threads. We do witness cases where the client invocation experiences extended delay
in cases with or without OFS support when server load approaches 100% or the network is very congested for a
longer period of time, but these are unusual cases. More importantly, the congested network is not due to the
overhead of OFS in those cases.

Furthermore, we compare the response time of client invocations in OFS with other existing fault±tolerant ORB,
including Electra and Phoinix. We let the client object and the primary account object reside on the same host. For a
fair comparison, we also let the LogManager (LM), an important daemon object in Phoinix, run on the same host too.
The client invocations are all local invocations in all three systems. The feature of Electra is turned on to emulate the
warm backup scenario where each invocation from client is forwarded to all replicas but the invocation is completed as
soon as the ®rst reply receives at the client side. The response time is 1.35 ms in OFS, 2.78 ms in Phoinix and 1.55 ms in
Electra. We observe that the RequestHandler of the account object in Phoinix intercepts each client invocation and
checkpoints to LM before it forwards the invocation to the primary account object. Each client invocation in Phoinix
in fact incurs two CORBA invocations. This explains why the response time in Phoinix is twice more than that in OFS.
The response time in Electra is roughly 15% more than that in OFS. We believe the major overhead occurs at the
multicast group communication layer of Isis.

5. Conclusions

Existing e�orts to enhance the CORBA reliability can be roughly categorized into three approaches: integration
approach, interception approach and service approach. Each approach has its own merits and drawbacks. In this
paper, we propose the OFS that is speci®ed as a CORBA service. The implementation of OFS does not modify ORB
infrastructure or IDL language mappings, and thus applications developed with OFS appear to be more portable. OFS
di�ers from other service approach solutions in that OFS does not assume underlying support of a reliable group
communication. The system architecture of an OFS implementation is discussed in the paper. This OFS implemen-
tation is developed on the Solaris 2.5 platform and with IONA's Orbix 2.0.

Applications that wish to acquire fault±tolerance support from OFS are required to inherit and to implement two
OFS de®ned call-back interfaces. Applications with advance registration thus can rely on OFS for detection of object
and node crashes, and for customized recovery. OFS is also responsible for the replication management. The

Fig. 12. The checkpointing overhead.
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performance evaluation indicates that system overhead and client invocation delay due to OFS daemon is minimal.
The checkpointing overhead from primary to backup copies with OFS is also evaluated. The preliminary experiments
indicate that our OFS implementation is very e�cient.

The OFS is designed primarily for applications that desire cold or warm backup strategy. We are currently con-
sidering extending the OFS speci®cation to support the hot backup scheme. We also notice that CORBA, DCOM and
Java RMI have many features in common. These platforms are all based on the concept of remote procedure call
(RPC). The service that a server provides is described in the context of interface description language in all three
platforms, namely, CORBA IDL for CORBA, EIDL for DCOM, and Java language for Java RMI. We believe similar
service or concept of OFS can be ported to platforms such as DCOM or JAVA RMI using corresponding IDL
language since OFS is described in terms of CORBA IDL.

Appendix A. Sample implementation code of account interface

// accounti.h
#include ``account.hh''
class account_i: public virtual accountBOAImpl, public virtual primary, public virtual secondary {
public:

account_i(const char *name):
. . .
void makeLodgement(CORBA::Float f, CORBA::Environment &ITenv);
void makeWithdrawal(CORBA::Float f, CORBA::Environment &IT_env);
CORBA::Boolean get_state(char *& os, CORBA::Environment &IT_env);
CORBA::Boolean get_log(char *& ml, CORBA::Environment &IT_env);
CORBA::Boolean start(CORBA::Short k, CORBA::Environment &IT_env);
CORBA::Boolean turn_primary(CORBA::Environment &IT_env);
CORBA::Boolean set_log(char *& ml, CORBA::Environment &IT_env);
CORBA::Boolean set_state(char * is, CORBA::Environment &IT_env);
. . ..

}
/** account_i.cc - object implementation of account*/
#include ``account_i.h''
. . ..
void account_i::makeLodgement(CORBA::Float f, CORBA::Environment &IT_env){

try{
. . .;
}catch(const CORBA::SystemException &se){

}
void account_i::makeWithdrawal(CORBA::Float f, CORBA::Environment &IT_env){

try{
. . .

}catch(const CORBA::SystemException &se){
};
CORBA::Boolean account_i::get_state(char *& os, CORBA::Environment &IT_env){

. . ..
};
CORBA::Boolean account_i::getlog(char *& ml, CORBA::Environment &IT_env){

. . .
};
CORBA::Boolean account_I::start(CORBA::Short k, CORBA::Environment &IT_env){

. . ..
};
CORBA::Boolean account_I::turn_primary(CORBA::Environment &IT_env){

. . ..
};
CORBA::Boolean account_i::setlog(char *& ml, CORBA::Environment &IT_env){
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. . ..
};
CORBA::Boolean account_i::set_state(char * is, CORBA::Environment &IT_env){

. . ..
};
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