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which implies that quadratic stability of the unforced system of 
(1) because the last two terms in the inequality are positive- 
semi-definite. In order to establish the H, disturbance attenua- 
tion property, we assume x(0) = 0 and need to show that 

m 

J : =  E [  z T ( k ) z ( k )  - y2w’(k)w(k)J  < 0, 
k = O  

whenever w ( k )  $ 0. (25) 
The existence of the sum in (25) is guaranteed by the bounded- 
ness of w(k)  and the quadratic stability of the unforced system 
of (1). It is obvious that (25) holds if x ( k )  = 0 for all k 2 0. 
Therefore, we assume x ( k )  $ 0 in the sequel. 

Abbreviating A + AA(k) by A, and defining 

r = [P-’ + y 2 ~ ~ 3 ; l - l  > o (26) 
it is straightforward to show by using the matrix inversion lemma 
that (26) and (22) imply 

and 

U ( k )  := AiTA, - r + y-2AzrB,[Z - y-2BTTBf]-1 

B p B ,  < y 2 z  (27) 

. BTTA, + CTCl < 0. (28) 
Using x(0) = 0, we have 

N 
[ x T ( k  + i)rx(k + 1) - ~*(k)r~(k)] 

k = O  

= xT(N + l )Tx(N + 1) 2 0. 
Let 

J ( k )  := z T ( k ) z ( k )  

N 
J N : =  

k=  0 

Then, we have 
N 

J N =  J ( k )  - x T ( N  + 1)Tx(N + 1). 
k =  0 

Using (27) and (28), it can be verified that 

J ( k )  = x*(k)U(k)x(k) - y 2 V T ( k ) [ Z  - y - 2 B r T B , ] V ( k )  

where 

0 

~ ( k )  := w ( k )  - y-2[z - y - 2 ~ ; r ~ , 1 - 1 ~ f r ~ A x ( k ) .  

Since we assumed that x(k) f 0, we must have J ( k )  < 0 for 
some k 2 0. Hence, JN < 0 for sufficiently large N, which 
implies J < 0. v v v  
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Minimal Periodic Realizations of Transfer Matrices 

Ching-An Lin and Chwan-Wen King 

Abstmct-Periodic controllers designed based on the so-called lifting 
technique are usually represented by transfer matrices. Real-time opera- 
tions require that the controllers be implemented as periodic systems. 
We study the problem of realizing an Nn, X Nn, proper rational trans- 
fer matrix as an n,-input no-output N-periodic discrete-time system. We 
propose an algorithm to obtain periodic realizations which have a 
minimal number of states. The result can also he used to remove any 
redundant states that exist in a periodic system. 

I. INTRODUCTION 

It is reported in the literature that linear periodic controllers 
may be superior to the linear time-invariant ones for a large 
class of control problems [5], [2], [l], [3]. For discrete-time 
systems, Khargonekar, Poolla and Tannenbaum [5] proposed a 
framework for the design of linear periodic controllers for linear 
time-invariant plants. They show that to an n,-input n,-output 
linear N-periodic system there corresponds an Nn,-input Nno- 
output linear time-invariant system and conversely to an Nn,-in- 
put Nn,-output linear time-invariant system there corresponds 
an n,-input n,-output linear N-periodic system. It is asserted [5] 
that from an input-output point of view, this correspondence is 
isomorphic in that both algebraic and analytic properties of 
systems are preserved and hence, the design of periodic con- 
trollers can be done using various LTI design techniques. How- 
ever, the n,-input n,-output N-periodic controller so designed is 
“represented“ as an Nn,-input Nn,-output time-invariant sys- 
tem, e.g., an Nn, X Nn, transfer matrix. Real-time operations 
require that the controller be realized as a periodic system. 
There are straightforward realizations of such a transfer matrix 
as an N-periodic system but usually with a large number of 
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states, many of which are unnecessary and even undesirable. 
And it is not clear how to remove these extra states from the 
realization. In this note, we propose a method to obtain a 
minimal N-periodic realization of an Nn, X Nn, transfer ma- 
trix. 

