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Adaptive Predictor Based on Maximally
Flat Halfband Filter in Lifting Scheme

Wen-Jen Ho and Wen-Thong Chang

Abstract—For the complex short time-varying signals, a high-
order predictor does not always yield good performance. For
this, we investigate the use of a short-order adaptive predictor.
Since the maximally flat filters are the optimal predictors for
polynomial signal prediction, the adaptation is based on the
combination of a set of maximally flat filters. For compression
efficiency, the dynamic ranges of the weighting variables are
specially considered. For this, based on the Bernstein filters,
another form to represent the weighting variables is used. These
two sets of weighting coefficients can be transformed into each
other with a simple linear transform. Thus, the adaptation can
be made in both the time domain and the frequency domain. For
block-based image coding, the least square criterion is used to
derive the weighting coefficients. Experimental results show that
the adaptive predictor performs better than the S+P transform,
the median edge detector (MED), and the gradient adjusted
predictor (GAP).

Index Terms—Bernstein polynomial, filter bank, lifting scheme,
maximally flat filter.

I. INTRODUCTION

A PPLICATIONS of filter banks for lossless image coding
have been shown in [1]–[6]. In these approaches, the

filtered outputs are truncated to result in an integer to integer
transform. The S transform is the simplest way of obtaining
the integer filtered samples. It can be seen as the integer
implementation of the Haar wavelet transform. To improve the
coding efficiency, Said and Pearlman extended the S transform
to the S P transform (S transform prediction) [1], where a
prediction stage to predict the highpass component from the
lowpass component was added. In fact, the S transform and
S P transform can be seen as the special cases of the lifting
scheme [2], [7], [8]. A more general approach to construct
filter banks with a lifting scheme that maps integers to integers
can be seen in [2]. To reduce the levels of the gray value,
downward or upward truncation is used [5].

One lifting step consists of applying a predictor to the even
(or odd) samples and subtracting the result from the odd (or
even) samples. Eventually, after several lifting steps, equiv-
alent lowpass and highpass components can be obtained. In
each lifting step, the predictor output is downward truncated to
result in an integer-to-integer transform. In the lifting scheme,
the same downward truncation is used in both the analysis and
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synthesis processes. On the contrary, in the rounding transform
[3], the downward and upward truncations are used in the
forward and backward transform, respectively. The rounding
transform is very similar to the lifting scheme, where the dif-
ference is that the lifting scheme is defined on the time domain,
but the rounding transform is defined on thedomain.

For practical image coding, no filters can perform con-
sistently better than others. Some commonly used design
parameters such as the order of vanishing moments, the filter
tap length, etc., are not sufficient to specify the filter for
practical applications. For efficient coding, minimization of the
highpass components is a commonly used method. For com-
plex short-time varying signals, a high-order predictor does
not always yield good performance. For this, we investigate
the use of the short-order adaptive predictor. In this paper, we
focus on the design method of the adaptive predictor to be used
in the lifting scheme. The predictor used in the lifting scheme
is a halfband filter. Thus, an adaptive halfband filter is used
with the criterion to minimize the energy of the highpass com-
ponents. The primal lifting step [7] that updates the lowpass
components are kept fixed. In the extreme case, if the primal
lifting is neglected, the delta function becomes the analysis
lowpass filter and the halfband filter is the synthesis lowpass
filter. The adaptation is done on a block-by-block basis to make
the highpass output of such a filter bank as small as possible.

The reason to consider such a structure is that the prediction
with the halfband filter with direct decimated signals possesses
some well-known properties. The tap length and the zero distri-
bution of the filter are related to the order of the polynomials to
be interpolated. This is the so-called condition mentioned
in [9]. An immediate consequence of this theorem is that the
highpass components of the filter banks will be zero if the
signals to be processed are polynomial of degree and
the filter has zeros at In this particular case, the optimal
predictor to minimize the highpass components of the filter
bank is the maximally flat (Maxflat) filter [10]–[12]. To extend
such a theorem to the practical applications, an adaptive filter
based on the linear combination of a set of maximally flat
filters is considered. Since either the actual signals are often
time varying within a short interval such that a single filter
cannot be used to predict it well or the order of the signal to
be predicted is higher than the order of the filter, the actual
signal cannot be reproduced.

