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Adaptive Predictor Based on Maximally
Flat Halfband Filter in Lifting Scheme

Wen-Jen Ho and Wen-Thong Chang

Abstract—For the complex short time-varying signals, a high- synthesis processes. On the contrary, in the rounding transform
order predictor does not always yield good performance. For [3], the downward and upward truncations are used in the
this, we investigate the use of a short-order adaptive predictor. forward and backward transform, respectively. The rounding
Since the maximally flat filters are the optimal predictors for ¢ f . imilar to th I'fé' h h the dif
polynomial signal prediction, the adaptation is based on the rans orm IS very S_'m' arto the ', Ing ‘?’C eme, w gre € '.'
combination of a set of maximally flat filters. For compression ference is that the lifting scheme is defined on the time domain,
efficiency, the dynamic ranges of the weighting variables are but the rounding transform is defined on thedomain.
specially considered. For this, t_)ased on _the Be_rnstein filters, For practica| image Coding, no filters can perform con-
another form to represent the weighting variables is used. These qiqianty hetter than others. Some commonly used design
two sets of weighting coefficients can be transformed into each h h d f ishi he fil
other with a simple linear transform. Thus, the adaptation can Parameters such as the order of vanishing moments, the filter
be made in both the time domain and the frequency domain. For tap length, etc., are not sufficient to specify the filter for
block-based image coding, the least square criterion is used to practical applications. For efficient coding, minimization of the
derive the weighting coefficients. Experimental results show that highpass components is a commonly used method. For com-
the adaptive predictor performs better than the S+P transform, ;. : : e :
the median edge detector (MED), and the gradient adjusted plex short tm.]e varying signals, a high ordfar predllctor Sjoes
predictor (GAP). not always yield good performgnce. Folr this, we_mvestlgate
the use of the short-order adaptive predictor. In this paper, we
focus on the design method of the adaptive predictor to be used
in the lifting scheme. The predictor used in the lifting scheme
is a halfband filter. Thus, an adaptive halfband filter is used

I. INTRODUCTION with the criterion to minimize the energy of the highpass com-

PPLICATIONS of filter banks for lossless image coding?onents. The primal lifting step [7] that updates the lowpass

have been shown in [1][6]. In these approaches, t§@Mmponents are kept fixed. In the extreme case, if the primal
filtered outputs are truncated to result in an integer to integng is neglected, the delta function becomes the analysis
transform. The S transform is the simplest way of obtainilgWpass filter and the halfband filter is the synthesis lowpass
the integer filtered samples. It can be seen as the inte§8fr The adaptation is done on a block-by-block basis to make
implementation of the Haar wavelet transform. To improve tHg€ highpass output of such a filter bank as small as possible.
coding efficiency, Said and Pearlman extended the S transfornt he reason to consider such a structure is that the prediction
to the SKP transform (S transform- prediction) [1], where a With the halfband filter with direct decimated signals possesses
prediction stage to predict the highpass component from th@me well-known properties. The tap length and the zero distri-
lowpass component was added. In fact, the S transform dxdfion of the filter are related to the order of the polynomials to
S+P transform can be seen as the special cases of the liftgyinterpolated. This is the so-callet}, condition mentioned
scheme [2], [7], [8]. A more general approach to constru? [9]. An immediate consequence of this theorem is that the
filter banks with a lifting scheme that maps integers to integefighpass components of the filter banks will be zero if the
can be seen in [2]. To reduce the levels of the gray valu@ignals to be processed are polynomial of degkee 1 and
downward or upward truncation is used [5]. the filter has/V zeros atr. In this particular case, the optimal

One lifting step consists of applying a predictor to the evdpredictor to minimize the highpass components of the filter

(or odd) samples and subtracting the result from the odd (eank is the maximally flat (Maxflat) filter [10]-[12]. To extend
even) samples. Eventually, after several lifting steps, equisich a theorem to the practical applications, an adaptive filter
alent lowpass and highpass components can be obtainedPaged on the linear combination of a set of maximally flat
each lifting step, the predictor output is downward truncated f#fers is considered. Since either the actual signals are often
result in an integer-to-integer transform. In the lifting schem&me varying within a short interval such that a single filter
the same downward truncation is used in both the analysis &@nnot be used to predict it well or the order of the signal to

be predicted is higher than the order of the filter, the actual
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Fig. 1. Lifting scheme. _
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such a design, the halfband filter is also expressed as a linear +2 12
combination of the Bernstein filter. The Bernstein filter will be 1k ]
discussed in detail in Section Ill. The weightings of the linear
combination of the Bernstein filter can be used to describe therig. 2. Decomposition structures of the interpolative DPCM pyramid.
image statistics in the frequency domain. There exists a linear

transform to map the representation space from the Bemstgit, storm. The dual lifting step can be regarded as a prediction
bases to the Maxflat bas?s- , stage to predict the highpass components, and the primal lifting
To capture the short time change of the signal, blockse, can be regarded as an update stage to update the lowpass
based adaptation is considered. For each block of signals, Qa&,nonents. The basic concepts of the dual and primal lifting
predictor to minimize the highpass components is used. In Qg are the same. In this paper, the design of the predictor to
experiments, the adaptive lifting scheme performs better thBQ used in the lifting scheme is considered. We focus on the

that of the nonadaptive S and+® transform. Further, our 4,5 step with the constraint to minimize the highpass energy
proposed adaptive predictor is comparable with the medigQcaq on the known lowpass components.

