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distanced1 for four different frequencies. Both the magnitude and
phase of�in reveal the oscillatory behaviors whend1 < 1:5� at 15,
20, and 24 GHz. Our additional computation indicates that a small
gap between the dielectric slab and flanged coaxial line introduces
significant changes in�in.

III. CONCLUSION

The problem of a flanged-coaxial line radiation into a dielectric
slab is investigated using the Hankel transform and mode-matching
technique. The behaviors of reflection in terms of frequency, coaxial
line geometry, slab permittivity, and thickness are shown. Our
solution is rigorous, yet in rapidly convergent series, which are
efficient for numerical computation.
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Vector Finite Hankel Transform Analysis of Shielded
Single and Coupled Microstrip Ring Structures

Jen-Tsai Kuo

Abstract—The vector finite Hankel transform or the vector Bessel
series expansion method is used to calculate the resonant frequencies
of shielded single and coupled microstrip annular rings in a stratified
dielectric structure. Vector global basis functions are employed to model
the unknown currents on the ring conductors, and the calculations
of their transforms are described. Calculated resonant frequencies for
microstrip rings are presented and found to have good agreement with
measurements.

I. INTRODUCTION

Microstrip ring resonators have been widely used in various
designs of microwave integrated circuits (MIC’s) [1]. It is found
that publications on rigorous analysis methods are limited. For open
structures, a simple stationary formula is derived based on the reaction
concept [2]. The vector Hankel transform (VHT) analysis method is
found to be effective to deal with circular disks [3] and annular-ring
[4] radiators. For closed structures with disk and ring resonators,
an eigenfunction weighted boundary integral-equation method is
developed in [5] to avoid the use of complicated spatial-domain
Green’s functions.

This work extends the full-wave VHT method [3], [4] to calculate
the resonant frequencies of microstrip rings with metallic enclosure.
The vector finite Hankel transform (VFHT) or the vector Bessel series
(VBS) expansion method [6] is used to transform electromagnetic
fields to the spectral (Hankel transform) domain. It is found that this
technique has the following attractive features suitable for numerical
calculations, similar but not limited, to those stated in [3]. First, it
is not limited by the number and widths of metallic rings. Second,
the spectral Green’s functions can be easily obtained using the
spectral immittance approach [7]. Third, algebraic equations, instead
of coupled integral equations, are obtained for setting up the final
determinantal equation. Fourth, vector global basis functions with
proper edge conditions are employed to expand the unknown currents
on the rings, and it results in a small-size matrix eigenvalue problem.
Finally, the result for the resonant frequency is in a variational form.

This paper is organized as follows. Section II formulates the
VFHT method for the analysis of microstrip rings embedded in
a layered dielectric medium. The vector basis functions and their
transforms used in this study are also described. In Section III,
calculated results for single and coupled rings are presented and
checked against published data and our measurements. Section IV
presents conclusions.

II. FORMULATION

A. The VFHT and the Parseval’s Relation

The cross section of the analyzed shielded coupled microstrip
ring resonator is shown in Fig. 1. The rings are assumed to be
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Fig. 1. Cross section of a coupled microstrip ring resonator.

perfectly conducting and infinitely thin. Starting with TE and TM
to z formulation in the circular cylindrical coordinates and using
the method of separation of variables, one can obtain the general
solutions of the scalar potentials�e (TM) and �h (TE) in each
layered dielectric region as

�e; h = ejn�
1

m=1

Se; hm (z)Jn(�
e; h
m �)=Ie; hm (1)

wheren is the azimuthal resonance order,Jn is thenth-order Bessel
function of the first kind,�em = xnm=a and�hn = x0nm=a are the
spectral variables for the TM and TE waves, respectively, andxnm
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andShm(z) specify thez-dependence of themth spectral waves, and
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Each summation term in (1) is a cylindrical wave function with
discrete eigenvalue for describing the electromagnetic fields inside
a circular cylindrical waveguide [8]. With theejn� factor being
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Substituting (2) into (3) and using the orthogonal relations between
the cylindrical vector wave functions [8], one can verify that
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Similarly, the VFHT of the transversalH-fields [jH� -H�]
T is

obtained as
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The spectral-domain Green’s functions, for the currents and
transversalE-fields at z = h1 + h2, can be derived as follows.

The functionsSe; hm (z) are expressed in terms of hyperbolic sin and
cos functions weighted bym-dependent constants. The boundary
conditions for transversalE- andH-fields should be applied to each
dielectric interface and each ground plane. It can then be shown that
~Eh
m = ~Zh

m
~Jhm and ~Ee

m = ~Ze
m
~Jem, and ~Ze

m and ~Zh
m are identical

to those obtained from the well-known spectral-domain immittance
approach [7].