Based on the condition, an adaptive halfband filter can
be described as a linear combination of the Maxflat filters.
The weightings of the combination can be used to describe
the image statistics in the time domain. For compression, the
dynamic ranges of the weightings are important. To enable
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Fig. 1. Lifting scheme.

such a design, the halfband filter is also expressed as a linear
combination of the Bernstein filter. The Bernstein filter will be
discussed in detail in Section III. The weightings of the linear
combination of the Bernstein filter can be used to describe the
image statistics in the frequency domain. There exists a linear
transform to map the representation space from the Bernstein
bases to the Maxflat bases.

To capture the short time change of the signal, block-
based adaptation is considered. For each block of signals, one
predictor to minimize the highpass components is used. In our
experiments, the adaptive lifting scheme performs better than
that of the nonadaptive S and SP transform. Further, our
proposed adaptive predictor is comparable with the median
edge detector and gradient adjusted predictor, which are used
in the LOCO-I and CALIC, respectively [13]–[15]. However,
LOCO-I and CALIC are single-resolution predictive coding
schemes that do not have progressive decoding capability, as
our proposed method does. Besides the prediction, a complete
coding scheme consisting of the prediction, error modeling,
and set partitioning is also presented.

The organization of this paper is as follows. In Section II,
the basic structure considered in this paper and its relations
with lifting scheme are introduced. According to the approx-
imation property of the wavelet representation, polynomial
interpolation with regular halfband filters is briefly described.
In Section III, application with a time-varying signal is dis-
cussed. Two forms of parameterized halfband filters are briefly
described. The adaptive interpolation algorithm based on the
parameterized halfband filters is also presented. In Section IV,
the experimental results are shown. Finally, in Section V, a
conclusions is made.

II. I NTERPOLATIVE DPCM PYRAMID

This section provides an introduction to the multirate struc-
ture considered in this paper. The lifting scheme is a flexible
technique for construction of a wavelet through a series of
lifting steps. As shown in Fig. 1, the lifting scheme first splits
a signal into its even and odd samples. Then, alternating
primal and dual lifting steps are used to process the decimated
samples. A dual lifting step consists of applying a filter
to the even samples and subtracting the result from the odd
ones. A primal lifting step consists of applying a filterto the
odd samples and subtracting the result from the even samples.
Eventually, after several lifting steps, the even samples will
become the lowpass components, whereas the odd samples
become the highpass components. In each lifting step, the
filter output is truncated. This results in an integer-to-integer

Fig. 2. Decomposition structures of the interpolative DPCM pyramid.

transform. The dual lifting step can be regarded as a prediction
stage to predict the highpass components, and the primal lifting
step can be regarded as an update stage to update the lowpass
components. The basic concepts of the dual and primal lifting
steps are the same. In this paper, the design of the predictor to
be used in the lifting scheme is considered. We focus on the
dual step with the constraint to minimize the highpass energy
based on the known lowpass components.

The implementation of the integer dual lifting scheme is
illustrated in Fig. 2. Formally, a top–down decomposition
procedure can be described as, for

(1)

where is the first polyphase component of
For reconstruction, can be obtained with prediction

from its lower resolution versions plus the prediction errors.
A bottom-up reconstruction procedure is, for

(2)

Note that the sequences can be obtained
concurrently when sequence is given; therefore, all the
prediction errors can be computed in
parallel [16]. Since are the differences between
the interpolator’s output and the original signal, this scheme is
similar to that of the interpolative DPCM (IDPCM) [17], [18].
Since the interpolation process is executed iteratively to obtain
the prediction errors with a pyramid structure, for convenience,
the whole system based on the dual lifting scheme is called
the interpolative DPCM (IDPCM) pyramid.
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Fig. 3. Degenerate filter bank.

Except for the truncation process, this kind of hierarchical
interpolation has also been used in [19]–[22]. In [19] and
[20], the simple bilinear interpolation is used. The compression
ratios are shown to be higher than DPCM and in the range of
DCT under equivalent test conditions [19]. In [22], a separable
first-order interpolation is used, and entropy-constrained trellis
coded quantization (ECTCQ) is used to code the prediction
errors. The performance is claimed to be superior to that of
JPEG.