Consider the n,-input no-output N-periodic linear causal dis- 
crete-time system described by 

x ( k  + 1) = A , X ( k )  + BkU(k) 
(1.1) i y ( k )  = C k x ( k )  + D k u ( k )  

where A ,  E R"'", B, E [ W n x n E ,  c, E RnoX" and D ,  E [ W n o x n i  
are N-periodic, i.e., = A , ,  Bk+N = B,, = ck and 
D k + N  = D ,  for all k.  To the system (l.l), we associate an 
Nn,-input Nn,-output linear time-invariant system 

X ( k  + 1) = m(k) + BU(k)  
(1.2) i Y ( k )  = ex@) + m ( k )  

where A-E (Wnx", B E (WnxNn,, E ( W N n o X n  and D E ( W N n o x N n t  

are given by 
- 

A z A N - i A N - 2  1.. A l A , ,  (1.3a) 

j j =  [ B o  B, ... 

/ I N - ,  ... A i , , B i ,  i O;.., N - 2 
(1.3b) BN-17 i = N - 1  with Bi = 

i < j  
i = j  (1.3d) 
i > j. 

with Ei, i  = ('i, 

C i A , - ,  ... A j + l B j ,  

The input-output relations of the systems (1.1) and (1.2) are 
related as follows. Assume that x(0)  = X(0)  = 0. Suppose 
(u(j)Y=, and (y(j)}T=,, are respectively, the input and output of 
the system (1.1). If the input to the system (1.2) is, for each k 

r 1 
U ( k )  = I l )  J 

u(Nk + N - 1) 

then the corresponding output, for each k ,  is given by 

system (1.1) is 
u(Nk + j )  = U , ( k ) ,  

[ 

[ y:::J 

for j = O;.., N - 1, k = 0, l;.., where U ( k )  = 

then the corresponding output is 
y ( N k  + j) = y ( k ) ,  

for j = O;.., N - 1, k = 0, l;.., where Y ( k )  = 

The transfer matrix of the system (1.2) is G ( z )  = c(zZ - &'B 
+ ij E Rp(Z)N",'N", , where R,(z) is the set of proper rational 
functions in z with real coefficients. We say that the system 
(l.l), or equivalently (A, ,  B,, C,, D,}, is an N-penodic realiza- 
tion of the transfer matrix G(z) .  It is claimed in [5] that if 
G ( z )  E R p ( ~ ) N n o X N n i  with G(m) n, x n,-block lower triangular, 
then there exists a causal N-periodic realization for G(z). 

The problem we study is the following: Given G ( z )  E 

R p ( ~ ) N n ~ x N n i  with G(m) no X a,-block lower triangular, what is 
the minimal number of states required for an N-periodic real- 
ization of G( z) and how to obtain a minimal N-periodic realiza- 
tion? 

11. MINIMAL PERIODIC REALIZATIONS 

Suppose G(z )  E R , ( z ) ~ " ~ ~ ~ ~  i s  g i z n  with G(m) n, X n,- 
block lower triangulaf and let ( A ,  B, C, D} be a minimalrea_liza- 
tion of G ( z )  with A E OXnx".  Consider (1.3) with (x, B, C, D}  
given. It is easy to see that if (A, ,  Bk ,Ck ,  D,} is a solution of 
(U), then (1.1) is a minimal N-periodic realization of G(z) .  On 
the other hand, if (1.3) has no solution, then there is no 
N-periodic realization of G ( z )  of dimension n, the McMillan 
degree of G(z) .  In other words, any N-periodic realization of 
G(z) must be of dimension larger than n. In this section, we give 
a procedure to obtain a minimal N-periodic realization of the 
transfer matrix G(z) .  We start by deriving a necessary and 
sufficient condition under which G( z )  has an N-periodic realiza- 
tion with its dimension equal to the McMillan degree of G(z) .  
The condition is then used to determine the minimal number of 
states that are required for an N-periodic realization of G(z). 

