
Cleaning policies in mobile computers using ¯ash memory

M.-L. Chiang a, R.-C. Chang a,b,*

a Department of Computer and Information Science, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC
b Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC

Received 20 January 1998; received in revised form 9 May 1998; accepted 18 June 1998

Abstract

Flash memory is small, lightweight, shock-resistant, nonvolatile, and consumes little power. Flash memory therefore shows

promise for use in storage devices for consumer electronics, mobile computers and embedded systems. However, ¯ash memory

cannot be overwritten unless erased in advance. Erase operations are slow that usually decrease system performance, and consume

power. The number of erase cycles is also limited. For power conservation, better system performance, and longer ¯ash memory

lifetime, system support for erasure management is necessary. In this paper, we use the non-update-in-place scheme to implement a

¯ash memory server and propose a new cleaning policy to reduce the number of erase operations needed and to evenly wear out ¯ash

memory. The policy uses a ®ne-grained method to e�ectively cluster hot data and cold data in order to reduce cleaning overhead. A

wear-leveling algorithm is also proposed. Performance evaluations show that erase operations are signi®cantly reduced and ¯ash

memory is evenly worn. Though the proposed ®ne-grained separation scheme is targeted at ¯ash memory-based systems, it can be

applied to other storage systems as well. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Flash memory; Cleaning policy; Mobile computer; Consumer electronics; Embedded system

1. Introduction

Flash memory is nonvolatile that retains data even
after power is turned o� and consumes relatively little
power. It provides low latency and high throughput for
read accesses. Besides, ¯ash memory is small, light-
weight, and shock resistant. Because of these features,
¯ash memory is promising for use in storage devices for
consumer electronics, embedded systems, and mobile
computers, such as digital cameras, audio recorders, set-
top boxes, cellular phones, notebooks, handheld com-
puters, and personal digital assistants (PDAs) (Ballard,
1994; Halfhill, 1993).

However, ¯ash memory requires additional system
support for erasure management because of the hard-
ware characteristics (Baker et al., 1992; Caceres et al.,
1993; Dipert and Levy, 1993; Douglis et al., 1994; Intel,
1994, 1997; Kawaguchi et al., 1995; Wu and Zwaene-
poel, 1994) shown in Table 1. Flash memory is parti-
tioned into segments 1 de®ned by the hardware
manufacturers (e.g., 64 Kbytes or 128 Kbytes for Intel
Series 2+ Flash Memory Cards (Intel, 1994; Intel, 1997)

and 512 bytes for SanDisk ¯ash memory cards (San-
Disk, 1993)). Segments cannot be overwritten unless
erased in advance. The erase operations can only be
performed on full segments and are slow that usually
decrease system performance and consume power.
Power conservation is a critical issue for mobile com-
puters. Segments also have limited endurance (e.g.,
1,000,000 erase cycles for the Intel Series 2+ Flash
Memory Cards). Therefore, erase operations must be
avoided for power conservation, better system perfor-
mance, and longer ¯ash memory lifetimes. Besides, data
must be written evenly to all segments to avoid wearing
out speci®c segments to a�ect the usefulness of the entire
¯ash memory. This is called even wearing or wear-
leveling.

Since segments must be erased in advance before
updating, updating data in place is not e�cient. In ¯ash
memory that has large segments (Intel, 1994, 1997), all
data in the segment to be updated must ®rst be copied to
a system bu�er and then updated. After the segment has
been erased, all data must be written back from the
system bu�er to the segment. Fig. 1 shows the detailed
operations for in-place update. Therefore, if every up-
date is performed in place, then performance is poor
since updating even one byte requires one slow erase and
several write operations, and ¯ash memory blocks of hot

The Journal of Systems and Software 48 (1999) 213±231
www.elsevier.com/locate/jss

* Corresponding author. E-mail: rc@cc.nctu.edu.tw
1 We use ``segment'' to represent hardware-de®ned erase block and

``block'' to represent software-de®ned block.

0164-1212/99/$ - see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 9) 0 0 0 5 9 - X

spots would soon be worn out. However, storage sys-
tems cannot avoid data updating. Besides, some systems
or applications exhibit locality of accesses. For example,
the access behavior of a UNIX ®le system has such high
locality that 67±78% of the writes are to metadata and
most of the metadata updates are synchronous
(Ruemmler and Wilkes, 1993).

To avoid having to erase during every update, up-
dates are not performed in place in many systems
(Kawaguchi et al., 1995; Torelli, 1995; Wu and Zwae-
nepoel, 1994). Data are updated to empty spaces in
¯ash memory and obsolete data are left at the same
place as garbage, which a software cleaning process
later reclaims. The operations of cleaning process in-
volve three stages as shown in Fig. 2. The cleaning
process ®rst selects a victim segment and then identi®es
valid data that are not obsolete in the victim segment.
After valid data are migrated into another empty
spaces in ¯ash memory, the segment is erased and
available for rewriting. Updating data is e�cient when
cleaning can be performed in the background. Fig. 3

shows the detailed operations for non-in-place update
and cleaning process.

Cleaning policies determine when to clean, which
segments to clean, and where to write data. There are
several cleaning policies in disk-based storage systems
that use non-in-place update scheme (Blackwell et al.,
1995; Matthews et al., 1997; Rosenblum, 1992; Ro-
senblum and Ousterhout, 1992; Seltzer et al., 1993;
Wilkes et al., 1996). They always write data sequen-
tially as a log, or collect data and write several seg-
ments as a whole. However, ¯ash memory is free from
seek penalty and rotational latency, but has the
hardware characteristics of limited endurance, bulk
erase, and slow erase. Therefore, cleaning policies
dedicated to ¯ash memory were either newly proposed
(Wu and Zwaenepoel, 1994) or modi®ed from existing
policies (Kawaguchi et al., 1995). Their experimental
results showed that their policies were sensitive to data
access behaviors and able to reduce large number of
erasures.

In this paper, we propose a new cleaning policy, the
Cost Age Times (CAT), to reduce the number of erase
operations performed and to evenly wear ¯ash memory.
CAT di�ers from previous work in that CAT takes even
wearing into account and selects segments for cleaning
according to cleaning cost, ages of data in segments, and
the number of times the segment has been erased. CAT
also employs a ®ne-grained data clustering method to
reduce cleaning overhead.

Fig. 2. Three-stage operations of cleaning process.

Fig. 1. Operations for updating data in place.

Table 1

Flash memory characteristics

Read cycle time 150 � 250 ns

Write cycle time 6 � 9 ls/byte

Block write time 0.4 � 0.6 sec

Block erase time 0.6 � 0.8 sec

Erase block size 64 or 128 Kbytes

Erase cycles per block 100,000 � 1,000,000

214 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

A Flash Memory Server (FMS) with various cleaning
policies has been implemented to demonstrate the ad-
vantage of CAT policy. Experimental results show that
CAT policy signi®cantly reduced the number of erase
operations and the cleaning overheads, ensuring evenly
wear ¯ash memory. Under high locality of references,
CAT policy outperformed the greedy policy (Kawa-
guchi et al., 1995; Rosenblum, 1992; Rosenblum and
Ousterhout, 1992; Seltzer et al., 1993; Wu and Zwae-
nepoel, 1994) by 54.93%, and outperformed the cost-
bene®t policy (Kawaguchi et al., 1995) by 28.91% in
reducing the number of erase operations performed.
Trace-driven simulation was also performed to explore
in detail the impact of data access patterns, utilization,
¯ash memory size, segment size, segment selection al-
gorithms, and data redistribution methods on cleaning.
We ®nd that data redistribution methods have the most
signi®cant impact on cleaning and have more impact
than segment selection algorithms, which is less dis-
cussed in previous research. The proposed ®ne-grained
data clustering outperformed the other methods by a
large margin.