It has been proven in [6] that
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where
$

I is the unit dyadic. Based on (6), the following Parseval’s
relation can be readily derived:

1

m=1

~Eh
m

~Ee
m

~Jhm
~Jem

=
a

0

� jE�(�) E�(�)
jJ�(�)
J�(�)

�

d�

(7)

where the superscript� denotes the complex conjugate operation. The
results of (7) must vanish because the transversalE-fields and current
density functions are zero in complementary regions atz = h1 + h2
plane. This equation can be used to set up a nonstandard eigenvalue
matrix equation, of which the eigenvalue is the resonant frequency
of the whole structure, via the use of Galerkin’s procedure.

B. Vector Global Basis Functions and Their Hankel Transforms

The unknown currents on theith ring conductor are expanded as
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wherexi = 2(�� �ci)=wi; �ci is strip center andwi the linewidth,
Tk andUk are the Chebyshev polynomials of the first and second
kinds, respectively, andcik anddik are expansion constants. Note that
the important edge conditions for both radial and azimuthal currents
have been incorporated into computation.

There are four types of integrals to be evaluated for the Hankel
transforms of the vector basis functions in (8). They can be written as
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where� is either�em or �hm. When the transform kernelsJn andJ 0n
vary slowly for jxij � 1, they are expanded as a series of Chebyshev
polynomials of orderNc [9] and the result of (9) can be readily
obtained via the orthogonality properties of Chebyshev polynomials
with respect to summation. When� is large, the following asymptotic
expansions are used [9]:

Jn(x) =
2

�x
Pn(x)cos �n(x)�Qn(x)sin �n(x) (10a)

J 0n(x) =
2

�x
Rn(x)cos �n(x) + Sn(x)sin �n(x) (10b)

where�n = x� (2n+1)�=4. Pn(x), Qn(x), Rn(x), andSn(x) are
expanded by Chebyshev polynomials of argument8=x to represent
the magnitudes of the Bessel functions forx � 8. In this way, the
oscillatory part is separated from the integrand and the remaining part
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Fig. 2. Validity check of calculated resonant frequencies of microstrip ring
resonators.

can be expanded as a series of Chebyshev polynomials of orderNc.
As a result, (9) can be easily obtained by using the following identity:

1

�1

Tm(x)p
1� x2

ej(�x+�)dx = ej��(j)mJm(�) (11)

where� = ��ci � (2n + 1)�=4 and� = �wi=2.

III. RESULTS

A. Convergence Behavior of the VFHT and Confidence Check

A single annular ring [5] withw1 = 38 mm, s1 = 2 mm, and
a = 70 mm is chosen for testing the convergence behavior of the
VFHT method. This is a crucial condition for the convergence test
because the ring has a wide strip widthw1 > 0:5a and a small
inner radiuss1 < 0:03a. It is found thatNc = 48, Nb = 7, and
the number of spectral termsN = 500 are required to have a 0.1%
relative accuracy for this particular case study. We useNb = 6,
Nc = 64, andN = 2000 for all the results presented herein. The
size of the final matrix is2Nb = 12 for a single-ring resonator. It
takes approximately 15 s on an HP735 workstation to calculate one
data point.

It is important to check if the converged data obtained by the VFHT
is correct. Fig. 2 compares the calculated resonant frequencies with
those reported in [5]. The results obtained by the VFHT seem to
have 1% deviation from the referred data for alls1 values. Whens1
is larger than 20 mm, orw1 is less than 20 mm, the VFHT results
have good agreements with the planar waveguide model [10].

B. Some Results and Measurements

Fig. 3(a) and (b) shows the resonant frequencies of a two-ring
resonator on a two-layer substrate for the azimuthal resonance order
n being from 1 to 5. Two important aspects relevant to this microstrip
structure are considered before the investigation of the resonant
characteristics is proceeded. First, there are two dominant resonant
modes corresponding to the two quasi-TEM modes of straight coupled
microstrip transmission lines. Thus, it is possible to use thec and
� modes to identify the two dominant resonances. Thec mode is
referred to that the currents on the coupled rings are of the same
polarities and the� mode is to that of opposite polarities. The second
aspect is on the stacked dielectric substrates. For straight coupled
microstrips on a single-layer substrate, it is known that the even

(a)

(b)

Fig. 3. Resonant frequencies of coupled microstrip rings in a layered di-
electric medium. Structure parameters:h1 = 0:508 mm, h2 = 1:27 mm,
h3 = 0, h4 = 12:7 mm, "r1 = 2:2, "r2 = 10:2, "r4 = 1, a = 50 mm.
(a) s1 + w1 = 18 mm, s2 = 1 mm, w2 = 1 mm. (b) s1 = 17 mm,
w1 = 1 mm, s2 = 1 mm.

mode has higher effective dielectric constant than the odd mode does.
However, on a multilayer substrate, either even or odd mode can have
higher "re� value than the other one, depending on the substrate
height ratio [11]. As a result for the particular structure in Fig. 3,
the resonant frequencies for thec mode are higher than those of the
� mode.