In fact, one critically subsampled pyramid, as shown in
Fig. 2, is exactly equivalent to one critically subsampled filter
bank [23]. The filter bank is shown in Fig. 3. In analogy with
the lossless DPCM, the integer highpass component can be
obtained similarly by truncating the noninteger number, as
shown in Fig. 3. The symbol is the upward truncation,
and the symbol is the downward truncation. In the IDPCM
pyramid, the same downward truncation is used in both the
decomposition and reconstruction processes. On the contrary,
in the filter bank, the upward and downward truncations are
used in the analysis and synthesis parts, respectively. If the
truncation is neglected, an associated set of biorthogonal bases
exists. The scaling function is called the interpolative scaling
function since is cardinal, i.e.,
According to the two-scale relation

(3)

the values of on the half-integer points can be computed
by Since ,

This means that the filter is the sampled
sequence of the scaling function sampled at half integer points.
There is a close connection between a pair of biorthogonal
scaling functions and an interpolative scaling function [24],
[25]. It is easy to find that the wavelet is This
means that the wavelet is a translated and dilated version of the
scaling function itself. The dual scaling function is the delta
function , and the dual wavelet is a linear combination of
the delta function, i.e.,
Strictly speaking, the delta function is not defined for
any However, since they can satisfy the framework of
the biorthogonal wavelet transform, the functions and

are still named the dual scaling function and the dual
wavelet, respectively. A thorough treatment on the use of
interpolating wavelet transform can be found in [16]. This
kind of transform is claimed to be optimal from the point of
view of computing individual coefficients in parallel since the
coefficients are obtained from linear combination of samples
rather than integrals.

A. Accuracy of Approximation

The primary concern of this paper is the design of the
predictor. In this section, we discuss the relation between the
interpolative scaling function and the polynomial function. The
purpose is to indicate the necessary condition for polynomial
interpolation. More important, we will discuss the case when
the polynomial function is a time-varying one.

In the wavelet transform, a function is projected onto
a space hierarchy The index gives the time scale
information In practice, the level is determined
by balancing between the accuracy and the cost. The cost
is approximately doubled from one level to the next since
the number of the basis functions and the coefficients is
doubled. The representation accuracy depends both on the
scaling functions and the signal In the following,
the accuracy of approximation with the interpolative wavelet
representation for a continuous function is analyzed.

Consider a continuous function with derivative
It can be shown that if satisfies

the condition

(4)

then , where
is a constant, and the norm sup [26].
The term is the upper bound of the
approximation error when the basis satisfying (4) is used.
To derive this result, let us apply the Taylor series expansion
to the function with respect to the point That is

(5)

where is within the interval between and
When the function is sampled with a set of discrete

points at , is defined as

(6)
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Since can be rewritten as
, by (4), we have

(7)
and

(8)

holds, where sup , and
The constant and the exponent depend

on the choice of When constructing , the step
from to divides the approximation error
by about Thus, the number is critical. Usually, the
constant is less critical. The norm of the th
derivative depends on the signal If the signal is
smooth, then is small, and the error will be small. If
the signal contains abrupt changes, then is large,
and the error will be large.

What (8) indicates is that if the function is a polynomial
of degree less than or equal to , the interpolated signal

will reproduce it if satisfies (4). This fact has been
indicated in [9]. However, if the function is a polynomial
with degree larger than , the approximation error will be
dominated by We will discuss this
case later.

Now, let us concentrate on some basic properties of the
basis. With the two-scale relation shown in (3), the property
of the basis shown in (4) can be related to the property of
the filter Thus, the accuracy of the interpolation can be
determined from the property of the filter. The highest degree
of the interpolated polynomial can be determined from or
from With the Poisson summation formula [26]

(9)
can be obtained, where denotes the Fourier transform of

Therefore, the condition in (4) is also equivalent to

(10)

This means that must have zeros of order at all
frequencies This is the so-called Strang–Fix
condition [9]. Therefore, (4) can be regarded as the Strang–Fix
condition in the time domain.

Thus, if satisfies the Strang–Fix condition, then the
corresponding requirement on the filter is that it has
zeros at , i.e., the transfer function can be represented
as

(11)

where A filter with zeros at is a
-regular filter. With the -regular filter, the corresponding

scaling function and its translates reproduce polynomials up
to degree From the time-domain Strang–Fix condition,
this fact can also be seen. Condition (4) can be rewritten in

the discrete form as

(12)

if is considered. This property is the sum rule
of the halfband filter.