The rest of this paper is organized as follows. Sec-
tion 2 describes issues of ¯ash memory cleaning policies
and de®nes cleaning cost used to measure the e�ective-
ness of cleaning policies. Section 3 presents various
cleaning policies. Section 4 describes the implementa-
tion of FMS and we investigate the e�ectiveness of al-
ternate cleaning policies on it. Section 5 presents the
experimental results. Section 6 shows the simulation
that explores in detail the e�ect of data redistribution
methods and segment selection algorithms on cleaning.
Section 7 describes related work, and Section 8 con-
cludes this paper.

2. Issues of ¯ash memory cleaning policies

We describe issues of cleaning policies in detail in
Section 2.1 and describe the ¯ash memory cleaning cost
used to measure the e�ectiveness of cleaning policies in
Section 2.2.

2.1. Issues of cleaning policies

There are many policies that control the cleaning
operations:

When When is cleaning started and stopped?
Which Which segment is selected for cleaning? One

may select a segment with the largest amount
of garbage or select segments using informa-
tion about segment data, such as age, update
times, etc. This is referred to as segment se-
lection algorithm.

What What size a segment should use? Segment size
a�ects cleaning performance since the larger a
segment is, the more migration of live data in
the segment to be cleaned.

How many How many segments should be cleaned at
once? The more segments are cleaned at
once, the more the valid data can be re-
organized. However, cleaning several
segments at once needs a large bu�er to
accommodate all valid data. This also
delays availability of clean segments for a
long time. Blocks in cleaning segments
may be deleted or modi®ed soon after
cleaning; this results in useless migration.

How and where How should valid data in the cleaned
segment be written out? Where is the

Fig. 3. Non-in-place update and cleaning operations.

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 215

data written out? This is referred to
as data redistribution. There are var-
ious ways to reorganize valid data,
such as enhancing the locality of fu-
ture reads by grouping blocks of
similar age together into new seg-
ments or grouping related ®les to-
gether into the same segment, etc.

Where Where are data allocated in ¯ash memory?
This is referred to as data placement. One may
vary the allocation according to di�erent types
of data.
Therefore, we divide cleaning policies into
three problem areas: segment selection, data
redistribution, and data placement.

2.2. Cleaning cost

The goal of cleaning policy is to minimize cleaning
cost. The cleaning cost includes erasure cost and mi-
gration cost for migrating valid data to free spaces in
other segments according to the formula:

Cleaning CostFlash Memory � Number of Erase

� �Erase Cost �Migrate Costvalid data�:
The cost of each erasure is constant regardless of the
amount of valid data in the segment being cleaned, while
migration cost is determined by the amount of valid
data in the segment being cleaned. The larger the
amount of valid data is, the higher the migration cost.
However, the cost to erase a segment is much higher
than to write a whole segment. The erasure cost domi-
nates the migration cost in terms of operation time and
power consumption. Therefore, the cleaning cost is de-
termined by the number of erase operations. For better
performance, longer ¯ash memory lifetime, and power
conservation, the primary goal is to minimize the
number of erase operations. The second goal is to
minimize the number of blocks copied during cleaning.
This is di�erent from the goal of cleaning policies in
disk-based and RAM-based systems, which have no
extra erase operations at all.

3. Flash memory cleaning policies

The existing cleaning policies are introduced in Sec-
tion 3.1 and the proposed CAT policy is presented in
Section 3.2.

3.1. Existing cleaning policies

There are several segment selection algorithms. The
greedy policy always selects segments with the largest
amount of garbage for cleaning, hoping to reclaim as
much space as possible with the least cleaning work. The

cost-bene®t policy (Kawaguchi et al., 1995) chooses
to clean segments that maximize the formula:
age � �1ÿ u�=2u, where u is segment utilization and
(1 ÿ u) is the amount of free space reclaimed. The age is
the time since the most recent modi®cation (i.e., the last
block invalidation) and is used as an estimate of how
long the space is likely to stay free. The cost of cleaning
a segment is 2u (one u to read valid blocks and the other
u to write them back). In cost-bene®t policy for disk, the
cost is (1+u) as described in Rosenblum (1992), Rosen-
blum and Ousterhout (1992) and Seltzer et al. (1993).
Though greedy policy works well for uniform access, it
was shown to perform poorly for high localities of ref-
erence (Kawaguchi et al., 1995; Rosenblum, 1992; Ro-
senblum and Ousterhout, 1992; Seltzer et al., 1993; Wu
and Zwaenepoel, 1994). Cost-bene®t policy performs
well for high localities of reference; it does not perform
as well as greedy policy for uniform access (Rosenblum,
1992; Rosenblum and Ousterhout, 1992; Seltzer et al.,
1993).

There are several methods to redistribute valid data
in the cleaned segment. These methods assume hot data
are recently referenced data that have high possibility to
be accessed and then quickly become garbage. There-
fore, they all try to gather hot data together to form the
largest amount of garbage to reduce cleaning cost. The
age sort used in log-structured ®le system (LFS) (Ro-
senblum, 1992; Rosenblum and Ousterhout, 1992; Selt-
zer et al., 1993) sorts valid data blocks by age before
writing them out to enforce the gathering of hot data.
For the better e�ect, several segments are cleaned at a
time. The separate segment cleaning proposed in Flash
Based File System (Kawaguchi et al., 1995) uses sepa-
rate segments in cleaning: one for cleaning not-cold
segments and writing new data, the other for cleaning
cold segments. The cold segment is de®ned as the
cleaned segment in which utilization is less than the
average utilization of ®le system. The separate segment
cleaning was shown to perform better than when only
one segment is used in cleaning, since hot data are less
likely to mix with cold data.

3.2. The proposed CAT policy

The principle of CAT policy is to cluster data ac-
cording to data type. Since a ¯ash segment is relatively
large, data blocks in a segment can be classi®ed as three
types according to their stability as shown in Table 2:
read-only, cold, and hot. Read-only data once created
are never modi®ed. Cold data are modi®ed infrequently,

Table 2

Classi®cation of data according to their stability

Static Dynamic

Stable (slow-changing) Read-only Cold

Non-stable (fast-changing) X Hot

216 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

whereas hot data are modi®ed frequently. Upon clean-
ing, before a segment is reclaimed, all valid data in the
cleaned segment are migrated to empty spaces in ¯ash
memory. Those valid data may be read-only, hot, or
cold. There are three possible situations for the valid
data in the cleaned segment:
· Read-only data mix with writable data: If the cleaned

segment contains read-only data, all read-only data
are migrated to another new segment in ¯ash memo-
ry. If the new segment is selected for cleaning, then
those read-only data previously migrated will be mi-
grated again. This situation is illustrated in Fig. 4,
in which read-only data in the cleaned segments are
migrated again and again. If all read-only data are
gathered and allocated in segments especially for
read-only data, then segments gathered with all
read-only data will never be selected for cleaning.
The result is that no read-only data will be copied
during cleaning process.