In Fig. 3(a), the resonant frequencies are plotted againsts1. The
linewidth w1 = 18 � s1 mm. It shows that the�-mode results
are nearly independent of the variation ofs1, while the c-mode
frequencies increase whens1 is decreased. Whens1 = 17 mm and
w1 = 1 mm, the resonant frequencies for both modes withn � 2
are close ton times the values withn = 1. This situation does not
apply to that withs1 = 2 mm andw1 = 16 mm due to the curvature
effect. In Fig. 3(b), the resonant frequencies are calculated forw2,
varying from 1 to 16 mm withw1 = s2 = 1 mm. The�-mode
results decrease asw2 is increased, while thec-mode frequencies are
insensitive to the variation ofw2.
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The measured circuits were fabricated on RT/Duroid 6010.2("r =
10:2) and 5880("r = 2:2) substrates. For the tradeoff between the
insertion loss and perturbation of the experimental structure: 1) the
loose coupling scheme [1] with a coupling gap of 0.254 mm (10
mil) is used and 2) collinear 50-
 feeding and extracting microstrip
lines are designed in the circuits. In measurements, the modes are
identified by comparing the results with the simulated data. The
measured resonant frequencies for the coupled microstrip rings show
good agreement with the prediction by the VFHT.

IV. CONCLUSION

The VFHT is formulated for characterizing shielded single and
coupled microstrip ring resonators in an inhomogeneous medium.
With variational nature, the method can provide nearly converged
results by using several hundreds of summation terms. The calculation
resonant frequencies and the measurements have good agreements.
The technique can be extended to deal with annular slot, disk, and
multiple annular-ring resonators embedded in a multilayer structure.
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Mutual Coupling Between Millimeter-Wave
Dielectric-Resonator Antennas

Yong-Xin Guo, Kwai-Man Luk, and Kwok-Wa Leung

Abstract—The mutual coupling between aperture-coupled cylindri-
cal dielectric-resonator antennas (DRA’s) is analyzed using the finite-
difference time-domain method. The perfectly matched layer is used
as absorbing boundary conditions. The voltage excitation source of
microstrip structure is based on the Zhao’s model, in which the source
plane or the terminal plane can be moved very close to the discontinuity
so that the computational domain can be reduced substantially. The
numerical results are verified by measurements and reasonable agreement
between theory and experiment is obtained. It is shown that this method
is highly efficient for the analysis of DRA’s.

Index Terms—Dielectric antennas, FDTD methods, mutual coupling.

I. INTRODUCTION

Dielectric-resonator antennas (DRA’s) have been considered for
applications at millimeter-wave frequencies since systematic experi-
mental investigations on DRA’s were carried out by Longet al. [1].
DRA’s share many of the advantages of microstrip antennas, includ-
ing small size, low profile, light weight, ease of coupling to almost
all types of transmission lines, and ease of integration with other
active or passive microwave integrated circuit (MIC) components. In
addition, DRA’s avoid the inherent disadvantages of patch antennas,
such as high conduction loss at millimeter-wave frequencies, narrow
bandwidth, and low efficiency due to surface-wave excitation. Most of
the available theoretical and experimental investigations on DRA’s
are on an isolated element of various shapes [1]–[3]. Among the
various excitation methods for DRA’s, the aperture-coupled feed
is most welcome since it can be practically implemented at high
frequencies and is suitable for monolithic-microwave integrated-
circuit (MMIC) applications [2], [3]. In some applications, a number
of DRA’s are combined to form an array for high gain requirement.
Several designs of probe-fed DRA arrays are reported in the literature
[4], [5]. However, very few investigations have been undertaken to
assess the performance of an aperture-coupled DRA array, and only
a few experimental results have been reported [6]–[8].

In this paper, the mutual coupling of aperture-coupled cylindrical
dielectric-resonator arrays (CDRA’s) using the finite-difference time-
domain (FDTD) method with Berenger’s perfectly matched layer
(PML) absorbing boundary condition (ABC) is studied because it
is a crucial parameter in evaluating the performance of an antenna
array. The advantage of this approach is the ability to investigate
basic structures, as well as more complicated DRA’s, which are
hardly analyzed by the previous methods [2], [3]. The DRA’s are
operated at the fundamental broadsideTM11� mode [1]. Besides, the
reflection coefficients of the CDRA’s are presented for completeness.
Measurements have been conducted to validate the calculations.

II. THEORY

The three-dimensional (3-D) FDTD algorithm is applied to analyze
the CDRA’s. A detailed description of the FDTD method will be
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