This is the condition mentioned in [9], indicating that there
are zeros at

The above-mentioned Strang–Fix condition indicates that an
-regular halfband filter can be used to interpolate a polyno-

mial of degree The minimum length of an -regular
halfband filter is and is called the maximally flat filter.
The above derivation shows the results that can be obtained
when the maximally flat filter is used for interpolation. What
(6) indicates is how the sampled points from can be used
to interpolate the same polynomial function

For practical application, the signal is usually a time- or
space-varying one. The order of the underlying polynomial is
difficult to predict in advance. For abrupt changing signals, we
are often faced by the case of insufficient sampled points. In
this situation, perfect polynomial reconstruction is not possible
because the number of zeros of the filter atis less than the
order of the polynomial. This has been mentioned briefly above
when the degree of the polynomial is larger than and
the filter has only zeros at Thus, for practical application
with a filter of fixed length, the prediction error is usually due
to the above-mentioned phenomena. Since the error cannot
be avoided with a single filter bank, we then seek to use
an adaptive filter bank to minimize the prediction error. The
easiest way is to use a degenerate filter bank with variable
halfband filters.

III. PARAMETERIZED HALFBAND FILTERS

As mentioned in Section II-A, for a polynomial up to degree
, the regular halfband filter can be used to

recover it from its sampled values. Let us denote this class
of polynomials as Thus, with an interpolative filter
bank, if , where , the highpass
components for any The function can
be recovered by iterative interpolation from its samples
using the same filter at each stage. Since the filter
has at least zeros at , the minimum length of such a filter
is Thus, the minimum required number of sampled
points needed to reconstruct the polynomial is

A filter with most its zeros at is a maximally flat
(Maxflat) filter. The Maxflat filter is the optimal minimum
length predictor for polynomial signals. To see the effect of
Maxflat filters on the results of polynomial interpolation, let us
first show an example: The sampled
sequences of the cubic polynomial with and

are shown in Fig. 4(a) and (b). The filter used for
interpolation is ,
which is a seven-tap Maxflat filter. As discussed in Section II-
A, any filter with more than four zeros at can be used
to interpolate The corresponding interpolated sequence
after four iterations with this filter is shown in Fig. 4(c). The
errors between the interpolated signal and the signal
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(a) (b)

(c) (d)

Fig. 4. Interpolation of the polynomialf1(t): (a) Original sampled sequence
with4t = 1

64
: (b) Original sampled sequence with4t = 1

4
: (c) Interpolated

signal with the seven-tap Maxflat filter. (d) Errors between the original signal
and the interpolated signal.

are plotted in Fig. 4(d). As can be seen, the interpolated result
with the Maxflat filter is the same as

Now, let us consider two practical situations. The first is
when the degree of the polynomial is larger than
That is, the sampled points are less thanThe second case
corresponds to a time-varying signal. For these two cases,
perfect polynomial reproduction cannot be obtained. Consider
the two test signals

and

The results interpolated with the seven-tap Maxflat filter are
shown in Figs. 5 and 6. As shown in these figures, there
exist errors in the interpolated results. The function is
a time-varying signal.

To overcome such problems, in this paper, a combined
interpolation scheme is proposed. That is, interpolation with
multiple Maxflat filters is proposed. The result of the inter-
polation is the linear combination of the results from all the
Maxflat filters. The idea is to treat the above-mentioned two
cases as signals composed of polynomials of many different
orders. Thus, in the prediction process, along the time or space
domain, each point to be interpolated will be characterized by
a set of parameters corresponding to the weightings for all the
Maxflat filters used. From the coding point of view, the coding
efficiency will depend on the distributions of these weighting
parameters. In order to maximize the coding gain, block-based
prediction is considered. That is, we seek a common set of
parameters for a block of signals such that the total prediction
errors are minimized.

A linear combination of the Maxflat filters with different
orders will no longer be a Maxflat filter. Thus, for the block-

(a) (b)

(c) (d)

Fig. 5. Interpolation of the polynomialf2(t): (a) Original sampled sequence
with4t = 1

64
: (b) Original sampled sequence with4t = 1

4
: (c) Interpolated

signal with the seven-tap Maxflat filter. (d) Errors between the original signal
and the interpolated signal.

(a) (b)

(c) (d)

Fig. 6. Interpolation of the polynomialf3(t): (a) Original sampled sequence
with4t = 1

64
: (b) Original sampled sequence with4t = 1

4
: (c) Interpolated

signal with the seven-tap Maxflat filter. (d) Errors between the original signal
and the interpolated signal.

based predictive coding, we are considering a non-Maxflat
halfband filter. There are two forms that can be used to
represent the non-Maxflat halfband filter. The first form is the
direct linear combination of Maxflat filters of different lengths.
This form is simple, but the distributions of the weighting
parameters from many different blocks are quite large. For this,
other bases derived from Bernstein polynomials are used [27],
[28]. These basis filters can be called Bernstein filters. A non-
Maxflat filter can be described as the linear combination of the
Bernstein filters. In the following, we first discuss the property
of the Bernstein filter. Then, the transformation between the
two forms will be discussed.
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A. Filter Design Based on Bernstein Polynomials