· Cold data mix with hot data: If the cleaned segment
contains cold data and hot data, since cold data are
updated less frequently, cold data have high possibil-

ity to remain valid at the cleaning time and thus are
migrated during cleaning process. Fig. 5 illustrates
this situation. If hot data and cold data are gathered
separately so that segments are either full of all hot
data or all cold data, then segments containing all
hot data will soon come to contain the largest
amount of invalidated blocks because hot data are
updated frequently and soon become invalidated.
Cleaning these hot segments can minimize the migra-
tion cost since the least amount of valid data is copied
and the largest amount of garbage is reclaimed.

· Data have high locality of reference: If data in the
cleaned segment exhibit high locality of reference, it
is possible that these hot data are valid at the cleaning
time, while soon after being migrated to another emp-
ty ¯ash segment, these hot valid data are updated and
become garbage. This situation results in useless mi-
gration as illustrated in Fig. 6. If this segment is given
more time before being cleaned, more garbage can be
accumulated.
Based on the above discussion, the principle of CAT

policy is to cluster data according to their stability using

Fig. 4. Repeatedly migrating read-only data when they are mixed with dynamic data.

Fig. 5. Migrating cold data when they are mixed with hot data.

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 217

a ®ne-grained way, so that segments are full of all hot
data or all cold data. Especially, even wearing is con-
sidered. The basic schemes are as follows:
1. Read-only data and writable data are allocated in

separate segments. No read-only data are mixed with
permutable data.

2. Hot data are clustered separately from cold data.
When cleaning, cold valid data in the cleaned seg-
ments are migrated to segments dedicated for cold
data, while hot valid data are migrated to hot seg-
ments. Data newly written are treated as hot. The
hot degree of a block is de®ned as the number of times
the block has been updated and decreases as the
block's age grows. A block is de®ned as hot if its
hot degree exceeds the average hot degree. Otherwise,
the block is cold.

3. Evenly wearing out ¯ash memory. When a segment is
reaching its physical lifetime, we swap the segment
with maximum erase times and the segment with
minimum erase times to avoid wearing out speci®c
segments.

4. The cleaner chooses to clean segments that minimize
the formula:

Cleaning CostFlash Memory � 1

Age

�Number of Cleaning;

called the Cost Age Times (CAT) formula. The
cleaning cost is de®ned as the cleaning cost of every
useful write to ¯ash memory as u=�1ÿ u�, where u
(utilization) is the percentage of valid data in a seg-
ment. Every (1ÿu) write incurs the cleaning cost of
writing out u valid data. The cleaning cost is similar
to Wu and Zwaenepoel's de®nition of ¯ash cleaning
cost (Wu and Zwaenepoel, 1994), however, they did
not consider erasure cost in evaluating alternate
cleaning policies. The age is de®ned as the elapsed
time since the segment was created. Here, age is
normalized by a heuristic transformation function as
shown in Fig. 7, aiming to avoid age being too large

to overemphasize age and a�ect segment choosing.
However, the e�ectiveness of a transformation func-
tion depends largely on workloads. The number of
cleaning is de®ned as the number of times a segment
has been erased.
The basic idea of CAT formula is to minimize

cleaning costs, but gives segments just cleaned more time
to accumulate garbage for reclamation to avoid useless
migration. In addition, to avoid concentrating cleaning
activities on a few segments, the segments erased the
fewest number of times are given more chances to be
selected for cleaning.

In comparison, greedy policy considers only cleaning
cost whereas cost-bene®t policy considers both cleaning
cost and age of the data. The CAT formula considers
cleaning cost, age of the data, and number of cleaning.

4. Flash memory server

We have implemented a Flash Memory Server (FMS)
for ¯ash memory (Chiang et al., 1997). The FMS serves
as the platform for us to build various cleaning policies
on it in order to evaluate the cleaning e�ectiveness. The
FMS manages ¯ash memory as ®xed-size blocks. The
data layout on ¯ash memory is shown in Fig. 8 in which
each segment has a segment header to describe segment

Fig. 6. Useless migration when hot data are updated soon after being migrated.

Fig. 7. Age transformation function.

218 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

information, such as the number of times a segment has
been erased, per-block information array, etc. The per-
block information describes information about every
block in the segment, such as the number of times the
block has been updated, ¯ags to indicate whether a
block is obsolete, etc. The segment summary header re-
cords information about ¯ash memory. A lookup table
as shown in Fig. 9 is maintained to record segment in-
formation that is used by the cleaner to speed up the
selection of segments for cleaning. When the number of
free segments is below a certain threshold, the cleaner
begins to reclaim spaces occupied by obsolete data. One
segment is cleaned at a time.

The FMS uses the non-in-place-update scheme to
manage data in ¯ash memory to avoid having to erase
during every update. Therefore, every data block is as-
sociated with a unique constant logical block number. As
data blocks are updated, their physical locations in ¯ash
memory change. So a translation table as shown in
Fig. 10 is maintained to record blocks' physical loca-
tions in order to speed up address translation from
logical block numbers to physical addresses in ¯ash
memory. Initially, the translation table and the lookup
table are constructed in main memory from segment
headers on ¯ash memory during the startup time of the
FMS.

Read-only data and writable data are allocated to
separate segments. During cleaning, hot valid blocks in
the cleaned segments are distributed to hot segments

while cold valid blocks are distributed to cold segments.
The FMS records segments that are currently used for
writing in index segment as a triple as (read-only, hot,
cold). The index segment is laid out as an appended log.

5. Experimental results and analysis

We have implemented our Flash Memory Server
(FMS) with various cleaning policies on Linux Slack-
ware96 in GNU C++. The FMS manages data in 4
Kbyte ®xed-sized blocks. We used a 24-MB Intel Series
2+ Flash Memory Card. All measurements were per-
formed both on Intel 486 and Pentium 133 to show that
slow erase is the primary bottleneck as CPU gets faster.
Table 3 summaries the experimental environment.
Three cleaning policies were measured: Greedy repre-
sents the greedy policy with no separation of hot and
cold blocks; Cost-bene®t represents the cost-bene®t
policy with separate segment cleaning for hot and cold
segments; and CAT represents the CAT policy with ®ne-
grained separation of hot and cold blocks. These policies
have di�erent segment selection algorithms and data
redistribution methods.

Since at low utilization cleaning overhead does not
signi®cantly a�ect performance (Kawaguchi et al.,
1995), in order to evaluate cleaning e�ectiveness, we
initialized the ¯ash memory by writing blocks sequen-
tially to ®ll it to 90% of ¯ash memory space. The created

Fig. 9. Lookup table to speed up cleaning.

Fig. 8. Data layout on ¯ash memory.

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 219

benchmarks then updated the initial data according to
the required access patterns, such as sequential, random,
and locality accesses. The workload for locality of ref-
erence was created based on the hot-and-cold workload
used in the evaluation of Sprite LFS cleaning policies
(Rosenblum, 1992; Rosenblum and Ousterhout, 1992).
A total of 192 Mbyte data were written to the ¯ash
memory in 4 Kbyte units. All measurements were run on
a freshly start of the system, averaging four runs.

We show that CAT policy signi®cantly reduced the
number of erase operations performed and blocks cop-
ied. So throughput was greatly improved as described in
Section 5.1. Flash memory was also more evenly worn.
As the locality of reference and ¯ash memory utilization
increased, CAT policy outperformed the other policies
by a large margin, as shown in Sections 5.2 and 5.3.