Now since G(m) is n, X n,-block lower triangular, D is also 
a, x n,-block lower triangular. From (1.31, we have 

B N - ]  = B N - , , C 0  = C,, and D ,  = D k k ,  

With (2.1), (1.3) reduces to 

- - 
for k = O;.., N - 1. (2.1) 

A N - l A N - 2  *.. A , A ,  = A  (2.2a) 

A N - l A N - 2  A , + l B ,  = B,,  for i  = O;..,N - 2 (2.2b) 

C I A , - ,  A , A ,  = c,, for i = l;.., N - 1 (2 .2~)  

C , A , - ,  ... AI+IBl = n,,], 
(2.2d) 

where A ,  E R"'", B, E R n X " ~  and C, E R"ox" are to be solved. 
Thus G ( z )  has an N-periodic realization of dimension n if and 
only if (2.2) has a solution. The following lemma is needed in the 
proof of the main result. 

- 
- 

for i = l;.., N - 1, j = O;..,i - 1 

Lemma 2.1 17, page 251: Consider matrix equations 
ux= i7 (2.3a) 

Conversely, suppose (U(k)E= and (Y(k)E= ,, are respectively, xv= v (2.3b) 
the input and output of the system (1.2). If the input to the E Rmlxn2, V E R"2x"2 and 7 E R"1'"2. where U E Rmlxn l ,  



464 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 3, MARCH 1993 

Equation (2.3) has a solution X E W X " 2  if and only if 

i) %(U) c 9 ( U )  and 9(vT)  c 9 ( V T ) ,  and (2.4a) 

ii) UF = W (2.4b) 
0 

The following theorem is a necessary and sufficient condition 
for G(z) to have an N-periodic realization of dimension n ,  the 
McMillan degree of G(z). 

Theorem 2.2: Equation (2.2) has a solution {Ak}:=-:, {Bk}:=-: 
and {Ck};=-: if and only if for i = O;.., N - 2 

where 9 ( A )  is the range space of A .  

p ( K i )  I (2.5) 

where p ( K i )  denotes the rank of K i  and 
- 
BO ... Bi 1 [ A  

1 

... - 
K ,  = 1 ' N - 1  D N - l , O  

Comments: i) Thus, to check if G(z) has N-periodic realiza- 
tion of dimension n,  we only have to check the N - 1 rank 
conditions in (2.5). ii) It is easy to check that condition (2.5) does 
not depend on any particular LTI minimal realiztion chosen for 
G(z). iii) Condition (2.5) is very strong when A is nonsingular. 
The following corollary follows from the theorem and simple 
elementary operations [4, page 6501. 

Corollary 2.3: If A is nonsingular, then (2.2) has a solution if 
and only if 

- - 1 -  

D,, = c , ( A )  B,, for all i = O;.., N - 1,  j = O;..,i - 1. 

(2.7) 

Proof of Theorem 2.2: (-) Let K ,  be as defined in (2.6). 
Suppose {Ak):=-:, (Bk}:=-t and (Ck}:=-: satisfy (2.2), then we 
must have for i = 0, l,..., N - 2 

AN- 1 . ' *  A,+ 1 

K ,  = p- '::;;::'+ 1 
. [ A ,  ... A ,  A ,  ... A1Bo ... A,B,-i  41. (2.8) 

Since A ,  E [w"'", it follows from (2.8) that p ( K , )  I n, for 
i = 0, l;.., N - 2. 
(0 Suppose (2.5) holds. For each i ,  there exist U, E 

and V,  E [ w n x ( n + ( l + l ) n , )  with p(U,) = p(V,) = ~ ( n  + ( N - I -  l ) n , ) x n  

p(K , )  such that 

K ,  = qV,. (2.9) 