The th-order Bernstein polynomials are defined as

(13)

where the binomial coefficients are given by

otherwise.
The Bernstein polynomials have the following properties:

and [29].
Given equally spaced sampled values ,

over the interval , the th-order approximation
based on Bernstein polynomials is defined as

(14)

The samples are the weighting coefficients of the approx-
imation With the transform [11], [27],
the function over the interval [0, 1] can be transformed
into the frequency response of a filter over the
interval

It has been shown in [27] that to design a halfband filter,
the weighting coefficients can be set as

with With such design parameters, the half-
band condition can be achieved. That is

(15)

The approximation function can be transformed
to the function , and the approximation func-
tion can be transformed to the function

Therefore, according to (15), the filter
transformed from is a halfband filter.

Using the mapping , can
be transformed into the transfer function with
coefficients in the domain. However, among the
coefficients, only of them need be specified due to the
symmetric halfband condition. With this mapping, is
then obtained as

(16)

This is the halfband filter with length with as the
design parameter. To derive the Bernstein filter, the equation

(a) (b)

(c) (d)

Fig. 7. Frequency responses of the Bernstein filters (a)B
4

0
(z): (b) B4

1
(z):

(c) B4

2
(z): (d) B4

3
(z):

can be rewritten as

(17)

where the filter is a Maxflat filter with zeros at
, and the filter is the associatedth Bernstein

filter with length These Bernstein filters are also
halfband filters. As an example, the frequency responses of the
15-tap Bernstein filters are shown in Fig. 7.
There will be Bernstein filters associated with a maxflat
halfband filter with length The Bernstein filters are
bandpass filters with peak frequencies at

It can be seen from these figures
that the frequency response of the Bernstein filter such as

has only one peak over the interval
The advantage to such a representation as shown in

(17) is that only one of the parametersneeds be adjusted if
a portion of the frequency response is to be specified.
Therefore, the parameters control how each part of the
frequency regions is to be adapted to the signals. Thus, the
linear combination of the Bernstein filters can be viewed as a
frequency-domain design method.
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With the halfband condition in (16), we have
Let us denote With the first polyphase com-
ponent in the vector form, i.e.,

, (16) can be rearranged as

(18)

where

...
...

...
...

(19)

The vector
corresponds to the first polyphase component of the Maxflat
filter. It has zeros at Its element is given in the
form

(20)

The vector consists of all the design
parameters If all the
are set to zero, the filter becomes a Maxflat filter.

B. Non-Maxflat Filter

In the beginning of this section, we have mentioned the
design of a non-Maxflat filter by linear combination of a set
of Maxflat filters. Let us first define as the identity matrix
with 1’s on the cross diagonal. A 3 3 example is

The polyphase matrix that consists of the first polyphase
components of a set of Maxflat filters with different lengths
is defined as

...
...

...
...

(21)

where denotes the upper-half matrix of , and

denotes the lower-half matrix of Therefore,
the design of a non-Maxflat filter can be described as

(22)

where is the weighting vector of
the combination.

Now, we discuss the relation between the two forms of the
halfband filters and derive the transformation between them.
Since the first polyphase components of the Maxflat filters

are symmetric, The matrix is a
lower triangular matrix, its inverse matrix always exists, and
the following relations hold:

(23)

The matrix can be regarded as the transform matrix
that transforms the identity matrix to the polyphase matrix

Consider the polyphase component in (18). Since
the first polyphase components are symmetric, can be
described as

where

(24)

The matrix denotes the upper-half matrix of
Substituting (23) into (24), the component can be rewritten
as

(25)

Thus

(26)

Equation (26) describes the transform between the two
representation forms. Thus, for any non-Maxflat filter, the
even-length first polyphase component can be written as
the linear combination of the even-length first polyphase
components of either a set of Maxflat filters or as a set of
Bernstein filters associated with a corresponding Maxflat filter.