5.1. Performance of various cleaning policies

Table 4 shows the results. We noted the number of
erasures and the amount of blocks copied were slightly
di�erent between 486 and Pentium, due to the di�erent
processing speeds such that the age of data is di�erent.
The age of data a�ects segment selection for Cost-ben-
e®t policy and CAT policy. For sequential access, each
policy performed equally well and no blocks were cop-
ied, since sequential updates cause invalidation of each
block in the cleaned segment. For random access, Cost-
bene®t policy and CAT policy performed similarly and
slightly worse than Greedy policy.

For high locality of reference in which 90% of the
write accesses went to 10% of the initial data, CAT
policy incurred least number of erasures, 54.93% fewer
than Greedy policy and 28.91% fewer than Cost-bene®t
policy. CAT policy also incurred least number of blocks
copied, 64.59% less than Greedy policy and 38.28% less
than Cost-bene®t policy. Therefore, CAT policy had the
highest average throughput, 95.16% higher than Greedy
policy and 26.54% higher than Cost-bene®t policy.
Greedy performed worst since it does not distinguish hot
data from cold data, so data are possible to get mixed.
CAT policy outperformed Cost-bene®t policy because
CAT policy is more ®ne-grained in separating data:
CAT policy operates at block granularity whereas Cost-
bene®t policy operates at segment granularity.

To explore each policy's degree of wear-leveling, a
utility was created to read out the number of times each
segment has been erased from ¯ash memory. We then
used the standard deviation of these numbers as the
degree of uneven wearing. The smaller the standard
deviation, the more evenly the ¯ash memory was worn.
As shown in Table 4, CAT policy performed best since
only CAT policy considers even wearing when selecting
segments to clean: segments seldom erased are given
more chances to be selected.

Fig. 11 shows the breakdown of elapsed time. The
FMS spent much more time in cleaning when running
on Intel 486 than on Pentium 133. For example, for
sequential access, the FMS spent averaging only 13.34%
of time cleaning on Intel 486, while averaging 72.06% of

Fig. 10. Translation table and address translation.

Table 3

Experimental environment

Pentium 133 MHz Intel 486 DX33

Hardware PC card interface controller: Intel PCIC Vadem VG-468 Omega micro 82C365G

Flash memory: Intel Series 2+ 24Mbytes ¯ash memory card (segment size: 128 Kbytes)

RAM: 32 Mbytes

HD: Seagate ST31230N 1.0 G

Operating system Linux Slackware 96

Kernel version: 2.0.0, PCMCIA package version: 2.9.5

220 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

time on Pentium 133. The results show that the slow
erase is the primary bottleneck as CPU gets faster. So,
though ®ne-grained data clustering needs more CPU
processing time, CAT policy still signi®cantly increases
throughput because large amount of erase operations
and blocks copied are eliminated.

5.2. Impact of locality of reference

Throughout the paper, we used the notation for lo-
cality of reference as ``x/y'' that x% of all accesses go to
y% of the data while (1ÿx)% goes to the remaining
(1ÿy)% of data. Fig. 12 shows that CAT policy per-
formed best when locality was above 60/40. As the lo-
cality was increased, the performance of CAT policy
increased rapidly whereas Greedy policy deteriorated
severely. This is because CAT policy uses ®ne-grained
methods to separate data, such that cold data are less
likely to mix with hot data as compared with the other
policies. This e�ect is more prominent under higher lo-
cality of reference. When locality was 95/5, the number
of erase operations performed by CAT policy was

69.16% less than Greedy policy and 33.22% less than
Cost-bene®t policy. The reduction of the number of
blocks copied and the improvement of throughput were
much more promising. The throughput was 201.11%
higher than Greedy policy and 36.98% higher than Cost-
bene®t policy. Besides, CAT policy also performed best
in the wear-leveling for various localities.

5.3. Impact of ¯ash memory utilization

This experiment measured the impacts of ¯ash
memory utilization for various policies. In each mea-
surement, the ¯ash memory was initially ®lled with the
desired percentage of data. Fig. 13 shows that perfor-
mance decreased as utilization increased since less free
space was left and more cleaning had to be done in order
to come out enough free space. For sequential and
random accesses, all policies performed similarly.
However, for high locality of reference, Greedy policy
degraded dramatically as utilization increased while
CAT policy degraded much more gradually. CAT policy
performed best for various degrees of utilization.

Fig. 11. Breakdown of elapsed time. (a) Intel 486 DX 33; (b) Pentium 133.

Table 4

Performance of various cleaning policies

Number of erasures Number of blocks copied Average throughput

(bytes/s)

Degree of uneven wearing

Greedy Cost-

bene®t

CAT Greedy Cost-

bene®t

CAT Greedy Cost-

bene®t

CAT Greedy Cost-

bene®t

CAT

Intel 486

Sequential 1567 1568 1568 0 0 0 21 077 20 659 19 593 2.63 2.64 2.64

Random 7103 7252 7290 171 624 176 230 177 414 6419 4515 4275 4.03 3.38 3.01

Locality 8827 5596 3978 225 068 124 888 74 726 3340 4372 6671 11.85 8.3 5.38

Pentium 133

Sequential 1567 1568 1568 0 0 0 134 441 134 334 133 950 2.63 2.64 2.64

Random 7103 7265 7241 171 624 176 634 175 891 27 989 27 118 25 055 4.03 3.51 2.96

Locality 8827 5733 4138 225 068 129 142 79 705 22 680 34 980 44 263 11.85 9.20 5.97

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 221

6. Simulation studies

In order not to be restricted to speci®c ¯ash mem-
ory, simulation was performed to get more general

results. Furthermore, in order to examine cleaning is-
sues in a controlled way and to explore in detail the
impact of data access patterns, utilization, ¯ash mem-
ory size, segment size, segment selection algorithms,

Fig. 12. Varying localities of reference. (a) Number of erase operations performed; (b) Number of blocks copied; (c) Average throughput; (d) Degree

of uneven wearing.

Fig. 13. Varying ¯ash memory utilization. (a) Number of erase operations performed; (b) Number of blocks copied.

222 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

and data redistribution methods on cleaning, we used
trace-driven simulation to identify the most critical
factors. The simulator and workloads are introduced in
Section 6.1. Section 6.2 describes the validation of the
simulator. Section 6.3 presents the results.

6.1. Simulator and workloads

The simulator and workloads are described in Sec-
tions 6.1.1 and 6.1.2, respectively.

6.1.1. Simulator
The simulator completely simulates the FMS server

except that it stores data in a large memory array instead
of in ¯ash memory. The simulator is ¯exible to accept
the following parameters:

This simulator provides three segment selection al-
gorithms and six data redistribution methods, as
shown in Table 5. The total is 18 combinations. The
three segment selection algorithms are greedy (Kawa-
guchi et al., 1995; Rosenblum, 1992; Rosenblum and
Ousterhout, 1992; Seltzer et al., 1993; Wu and
Zwaenepoel, 1994), cost-bene®t (Kawaguchi et al.,
1995), and CAT. The data redistribution methods are
divided into two classes: one segment cleaning and
separate segment cleaning. The one segment cleaning

uses one segment for both data writing and cleaning.
The separate segment cleaning treats hot data and
cold data di�erently. During cleaning, hot valid data
in the cleaned segment are distributed into hot seg-
ments, while cold valid data are distributed into cold
segments. The following six data redistribution meth-
ods are examined:

Flash size Flash memory size.
Flash segment size The size of an erase unit.
Flash block size The block size that the server

maintains.
Flash utilization The amount of initial data

preallocated in ¯ash memory
at the start of simulation.