Let us partition U, and V,  as 

where U,,o,v,o E R"'", U,,, E [w"ox" ,  j = l;.., N - i - 1 and 
V,,, E Rflxfl i , j = l,...,i + 1. From (2.61, we have, for i = 

O,..., N - 2, 
q o V , , o  =A, (2.11) 
- 

U,,N-lV,,o = C j ,  j = i + l , . . .  , N - 1, (2.12) 
- , i, (2.13) 1 = o;.. 

j = i + l;.., N - 1,l = O;..,i .  (2.14) 
U,,oV,,[+l = B, ,  

U , , N - j V , , l + l  = D,,[, 
For i = 0, l;.., N - 2, let 

v, = [ :o ] a n d K =  [v,, ... q, i ] .  (2.15) 

Note that e and F are obtained respectively by deleting the last 
no rows from Q and the last ni columns from V,. It follows from 
(2.11)--(2.15) that for i = l;.., N - 2 

Q,N-1 -2  

U,F = v , - l V , - l  

=: V.. (2.16) 
... 

Di+ 1 ,  i -  1 
... 

From (2.16) and (2.51, we have 

w; 
(2.18) ci Di,o ... Ki-1 

From (2.9) and that p(Q) = p(Ki) ,  we know that 

Let us partition U,-l as 

9(q) = 9 ( K i ) .  (2.19) 

(2.20) 

From (2.20), (2.18) and that ~ ( C J - ~ )  = 9 ( K i - l ) ,  we have 
9(v,-,) =9(Jy). (2.21) 

9(v,- l )  C 9 ( U , ) .  (2.22) 
From (2.19), (2.21), and (2.17), it follows that 

By similar arguments, it can be shown that 
9 ( V , T )  G 9 ( v ? l ) .  (2.23) 

From (2.16), (2.22), (2.23), and Lemma 2.1, there exist A i  such 
that, for i = l;.., N - 2 

Q A ,  = q- l  
= 

(2.24) 
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We now show that the Ai's, Bi's, and C,'s defined in (2.241, 
(2.27)-(2.29) satisfy (2.2). From (2.29), (2.25), and (2.261, we get 

= U. 1.0 v. 1 . 0  (2.30) 

where i can be any integer between 0 and N - 2. It follows 
from (2.11) and (2.30) that these (A,}::; satisfy (2.2a). 

The verification that the (A,}:?;, (B,}&;, and (Ck}r:ll so 
defined satisfy (2.2b), (2.2c), and (2.2d) is similar and straightfor- 
ward and hence is omitted. 0 

If condition (2.5) is not satisfied, that is, p( K i )  > n for some i, 
then any N-periodic realization of G ( z )  must be of dimension 
larger than n. To find the minimum number of states that are 
required for an N-periodic realization, we note that the system 

(2.31) 

where 0, is a A n  X An zero matrix, 0,, Os, and 0, are zero 
matrices with compatible dimFsiofi, has the same transter 
matrix G ( z )  as the system { A ,  B, C, 0) _and fhe- matrix K,, 
similarly defined through (2.6) with ( A ,  B, C, D} replacing {x B, E, E} ,  has the same rank as K i  does. Note that (2.31) 
amounts to adding An uncontrollable and u_nobsenra_ble hidden 
modes at z = 0 to the original realization ( A ,  E, C, D} of G(z ) .  

Suppose An is the smallest positive integer such that 

n + An 2 p(k,) = p ( K i ) ,  i = O;.., N - 2. 

Then any minimal N-periodic realization of G ( z )  must be of 
dimension equal to n + An. Since it is impossible to obtain an 
N-periodic realization of G ( z )  with dimension less than n, the 
McMillan degree of G(z) ,  we have that the dimension of the 
minimal N-periodic realization of G ( z )  is 

Based on Theorem 2.2 and the analysis above, we propose the 
following algorithm for obtaining a minimal N-periodic realiza- 
tion of a given transfer matrix G(z )  E Rp(~)Nn , ,XNn2 .  