For example, consider the case of From (18), the
Bernstein representation form is

(27)

where

The half-polyphase matrix of the Maxflat filters is
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Its inverse is

Therefore, the representation withcan be transformed toas

(28)

Thus, we have the following relation:

(29)

where the vectors and are the
first polyphase components of the Maxflat filters with length

and , respectively.
Both forms can be used to describe a general halfband

filter. From the coding point of view, the Bernstein form
is better due to the smaller dynamic range of, but the

physical meaning of the interpolation in the time domain
can be more easily seen with theform. In (29), the first
term can be seen as the Lagrange interpolation of a cubic
polynomial with the Maxflat filter. The second and third
terms are the compensation terms. The second term of (29)
is also the Lagrange interpolation of a cubic polynomial, but
is weighted by The third term of (29) is
the Lagrange interpolation of a first-order polynomial, i.e.,
linear interpolation. This term is weighted by

Therefore, interpolation with the non-Maxflat filter is a
combination of various odd degree Lagrange filters weighted
by

Therefore, if the point to be interpolated and its surrounding
neighbors are on a polynomial , the Maxflat filter can
be used to interpolate it. If the point under consideration is not
on the polynomial passing through its surrounding known
data points, it cannot be recovered by the Maxflat filter. For
this, a non-Maxflat filter with appropriate weightingscan be
used. From the above discussion, it can be seen that the non-
Maxflat filter is very useful for general signal interpolation. In
the following, we will discuss a block-based coding scheme.
Within a block, a common set of parameters is chosen for all
the points. This is equivalent to using a filter bank for a block
of signals and adjusting the parameters of the filter bank for
different blocks. Thus, an adaptation scheme will be discussed
in the following section on a block-by-block basis.

C. Adaptive Interpolation

In this section, we discuss the adaptive algorithm used to
determine the design parameters of the halfband filter. With the
above pyramid decomposition, a block-based coding scheme
is considered. The criterion is to minimize the sum of all the
prediction errors over all resolution levels. Since and

are linearly related, minimization with respect to is equal
to minimization with respect to In the following, we will
discuss the minimization with respect to

Let us divide the input sequence into blocks with
samples. In each block, one optimum filter is determined.

For mathematical convenience, the error sequences in all the
resolution levels are described in vector
form as

(30)

where

(31)

The points to be predicted are described as

(32)

where

(33)

The corresponding interpolated sequence of
is described in matrix-vector form as

(34)

where , as shown in (18), is the first polyphase component
of the halfband filter , and

...

where the row vector is defined as

(35)

The prediction errors over all resolution levels can be rewritten
in matrix-vector form as

where Let and
The average squared prediction errors can be formulated as

(36)

Our objective is to determine the parametersthat minimize
the average squared error

The gradient vector is the column vector by differentiating
(36) with respect to the vector

(37)
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Fig. 8. Average squared errors versus the number of parameters�i:

Since the squared error is quadratic, the global minimum is
obtained when Setting in (37) gives the
optimum parameters vector as

(38)

If is positive definite, then attains its minimum value,
as in (38). If is not positive definite, an optimal solution
can still be determined by replacing the inverse with a pseudo
inverse. We can use the least mean square (LMS) algorithm to
find the optimal parameters with a few iterations [30]. Since
the filter is determined based on the known data sequence with
LMS algorithm, this optimization is a data-dependent case.
The corresponding minimum error is given by

(39)

IV. EXPERIMENTAL RESULTS

In the above sections, we have described the objective of
our algorithm. These include the modeling of the signals as
polynomials, the optimum filter for polynomial prediction, and
the adaptive mechanism for block-based coding of practical
signals. In this section, some simulation results are presented.
For each block, a single interpolator is used for prediction.
The resultant representation for each block consists of the
prediction errors hierarchically from 2 2 to 4 4, from
4 4 to 8 8, , etc. The values of are found by using
the adaptive interpolation algorithm described in Section III-
C. For each block, extra bits are needed to encode the value
of

First, we show the need for adaptive prediction. The average
squared errors versus the order of the filter for the test
image “Lena” are shown in Fig. 8. It can be seen that the
average squared error is a monotonically decreasing function
of the order of the filter. However, the average squared error
saturates when the order of the filter is larger than four. For
comparison, the average squared error with the nonadaptive
Maxflat filter is also shown. In this case, the average squared
error did not decrease with increasing order of the filter. This

(a) (b)

(c) (d)

Fig. 9. Distributions of the values of the designed parameters. (a)�0: (b)
�1: (c) �2: (d) �3:

(a) (b)

(c) (d)

Fig. 10. Distributions of the values of the combination weighting. (a)�1:

(b) �2: (c) �3: (d) �4:

indicates that a single filter bank is not sufficient to attain the
optimum compression. Since the side information to encode
the parameters can be kept very small, the adaptive one is a
better choice.