Segment selection
algorithm

Algorithms to select segments
for cleaning.

Data placement
method

A ¯ag to control whether
read-only data are allocated
separately from writable data.

Data redistribution
method

Parameters to control how data
in the segment to be cleaned are
distributed.

M1. One segment cleaning
with sequential writ-
ing

Valid data in the cleaned
segment are written to empty
¯ash space in the same order
as they appear in the cleaned
segment.
M2. One segment cleaning

with age sorting
Valid blocks in the cleaned
segment are sorted by their
age before being copied out to
empty ¯ash spaces. The age is
the elapsed time since the
block was last updated. The
youngest data are thought of
as the hottest. Age sorting is
used in LFS (Rosenblum,
1992; Rosenblum and Ousterh-
out, 1992; Seltzer et al., 1993).
M3. One segment cleaning

with times sorting
Valid blocks in the cleaned
segment are sorted by their
hot degree before being copied
out to empty ¯ash spaces. The
hot degree of a block is deter-
mined by the number of times
the block has been updated
but decreases as the block's
age grows.
M4. Separate segment

cleaning with seg-
ment-based separa-
tion for hot and cold
segments

Two segments are used in
which one is for cleaning cold
segments and one is for data
writing and cleaning not cold
segments. If the utilization of a
cleaned segment is less than
the average utilization, then the
valid data blocks in the cleaned
segment are de®ned as cold.
This method is used in
Kawaguchi et al. (1995).

Table 5

Various cleaning policies used in simulation

Data redistribution methods Segment selection algorithms

Greedy Cost-

bene®t

CAT

One segment cleaning Sequential

writing

M1

Age sorting M2

Times sorting M3

Separate segment

cleaning

Segment based M4

Block based M5

Fine-grained M6

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 223

For simplicity, this simulator assumed each request
could be ®nished before the arrival of next request.

6.1.2. Workload
The HP I/O traces (Ruemmler and Wilkes, 1993) and

generated workloads were used to drive the simulator.
The HP traces are disk-level traces of HP-UX work-
station collected by Ruemmler and Wilkes (Ruemmler
and Wilkes, 1993) at Hewlett±Packard. We used the
traces from personal workstation (hplajw), which was
used primarily for electronic mail and document editing.
Because the usage behavior of personal computers is
likely to be similar to mobile computers, hplajw traces
were often used in simulations of mobile computers
(Douglis et al., 1994; Li, 1994; Li et al., 1994; Marsh
et al., 1994).

However, the disks (334 Mbytes) used in hplajw are
much larger than ¯ash memory. Therefore, the traces
were preprocessed to map ¯ash memory spaces before
simulation. The original traces exhibit such high locality
of reference that 71.2% of writes were to metadata
(Ruemmler and Wilkes, 1993). Locality is possibly af-
fected by this mapping. Since currently ¯ash memory
capacity is still small, we do not expect ¯ash memory
contain swap space. So traces from swap space in hplajw
were not included, in which write references are totally
1331 Mbytes.

Because hplajw traces exhibit high locality of refer-
ence, we wanted to know whether CAT policy performs

well for other access patterns. A workload generator
generated the workloads for sequential, random, and
locality accesses. The workload for locality of reference
was created based on the hot-and-cold workload (Ro-
senblum, 1992; Rosenblum and Ousterhout, 1992). The
generated workloads cover two weeks' write activities, in
which a total of 192 Mbytes of data were written in 4-
Kbyte units. The interarrival rate of requests was Pois-
son distribution.

6.2. Simulator validation

To validate the simulator, we performed the same
experiments as in Section 5.1 both on the simulator and
on the FMS. The generated workloads were used. Ta-
ble 6 shows that all simulated performance data were
within only a few percentage of actual performance.
This suggests that our simulator is quite accurate in
examining the cleaning e�ectiveness.

6.3. Performance results

In Section 6.3.1, we show that data redistribution is
the most important factor a�ecting cleaning e�ectiveness
and the ®ne-grained separate segment cleaning per-
formed best in reducing the cleaning overhead. The
CAT policy had the best degree of even wearing. Much
impact, such as ¯ash memory utilization, ¯ash memory
size, ¯ash segment size, and locality of reference, was
examined in detail in the remaining sections.

6.3.1. Performance results for HP traces
The simulated ¯ash memory was a 24 Mbyte Flash

Memory Card with 128 Kbytes erase segments. The
server maintained data in 1 Kbyte blocks. We ®rst wrote
enough blocks in sequence to ®ll the ¯ash memory to
85% of ¯ash memory space, and then hplajw traces were
used in the simulation.

Fig. 14 shows that there were large performance gaps
between one segment cleaning class (M1, M2, and M3)
and separate segment cleaning class (M4, M5, and M6).
When one segment cleaning was used, there was no
much performance di�erence among segment selection
algorithms. However, when separate segment cleaning
was used, performance of each segment selection algo-
rithm was greatly improved: 60% � 65% of erase oper-
ations were reduced, 86% � 93.4% of blocks copied
were reduced, and ¯ash memory was more evenly worn.
M5 did not perform as well as M4 and M6. This result
suggests that it is not appropriate to use only the
number of update times to represent the hot degree of a
block. The age of data should be taken into account.
CAT policy performed best in the wear leveling.

We conclude that data redistribution methods have
more impact on the cleaning e�ectiveness than segment
selection algorithms. Separate segment cleaning can

M5. Separate segment
cleaning with block-
based separation for
hot and cold blocks

Two segments are used in
which one is for cleaning cold
blocks and one is for data
writing and cleaning hot
blocks. A block is de®ned as
hot if the number of times it
has been updated exceeds the
average.
M6. Separate segment

cleaning with ®ne-
grained separation for
hot and cold blocks

This method is similar to M5
but a block is de®ned as hot if
its hot degree is larger than the
average hot degree. The hot
degree of a block is determined
by the number of times the
block has been updated but
decreases as the block's age
grows.

224 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

largely reduce the number of erase operations performed
and the number of blocks copied. M6 is more e�ective
than M4 in separating hot and cold data. To achieve the
best performance, an e�ective data redistribution
method must be used with an e�ective segment selection
algorithm.

6.3.2. Impact of ¯ash memory utilization
To ®nd out how performance varied for varying

utilization, we wrote blocks in sequence to ®ll the ¯ash
memory to various levels of utilization before each run

of simulation, then hplajw traces were used. Fig. 15
shows that as utilization increased, the performance of
one segment cleaning decreased dramatically while
separate segment cleaning decreased gradually. The de-
crease is because less free space was left and more
cleaning work was needed. This di�erence is because hot
data and cold data were less likely to be mixed for M4
and M6. Greedy policy performed worst. For Cost-
bene®t policy, M6 outperformed M1 by 10.2% � 75.6%
and outperformed M4 by 0.2% � 8.9% in reducing the
number of erase operations. For CAT policy, M6

Table 6

Validation for simulated performance

Sequential Random Locality

Number of

erasures

Number of

copied blocks

Number of

erasures

Number of

copied blocks

Number of

erasures

Number of

copied blocks

Greedy actual 1567 0 7103 171624 8827 225068

simulated 1567 0 7075 17035 8834 225283

di�erence 0% 0% 0.39% 0.52% 0.08% 0.1%

Cost-bene®t actual 1568 0 7265 176634 5733 129142

simulated 1568 0 7237 175769 5666 127049

di�erence 0% 0% 0.39% 0.49% 1.17% 1.62%

CAT actual 1568 0 7241 175891 4138 79705

simulated 1568 0 7295 177562 3987 75005

di�erence 0% 0% 0.74% 0.94% 3.65% 5.9%

Fig. 14. Performance results for HP traces. (a) Number of erase operations performed; (b) Number of blocks copied; (c) Degree of uneven wearing.