Algorithm 2.4: 

Data: G ( z )  E R p ( ~ ) N n ~ X N n l  with G(m) no X n,-block lower 

Step I :  Find a minimal realization { A ,  B ,  C, D ]  of G(z) ,  

Step 2: For i = O;.., N - 2, form the matrix K,  as defined 

Step 3: Compute ii as defined in (2.32). 
Step 4: If E 5 n, then go to Step 5; else, 

_ - - -  triangular. 

where A E  RnX". 

in (2.6). 

and form the corresponding K ,  for i = O;.., N - 2. 
Step 5: Obtain B,- l,Co, and {D,}E,N_O' from (2.1). 
Step 6: For i = O;.., N - 2, decompose K ,  into U,, V,  with 

Step 7: Obtain A,- ,, A, ,  (B , }L i2 ,  and (Cl},'?;' defined in 

Step 8: For i = l;.., N - 2, form G - l  and 1.: as in (2.15) 
0 

p(U,) = p ( q )  = p ( K , )  as in (2.9). 

(2.27H2.29). 

and solve (2.24) for A , .  

We give an example to illustrate the proposed algorithm. 
Example: Let 

4 

z + l l  z + 2  

We wish to obtain a 3-periodic minimal realization for G(z) .  
Compute a minimal LTI realization as 

A=1 ,  8 = [ 3  4 11, c= 
By Step 2 and Step 3, form K ,  and K , .  By computations, 
p ( K , )  = 1 and p(K , )  = 2. Thus E = 2 > 1. By Step 4, let 

(2.33) 

l I . B y S t e p 6 ,  
- .  

decompose K O ,  K ,  as 

0 o 0 1 3 0  
K l = [ ;  4 0  0 0 11 

By Step 7, 

C, = [ 2  41, C , =  [ 3  11. 

By Step 8, obtain A ,  = . 

0 
The minimal 3-periodic realization is then given by {A,,  Bk, ck, 

Remarks: i) Formula (2.31) is not the only way to expand the 
dimension of such that Theorem 2.2 can still be used for 
realization, however, it is the most straightforward. In this fash- 
ion, the hidden modes introduced are both uncontrollable and 
unobservable. One can also add uncontrollable or unobservable 
hidden modes. ii) The result we obtained so far can also be used 
to determine whether a given periodic system contains redun- 
dant state:. More-pre_cisely, suppose we are given an N-periodic 
system (Ak,-Bk, CJ, p,}, we can use (1.3) to obtain the _corre- 
sponding (A, B,  C, D} and the transfer matrix C ( z )  = C(zZ - 
&'B + D. Following Algorithm 2.4, we can decide the minimal 
number of states required for the periodic system and obtain a 
new N-periodic realization which is minimal. Note that the new 
N-periodic realization has exactly the same input-output rela- 
tion as the original one. 

[' 
D k 1 i - o .  

111. CONCLUSION 

In this note, we develop a procedure to obtain a minimal 
N-periodic realization of a given transfer matrix G ( z )  E 
R,( Z)N",> X N n ,  . The result is useful in implementing periodic 
controllers designed by the so-called lifting technique; it can also 
be used to remove redundant states in a given periodic system. 
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Singular Perturbation of the Time-Optimal 
Soft-Constrained Cheap-Control Problem 

M. U. Bikdash, A. H. Nayfeh, and E. M. Cliff 

Absfruct-We consider the solution of a time-optimal soft-constrained 
control problem with linear dynamics. The cost function has no penalty 
on the integral of the state. The solution is formulated in terms of the 
controllability Grammian and is obtained as the solution of a system of 
linear algebraic equations and a nonlinear scalar algebraic equation. As 
the state approaches the origin, or equivalently, as the control becomes 
cheap, the optimal final time becomes small. This introduces a highly 
degenerate hierarchy of amplitude scales. A new approach, solely based 
on expanding the controllability Grammian, is developed to obtain an 
asymptotic solution of the problem without resorting to boundary-layer 
theory. 