Now, we discuss the choice of the weighting parameters.
This is the choice of the representation space. The distributions
of the values of the design parametersfor image “Lena”
are shown in Fig. 9. The distributions of and are con-
centrated in the neighborhood of zero. The distributions of
and are within the interval [ 1, 1] and [0, 2], respectively.
These distributions of the values of the parametersfor image
“Lena” are shown in Fig. 10. In this case, the dynamic ranges
of are larger than that of This is because the frequency
compensation form provided by the Bernstein filters are more
stable than the time domain adaptation form provided by the
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TABLE I
ENTROPY OF PREDICTION ERRORS OFTEST IMAGES

Maxflat filters. From the coding point of view, is chosen
rather than

In the following, the efficiency of some different adaptive
prediction schemes are investigated based on the measure of
zero-order entropy, as shown in Table I. The first predictor
considered is the median edge detector (MED) [14]. The
MED is used as the predictor in LOCO-I for lossless image
compression [13]. The MED selects the median from a set
of three predictions to predict the current pixel. The second
predictor considered is the gradient adjusted predictor (GAP)
[13]. The GAP is used as the predictor in CALIC [15]. CALIC
is a lossless image coder with an extra prediction stage that
handles the prediction error. This technique will be briefly
reviewed in the following. The GAP adapts the prediction
according to local gradients in the neighborhood of the current
predicted pixel. One point to be noted is that both the CALIC
and LOCO-I are single-resolution predictive coding schemes.
The entropy of prediction errors with the MED, GAP, and
IDPCM predictor are listed in the second, third, and fourth
columns in Table I, respectively. As can be seen from the
results, minimizing the prediction error leads to the lowest
average entropy over the entire test images.

Now, let us discuss some well known techniques that are
used to deal with the prediction error for efficient coding. The
performance of a predictor encoder can often be improved with
these techniques. In multirate prediction, the zero-tree and set
partitioning are very efficient to encode the prediction error. In
sequential prediction, errors modeling and feedback technique
proposed in [15] perform very well. In the following, we first
investigate the performance of error modeling in the multi-
rate prediction. Then, we examine the encoder performance
affected by the use of error modeling and set partitioning.

In CALIC, the contexts to model the prediction errors
consist of the texture contexts and the energy contexts. Texture
contexts are formed by quantizing the local neighborhood
pixels into a binary vector. The vector of local values is
selected as

(40)

where and denote north, west, north-
west, north-east, north-north, and west-west neighbors, respec-

TABLE II
ENTROPY OF PREDICTION ERRORS OFTEST IMAGES

Fig. 11. Contexts used for texture contexts.

TABLE III
AVERAGE ENTROPY AT DIFFERENT RESOLUTION LEVELS

tively. The vector is then quantized to an eight-bit binary
number using the prediction value as the threshold
[15]. Energy contexts are formed by quantizing the error
energy , which is defined as

(41)

where and are defined in [13, (5)]. We chose
and is then quantized to eight levels

by using the bins

(42)

With these settings, the error modeling is done by using
texture contexts and eight energy contexts for a total of

2048 compound contexts. In CALIC, the estimated error is
then compared with the GAP prediction error to generate an
improved prediction error. With this approach, the entropy
of the prediction errors with different images with CALIC is
listed in the second column in Table II. It can be seen that the
performance is improved about 3.85% from 4.41–4.24 b/pixel.

The use of error modeling in the multirate prediction has
also been mentioned in [31]. The method employed is similar
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TABLE IV
ACTUAL BIT-RATE OF TEST IMAGES

(a)

(b)

Fig. 12. Frequency responses of the resultant lowpass analysis filters. (a) First case. (b) Second case.

to that used in CALIC. The difference is the use of context
information. The contexts used for texture contexts are shown
in Fig. 11. For the LH (low-high) band and the HL (high-low)
band, the texture contexts are formed by the four neighboring
prediction errors and the parent errors. For the HH (high-high)
band, the two corresponding coefficients in the LH band and
HL band are used instead of the diagonally adjacent neighbors.
Prediction errors within the context are then quantized into
five levels using and as threshold. Energy contexts
are formed by quantizing the error energy in LH, HL, and HH
bands, respectively, as

(43)

(44)

(45)

where and are the parent prediction errors to the north
and west, and and are the brother prediction errors

TABLE V
ENTROPY OF PREDICTION ERRORS OFTEST IMAGES

of the current pixels, where is defined [31, (2)]; we chose
and all equal to 1. Energy contexts
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TABLE VI
ACTUAL BIT-RATE OF TEST IMAGES

are quantized to eight levels. Then, the error modeling is done
by using texture contexts and eight energy contexts for
a total of 25 000 compound contexts. With the context-based
error modeling in the adaptive IDPCM prediction, the entropy
of the prediction errors for different images are listed in the
third column in Table II. The improvement is about 1.62%
from 4.33–4.26 b/pixel.