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 225

outperformed M1 by 10.2% � 74.9% and outperformed
M4 by 0.2% � 7.7%. The results show that M6 is the
most e�ective data redistribution method for various
degrees of utilization.

6.3.3. Impact of ¯ash memory size
Though ¯ash memory capacity is still small, we in-

vestigated the impact of ¯ash memory size on cleaning.
Fig. 16 shows that as ¯ash memory size increased, each
policy performed better since much more free space was
left and less cleaning was needed. When separate seg-
ment cleaning was used, each policy performed well for
various sizes. M6 performed best while M1 depended
largely on ¯ash memory size no matter which segment

selection algorithm was used. Therefore, large ¯ash
memory size is required for policies to perform well
when one segment cleaning is used.

6.3.4. Impact of erase segment size
Though erase segment size is ®xed by hardware

manufacturers, we measured the impact of erase seg-
ment size. Fig. 17 shows that the number of erase op-
erations decreased at the same rate as the increase of
segment size. This decrease is because more space was
reclaimed at once as segment size become larger. CAT
policy performed best among all segment selection al-
gorithms. M6 performed best among all data redistri-
bution methods. However, more valid blocks in the

Fig. 16. Varying ¯ash memory size. The segment size was 128 Kbytes and block size was 1 Kbytes. The ¯ash memory utilization was set to 85%

initially and hplajw traces were used. (a) Number of erase operations performed; (b) Number of blocks copied.

Fig. 15. Varying ¯ash memory utilization. The ¯ash memory was 24 Mbytes with 128-Kbyte erase segments. Block size was 1 Kbytes and hplajw

traces were used. Because M1, M2, and M3 had the same performances when one segment was cleaned at a time, only M1 was displayed; (a) Number

of erase operations performed; (b) Number of blocks copied.

226 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

cleaned segment must be copied, as segment size became
larger. This e�ect is especially severe for M1.

6.3.5. Impact of locality of reference
We investigated the impact of locality of reference for

various data redistribution methods. Therefore, gener-
ated workloads for various degrees of localities were
used in this simulation. Fig. 18 shows that as the in-
crease of locality, performance gaps among data redis-
tribution methods widened. For each segment selection
algorithm, the performance of M1 decreased dramati-
cally, while the performance of M6 increased rapidly.
M6 signi®cantly outperformed M1 and M4. The result
shows that M6 is the most e�ective method to separate
hot data from cold data, such that cleaning overhead is
the lowest when locality is above 60/40. Among all, CAT
policy with M6 performed best.

7. Related work

Cleaning policies have long been discussed in log-
based disk storage systems (Blackwell et al., 1995;
deJonge et al., 1993; Matthews et al., 1997; Rosen-
blum, 1992; Rosenblum and Ousterhout, 1992; Seltzer
et al., 1993; Wilkes et al., 1996). Rosenblum (Rosen-
blum, 1992) suggested that the LFS (Rosenblum,
1992; Rosenblum and Ousterhout, 1992) can be ap-
plied to ¯ash memory, which writes data as appended
log instead of updating data in place. The greedy
policy was shown to perform poorly under high lo-
calities of reference, so the cost-bene®t policy was
proposed in LFS. However, writing several large seg-
ments as a whole to reduce seek time and rotational
latency is not necessary for ¯ash memory-based stor-
age systems. Besides, a large bu�er to accommodate

Fig. 18. Varying localities of reference. The ¯ash memory was 24 Mbytes with 128-Kbyte segments and the utilization was set to 90%. The workload

for locality of reference was used. (a) Number of erase operations performed; (b) Number of blocks copied.

Fig. 17. Varying ¯ash segment size. The ¯ash memory was 40 Mbytes and block size was 1 Kbytes. The utilization was set to 85% initially and hplajw

traces were used. (a) Number of erase operations performed; (b) Number of blocks copied.

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 227

data blocks from several segments may not be af-
fordable for a low-end resource-limited mobile
computer. Their age sort scheme used to separate hot
data from cold data has limited e�ect when only one
segment is cleaned at a time. Furthermore, even
wearing is not an issue in LFS.

In HP AutoRAID (Wilkes et al., 1996), a two-level
disk array structure, the hole plugging method is used in
garbage collection. In hole plugging, valid data in the
cleaned segment are overwritten to the other segments'
holes (invalidated space which obsolete data occupy).
Matthews et al. (Matthews et al., 1997) proposed an
adaptive cleaning to combine the hole plugging into
traditional LFS cleaning to adapt to changes in disk
utilization. However, the holes in ¯ash memory cannot
be overwritten unless erased ®rst.

Douglis et al. (Douglis et al., 1994) provides a de-
tailed discussion of storage alternatives for mobile
computers. They found that the erasure unit of ¯ash
memory could signi®cantly a�ect performance. They
also found that the ¯ash memory utilization has sub-
stantial impacts: at 95% utilization as compared to 40%
utilization, energy consumption is increased by
70%�190%, write response time is degraded by 30%,
and lifetime is decreased by up to a third.

Microsoft's Flash File System (Torelli, 1995), which
uses a linked-list structure and supports the DOS FAT
system, uses the greedy policy in garbage collection.
Linux PCMCIA (Anderson, 1995) ¯ash memory driver
(Hinds, 1997a, b) also uses the greedy policy, but it
sometimes chooses to clean the segments that are erased
the fewest number of times for even wearing. However,
greedy policy was shown to incur large number of era-
sures for high localities of reference (Kawaguchi et al.,
1995; Wu and Zwaenepoel, 1994).

eNVy (Wu and Zwaenepoel, 1994), a storage system
for ¯ash memory, employs hardware support of copy-
on-write and page remapping techniques to provide
transparent update-in-place semantics. Their hybrid
cleaning combines FIFO and locality gathering in
cleaning segments, aiming to perform well for both
uniform access and high localities of reference. eNVy
considers only ¯ash memory write cost in evaluating the
e�ectiveness of cleaning policies. However, erasure cost
dominates the total cleaning cost. Our work focuses on
reducing the number of erase operations while evenly
wearing ¯ash memory.

Kawaguchi et al. (Kawaguchi et al., 1995) adopts a log
approach similar to LFS to design a ¯ash memory based
®le system for UNIX. They used the cost-bene®t policy
modi®ed from LFS with di�erent cost. However, their
results showed that cost-bene®t policy incurred more
erasures than greedy policy for high localities of refer-
ence. They found cold blocks and hot blocks were mixed
in segments when only one segment was used in cleaning.
The separate segment cleaning which separates cold seg-

ments from hot segments was thus proposed to clean
segments. Their work did not implement wear-leveling.