I. INTRODUCTION 

We are concerned with the class of time-optimal soft-con- 
strained control problems that minimize the cost function 

1 

2 0  
J = tf + - / “ [ x T ( t ) Q x ( t )  + ~ ’ u ~ ( t ) R u ( t ) ]  dt (1) 

subject to 
X( t )  = Ax( t )  + bu( t )  (2) 

x ( 0 )  specified, and x ( t f )  = 0. (3) 

The conventional “cheap”-control problem [l] is obatined by 
letting E + 0 with the final time tf being held fixed, in which 
case the control action becomes increasingly cheap. In the case 
where tf + CO, the cheap-control linear quadratic regulator 
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(LQR) problem yields a high-gain linear state feedback control 
policy with many desirable properties, such as disturbance rejec- 
tion, insensitivity to parameter errors and distortions, improved 
tracking, and minimum steady-state error [2]. The case of finite 
final time is considered in [3] and [41. 

A typical solution of the cheap-control problem proceeds by 
transforming the problem into a singularly perturbed system [2], 
[5]. The analysis of such a system is well understood if it is 
written in the so-called standard form [6], [7]. The method of 
matched asymptotic expansions can then be used to determine 
an approximate solution consisting of an outer expansion and a 
boundary-layer correction (inner expansion) [6], [8], [9]. Impul- 
sive controls are needed to get onto and away from the singular 
arcs [lo], [ll]. If, an addition, the control is constrained by 
inequalities, then both bang-bang and singular arcs exist [3]. 

We consider the time-optimal soft-constrained control prob- 
lem. Moreover, we take Q = 0. This case is not included in the 
classification introduced in [4]. The solution of this case is 
derived [12] in terms of the controllability Grammian matrix [131. 
It consists of the solution of a system of linear algebraic equa- 
tions parametrized on the final time, coupled with a nonlinear 
scalar algebraic equation that yields the optimal final time. 
When the control becomes increasingly cheap, a very fast ma- 
neuver is expected, and the optimal final time becomes small 
even for large initial conditions. In this note, we obtain an 
asymptotically valid solution for the soft-constrained time-opti- 
mal cheap-control problem without resorting to the method of 
matched asymptotic expansions. 

11. PROBLEM FORMULATION 

The open-loop, soft-constrained, time-optimal control prob- 
lem is to find a measurable function u ( t )  that drives the state 
x(0) into the target point x ( t f )  = 0 while minimizing (1) with 
Q = 0. The solution was described in [12] in terms of the 
controllability Grammian matrix 

W(0,  tf) = / I r u ( ~ ) u T ( ~ )  d ~ ,  where u ( t )  = e - A f b .  (4) 

The costate is given by A ( t )  = .CATb, where p = A(0) is the 
initial costate and 

0 

W(0,  tf)P = 5 (5) 

where 5 = ~ ’ x ( 0 ) .  The control function can be written as u ( t )  = 

- ~ - ’ A ~ ( o ) u ( t ) .  For t = 0, we have u(0) = -xT(O)y(tf>,  where 
y ( t f )  = [W(O, tf)]-lb. Furthermore, the cost function is given by 
J = tf + (1/2)xT(0)A(0) or 

1 
J = tf + -E’XT(o)[W(o,tf)]-lX(0). 2 (6) 

The optimal final time has to satisfy the transversality condition 

2 = [ ~ ~ ( t ~ ) t x ( O ) ] ~ ,  where z ( t f )  = [W(O,tf)]-lu(tf). 

(7) 

We note that the mapping tf ++ W(0, tf) and tf - u ( t f )  de- 
pend only on the problem data (specifically A and b). Then, with 
fixed initial data do) ,  (7) is a scalar equation in tf. The roots of 
(7) specify all the candidates for the minimum tf. If many roots 
t!, tf2;.., exist, the corresponding costs can be computed via (6). 
Direct comparison of the costs can then be used to find the 
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