There can be many reasons that the improvement in the
multirate case is less than that in the sequential case. Several
possible reasons include

1) the setting of the threshold values;
2) the selection of context information;
3) the neighborhood relationship is weaker in the multirate

environment (especially in the lower resolution levels),
etc.

The error modeling has no effect in the lower resolution
levels. Since most of the large prediction errors are found in
these levels, how to utilize the error modeling at these levels
becomes an interesting problem. The entropy improvement of
the prediction errors at different resolution levels are shown in
Table III. It can be seen that the entropy reduction by the error
modeling is only significant at the fine resolution level

Now, let us consider the multirate encoding. The coding
results for various images are shown in Table IV. To encode
the prediction error, the set partitioning in hierarchical trees
(SPIHT) method is used. The test images include the natural
images and the medical MRI images. In this simulation, the
block size is 32 32 corresponding to four decomposition
levels. The order of the halfband filters is four From
Fig. 9, it can be seen that is near zero. This indicates that
at least two zeros at is necessary for practical interpolation
corresponding to a linear interpolation. The value ofcan
also indicate the regularity of the filter. From the above
observation, the is set to be zero, and the remaining
three free parameters are decided by the adaptive
interpolation algorithm. If the length of the filter is , we
need neighborhood points at resolutionfor prediction a
point at resolution For comparison, the results with the S
transform and the SP transform are also shown in this table.
In the S P transform, the predictor C used in [1] is chosen.
The nonadaptive case is also shown. In this case, the seven-tap
Maxflat filter is used. In the case of adaptive IDPCM pyramid,

the results with error modeling are also shown. In most cases,
the adaptive IDPCM pyramid performs better than the SP
transform. The slight improvement due to the error modeling
can also be seen.

Direct decimation causes the aliasing problem. To remove
this, the primal lifting step is needed. A primal lifting step
consists of applying an update filter to the highpass
components to update the lowpass components. Let us denote

as the updated lowpass component. The primal lifting
[7] can be described as

(46)

With the primal lifting step, the equivalent analysis lowpass
filter can be described in the domain as

(47)

where is the transform of In general, one lowpass
filter can be obtained if the updated filter is chosen
appropriately.

One important thing to note is that the primal lifting step will
change the lowpass sequence during the iterative prediction.
Thus, not all the decimated pixels are used to determine the
Further, a full adaptive lifting scheme is too complex for the
practical applications. Therefore, two alternative approaches
are considered in our experiments. The updated filterused
in the primal lifting steps is kept fixed and set to be

In the first case, only the pixels in the finest resolution
level are used to determine the values within the
block. The frequency responses of the analysis lowpass filters

are shown in Fig. 12(a). It can be seen that effective
lowpass filters to reduce the aliasing errors can be derived with
the primal lifting steps. The resultant entropy are listed in the
third column in Table V. In the second case, the values
are determined the same way as the case without the primal
lifting steps. The frequency responses of the analysis lowpass
filters are shown in Fig. 12(b). The resultant entropy are
listed in the fourth column in Table V. For both of the two
approaches, the parameters are not optimal in minimizing the
total prediction errors. However, as shown in Table V, for the
first case, only a slight degradation is seen. The way to derive
the optimal values efficiently when the primal lifting steps
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are considered is still under investigation. The corresponding
bit rates are shown in Table VI. The average bit rate is about
the same as that of SP and is slightly worse than that without
the primal lifting.

V. CONCLUSIONS

A design method for adaptive predictor in the lifting scheme
was discussed. Based on the polynomial interpolation, a set
of basis filters is proposed to construct the predictor. The
nonmaximally flat adaptive predictor is shown to be useful
for interpolation of time-varying signals. For efficient com-
pression, the dynamic ranges of the weighting variables are
specially considered, and a different representation space is
used to represent them. With only the dual lifting, an algorithm
has been derived to minimize the total prediction error. With
only the dual steps, parallel computation of all the prediction
errors can be achieved. However, for progressive transmission,
the primal lifting is needed to reduce the aliasing error. This
will slightly increase the bit rate. Simultaneous minimization
of the prediction error and reduction of the aliasing error is a
problem for future research. In this case, an iterative step to
determine the predictor parameters is needed.
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