Kawaguchi's work motivates us that using an ef-
fective data redistribution method is more important.
To obtain better cleaning e�ectiveness, good segment
selection algorithms should be used with e�ective data
redistribution methods. We design a new data redis-
tribution method that uses a ®ne-grained method to
separate cold data from hot data. The method is sim-
ilar to Kawaguchi's work but operates at the granu-
larity of blocks. To further contribute to the separation
of di�erent types of blocks, read-only data and wri-
table data are separately allocated. Furthermore, CAT
policy takes wear-leveling into account, which selects
segment based on cleaning cost, age of the data, and
the number of times the segment has been erased. An
even-wearing method is also proposed. As contrasted
with the above, our work considers all the cleaning
issues including segment selection, data redistribution,
data placement, and even wearing. Table 7 summarizes
the comparison.

8. Conclusions

Flash memory shows promise for use as storage for
mobile computers, embedded systems, and consumer
electronics. However, system support for erasure
management is required to overcome the hardware
limitations. In this paper a new cleaning policy, the
CAT policy, is proposed to reduce erasure cost and to
evenly wear ¯ash memory. The CAT policy employs a
®ne-grained method to cluster hot, cold, and read-only
data into separate segments for reducing cleaning
overhead. It provides even wearing by selecting seg-
ments for cleaning according to utilization, age of the
data, and the number of erase operations performed
on segments.

We have implemented a Flash Memory Server
(FMS) with various cleaning policies to demonstrate
the advantages of CAT policy. Performance evalua-
tions show that CAT policy signi®cantly reduces a
large number of erase operations and evenly wears
¯ash memory. Under high locality of reference, CAT
policy outperformed greedy policy by 54.93% and
outperformed cost-bene®t policy by 28.91% in reduc-
ing the number of erase operations performed. The
result is extended ¯ash memory lifetime and reduced
cleaning overhead.

CAT policy also outperformed greedy policy by
64.59% in reducing the number of blocks copied and
outperformed cost-bene®t by 38.28%. This result sug-
gests that CAT policy can also be applied to other media
storage systems such as RAM or disks that concerns
only to reduce the number of blocks copied to improve

228 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

T
a
b

le
7

C
o

m
p

a
ri

so
n

o
f

v
a

ri
o

u
s

cl
ea

n
in

g
p

o
li

ci
es

Is
su

es
F

la
sh

m
em

o
ry

se
rv

er
(F

M
S

)
F

la
sh

-m
em

o
ry

b
a
se

d
®

le
s

sy
st

em

eN
V

y
L

in
u

x
P

C
M

C
IA

p
a
ck

a
g
e

M
ic

ro
so

ft
F

F
S

W
h

en
S

ta
rt

s
w

h
en

#
fr

ee
se

g
m

en
ts
<

lo
w

-w
a

te
r

m
a

rk

G
ra

d
u

a
ll

y
fa

ll
in

g
th

re
s-

h
o

ld
w

h
ic

h
d

ec
re

a
se

s
a
s

#
o

f
fr

ee
se

g
m

en
ts

d
ec

re
a
se

s
N

o
fr

ee
¯

a
sh

sp
a
ce

N
o

fr
ee

¯
a
sh

sp
a
ce

N
o

fr
ee

¯
a
sh

sp
a
ce

S
to

p
s

w
h

en
#

fr
ee

se
g

m
en

ts
>

h
ig

h
-w

a
te

r
m

a
rk

W
h

ic
h

G
re

ed
y

G
re

ed
y

G
re

ed
y

R
ev

is
ed

G
re

ed
y

G
re

ed
y

C
A

T
:

u
/(

1
ÿu

)*
1

/a
g

e*
cl

ea
n

in
g

ti
m

es
(u

:
u

ti
li

za
ti

o
n

)

C
o

st
-b

en
e®

t:
a
g
e*

(1
ÿu

)/
2
u

(u
se

s
G

re
ed

y
m

o
st

o
f

ti
m

e,

so
m

et
im

es
se

le
ct

s
se

g
m

en
ts

er
a
se

d
th

e
fe

w
es

t

ti
m

es
))

W
h

a
t

si
ze

(s
eg

m
en

t)
A

s
m

a
n

u
fa

ct
u

re
r

d
e®

n
es

A
s

m
a
n

u
fa

ct
u

re
r

d
e®

n
es

A
se

g
m

en
t

co
n

ta
in

s
se

v
er

a
l

er
a
se

b
lo

ck
s

A
s

m
a
n

u
fa

ct
u

re
r

d
e®

n
es

A
s

m
a
n

u
fa

ct
u

re
r

d
e®

n
e

H
o

w
m

a
n

y
(s

eg
m

en
ts

cl
ea

n
ed

a
t

o
n

ce
)

1
1

1
1

1

W
h

er
e

a
n

d
h

o
w

*
S

ep
a
ra

te
se

g
m

en
t

d
a

ta
a

ll
o

ca
ti

o
n

fo
r

re
a

d
-o

n
ly

d
a

ta
a

n
d

w
ri

ta
b

le

d
a

ta

*
S

ep
a
ra

te
se

g
m

en
t

cl
ea

n
in

g
w

it
h

se
p

a
ra

ti
o

n
fo

r
h

o
t

a
n

d
co

ld
se

g
m

en
ts

*
L

o
ca

li
ty

g
a
th

er
in

g
*

O
n

e
se

g
m

en
t

cl
ea

n
in

g
w

it
h

se
q

u
en

ti
a
l

w
ri

ti
n

g

*
O

n
e

se
g
m

en
t

cl
ea

n
in

g

w
it

h
se

q
u

en
ti

a
l

w
ri

ti
n

g

*
S

ep
a
ra

te
se

g
m

en
t

cl
ea

n
in

g
w

it
h

®
n

e-
g

ra
in

ed
se

p
a

ra
ti

o
n

fo
r

h
o

t

b
lo

ck
s

a
n

d
co

ld
b

lo
ck

s

1
±

L
o

ca
li

ty
p

re
se

rv
a
ti

o
n

(t
h

e
h

o
t

d
eg

re
e

is
b

a
se

d
o

n

u
p

d
a
te

-t
im

es
/a

g
e)

D
a
ta

a
re

¯
u

sh
ed

b
a
ck

to
th

e
sa

m
e

se
g
m

en
t

w
h

er
e

th
ey

co
m

e
fr

o
m

±
A

ct
iv

e
d

a
ta

re
d

is
tr

ib
u

ti
o

n
L

o
w

er

u
ti

li
za

ti
o

n
o

f
h

o
t

se
g
m

en
ts

a
n

d

in
cr

ea
se

u
ti

li
za

ti
o

n
o

f
co

ld

se
g
m

en
ts

,
b

y
m

ig
ra

ti
n

g
d

a
ta

b
et

w
ee

n
n

ei
g
h

b
o

r
se

g
m

en
ts

(h
o

t
d

a
ta

a
re

m
o

v
ed

to
w

a
rd

s
th

e

b
o

tt
o

m
a
n

d
co

ld
d

a
ta

a
re

m
o

v
ed

u
p

to
th

e
to

p
)

*
H

y
b

ri
d

cl
ea

n
in

g

±
F

la
sh

m
em

o
ry

is
d

iv
id

ed
in

to

p
a
rt

it
io

n
s,

lo
ca

li
ty

g
a
th

er
in

g
is

u
se

d
b

et
w

ee
n

p
a
rt

it
io

n
s,

a
n

d
F

IF
O

is
u

se
d

w
it

h
in

p
a
rt

it
io

n

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 229

cleaning performance. For example, the separate seg-
ment cleaning with ®ne-grained separation for hot and
cold blocks scheme can be applied to LFS before seg-
ment data in bu�ers are written out to disk.

Trace-driven simulation was assisted to examine
cleaning issues in detail. We found that data redistri-
bution methods are the most important factor a�ecting
cleaning e�ectiveness. Improving data redistribution
methods is more e�ective than improving segment se-
lection algorithms. Separate segment cleaning with ®ne-
grained separation for hot and cold data shows its
strength in cleaning e�ectiveness.

For the concerns about whether ¯ash memory wears
out in the life of the devices. It is expected that ¯ash
memory will be largely used in life. More and more
applications will use ¯ash memory as their storage sys-
tems and large write and erase operations will be cre-
ated. Wear-leveling will be very important especially
when the ¯ash memory size is increased. A good
cleaning policy can maximize ¯ash memory usage and
use ¯ash memory in a cost e�ectively way.

Acknowledgements

We are grateful to John Wilkes at Hewlett Packard
Laboratories for providing valuable comments and
making their HP I/O traces available to us. We would
also like to thank David Hinds for his valuable com-
ments and help on our work. And ®nally, the reviewers'
comments helped to improve this paper. This research
was supported in part by the National Science Council
of the Republic of China under grant No. NSC866-
2221-E009-021.

References

Anderson, D., 1995. PCMCIA System Architecture, MindShare, Inc.

Addison-Wesley Publishing Company.

Ballard, N., 1994. State of PDAs and Other Pen-Based Systems, Pen

Computing Magazine, 14±19.

Baker, M., Asami, S., Deprit, E., Ousterhout, J., Seltzer, M., 1992.

Non-Volatile Memory for Fast, Reliable File Systems, Proceed-

ings of the Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems,

Boston, MA, 10±22.

Blackwell, T., Harris, J., Seltzer, M., 1995. Heuristic cleaning

algorithms in log-structured ®le systems, Proceedings of the

1995 USENIX Technical Conference, New Orleans, LA, 277±288.

Caceres, R., Douglis, F., Li, K., Marsh, B., 1993. Operating system

implications of solid-state mobile computers, Fourth Workshop

on Workstation Operating Systems, Napa, CA, 21±27.

Chiang, M.L., Lee, Paul C.H., Chang, R.C., 1997. Managing ¯ash

memory in personal communication devices, Proceedings of the

1997 International Symposium on Consumer Electronics

(ISCE'97), Singapore, 177±182.

Dipert, B., Levy, M., 1993. Designing with Flash Memory, Anna-

books.

Douglis, F., Caceres, R., Kaashoek, F., Li, K., Marsh, B., Tauber,

J.A., 1994. Storage alternatives for mobile computers, Proceed-

ings of the 1st Symposium on Operating Systems Design and

Implementation, 25±37.

Halfhill, T.R., 1993. PDAs Arrive But Aren't Quite Here Yet. BYTE

18 (11), 66±86.

Hinds, D., 1997a. Linux PCMCIA HOWTO, http://hyper.stan-

ford.edu/~dhinds/pcmcia/doc/PCMCIA-HOWTO.html, vol. 2.5.

Hinds, D., 1997b. Linux PCMCIA Programmer's Guide, http://

hyper.stanford.edu/~dhinds/pcmcia/doc/PCMCIA-PROG.html,

vol. 1.38.

Intel, 1994. Flash Memory.

Intel, 1997. Corp., Series 2+ Flash Memory Card Family Datasheet,

http://www.intel.com/design/¯card/datashts.

deJonge, W., Kaashoek, M.F., Hsieh, W.C., 1993. Logical disk: A

simple new approach to improving ®le system performance,

Technical Report MIT/LCS/TR-566, Massachusetts Institute of

Technology.

Kawaguchi, A., Nishioka, S., Motoda, H., 1995. A ¯ash-memory

based ®le system, Proceedings of the 1995 USENIX Technical

Conference, New Orleans, LA, 155±164.

Li, K., 1994. Towards a low power ®le system, Technical Report UCB/

CSD 94/814, Masters Thesis, University of California, Berkeley,

CA.

Li, K., Kumpf, R., Horton, P., Anderson, T., 1994. A quantitative

analysis of disk drive power management in portable computers,

Proceedings of the 1994 Winter USENIX, San Francisco, CA,

279±291.

Marsh, B., Douglis, F., Krishnan, P., 1994. Flash memory ®le caching

for mobile computers, Proceedings of the 27 Hawaii International

Conference on System Sciences, Maui, HI, 451±460.

Matthews, J. N., Roselli, D., Costello, A. M., Wang, R. Y., Anderson,

T. E., 1997. Improving the performance of log-structured ®le

systems with adaptive methods, Proceedings of the Sixteenth

ACM Symposium on Operating System Principles, Saint Malo,

France.

Rosenblum, M., 1992. The design and implementation of a log-

structured ®le system, Ph.D. Thesis, University of California,

Berkeley.

Rosenblum, M., Ousterhout, J.K., 1992. The design and implemen-

tation of a log-structured ®le system. ACM Transactions on

Computer Systems 10 (1), 26±52.

Ruemmler, C., Wilkes, J., 1993. UNIX disk access patterns, Proceed-

ings of the 1993 Winter USENIX, San Diego, CA, 405±420.

SanDisk Corporation, 1993. SanDisk SDP Series OEM Manual.

Seltzer, M., Bostic, K., McKusick, M. K., Staelin, C., 1993. An

implementation of a log-structured ®le system for UNIX,

Proceedings of the 1993 Winter USENIX, 307±326.

Torelli, P., 1995. The microsoft ¯ash ®le system, Dr. Dobb's Journal,

62±72.

Wilkes, J., Golding, R., Staelin, C., Sullivan, T., 1996. The HP

AutoRAID hierarchical storage system. ACM Transactions on

Computer Systems 14 (1), 108±136.

Wu, M., Zwaenepoel, W., 1994. eNVy: A non-volatile, main memory

storage system, Proceedings of the sixth International Conference

on Architectural Support for Programming Languages and

Operating Systems, San Jose, CA, 86±97.

Mei-Ling Chiang received the B.S. degree in Management Information
Science from National Chengchi University, Taipei, Taiwan, in 1989,
and the M.S. degree in Computer and Information Science from Na-
tional Chiao Tung University, Hsinchu, Taiwan, in 1993. She is cur-
rently working toward the Ph.D. degree in computer and Information
Science at National Chiao Tung University. Her research interests
include operating systems and mobile computing.

Rui-Chuan Chang received the B.S. degree in 1979, the M.S. degree
in 1981, and his Ph.D. degree in 1984, all in computer engineering
from National Chio Tung University, Taiwan. In August 1983, he
joined the Department of Computer and Information Science at

230 M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231

National Chiao Tung University as a Lecturer. Now he is a Pro-
fessor in the Department of Computer and Information Science. He
is also an Associate Research Fellow in the Institute of Information
Science, Academia Sinica, Taipei, Taiwan. He is currently the di-

rector of Computer Center and University Library of National
Chiao Tung Univeristy. His current research interests include oper-
ating systems, wireless communication, multimedia systems, and
computer graphics.

M.-L. Chiang, R.-C. Chang / The Journal of Systems and Software 48 (1999) 213±231 231