edge detector and gradient adjusted predictor, which are useg,q implementation of the integer dual lifting scheme is

in the LOCO-I and CALIC, respectively [13]-[15]. HOwWever, strated in Fig. 2. Formally, a top—down decomposition
LOCO-I and CALIC are single-resolution predictive COd'n%rocedure can be described as, foe 1 ~ J

schemes that do not have progressive decoding capability, as '
our proposed method does. Besides the prediction, a complete ¢’ [£] =12k

au

coding scheme consisting of the predicti#n error modeling, gj[k] = &2k + 1]
and set partitioning is also presented.

The organization of this paper is as follows. In Section Il, =2k +1] - {Z cnlp[2n — (2k + 1)]J
the basic structure considered in this paper and its relations "

with lifting scheme are introduced. According to the approx- ' '

imation property of the wavelet representation, polynomial =2k + 1] - {Z cnletfn — k — 1]J (1)
interpolation with regular halfband filters is briefly described.

In Section lll, application with a time-varying signal is dis'whereel[k]
cussed. Two forms of parameterized halfband filters are brie
described. The adaptive interpolation algorithm based on
parameterized halfband filters is also presented. In Section Iy
the experimental results are shown. Finally, in Section V, a ' '
conclusions is made. dL2k] = K]

n

= p[2k + 1] is the first polyphase component of
k]. For reconstructiong’[k] can be obtained with prediction
m its lower resolution versions plus the prediction errors.
‘bottom-up reconstruction procedure is, foe= J ~ 1

IIl. INTERPOLATIVE DPCM PYRAMID I+ 1] =& K] + {Z ¢ [n]p[2n — (2k + 1)]J

n

This section provides an introduction to the multirate struc-
ture considered in this paper. The lifting scheme is a flexible :gf"[k] + {Z Alnletfn — k — 1]J )
technique for construction of a wavelet through a series of
lifting steps. As shown in Fig. 1, the lifting scheme first splits . . i
a signal into its even and odd samples. Then, alternatifigte that the sequences[k],j = 1 ~ J can be obtained
primal and dual lifting steps are used to process the decima@icurrently whe_nj sequencé[k] is given; therefore, all the
samples. A dual lifting step consists of applying a fil@r prediction errorsd’[k],7 = 1 ~ J can be computed in
to the even samples and subtracting the result from the oplarallel [16]. Sinced’ [k];=1~0 are the differences between
ones. A primal lifting step consists of applying a filiérto the the interpolator’s output and the original signal, this scheme is
odd samples and subtracting the result from the even sampksiilar to that of the interpolative DPCM (IDPCM) [17], [18].
Eventually, after several lifting steps, the even samples wHiince the interpolation process is executed iteratively to obtain
become the lowpass components, whereas the odd samptesprediction errors with a pyramid structure, for convenience,
become the highpass components. In each lifting step, tive whole system based on the dual lifting scheme is called
filter output is truncated. This results in an integer-to-integéhne interpolative DPCM (IDPCM) pyramid.

n
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ol A. Accuracy of Approximation

— (k] '

2 { 12 HP(Z) H bl Slk] Th_e primary_ concern of thi_s paper is the_ design of the
predictor. In this section, we discuss the relation between the
interpolative scaling function and the polynomial function. The

ZP(_Z)M [ ﬂ[k] 2 | P | purpose i; to indicgte the necessary cqndition for polynomial
| L1 interpolation. More important, we will discuss the case when

the polynomial function is a time-varying one.
In the wavelet transform, a function is projected onto
. o ) _a space hierarchy;. The index j gives the time scale
Except for the truncation process, this kind of hierarchicgdformation At = 27. In practice, the levelj is determined
interpolation has also been used in [19]-[22]. In [19] angy palancing between the accuracy and the cost. The cost
[20], the simple bilinear interpolation is used. The compressigl approximately doubled from one level to the next since
ratios are shown to be higher than DPCM and in the rangee number of the basis functions and the coefficients is
DCT under equivalent test conditions [19]. In [22], a separabigyybled. The representation accuracy depends both on the
first-order interpolation is used, and entropy-constrained trelig|ing functions®(t) and the signalf(t). In the following,
coded quantization (ECTCQ) is used to code the predictighe accuracy of approximation with the interpolative wavelet
errors. The performance is claimed to be superior to that @fpresentation for a continuous function is analyzed.
JPEG. Consider a continuous functiory(t) with derivative
In fact, one critically subsampled pyramid, as shown iRG:)(#) o < i < N. It can be shown that ifd(¢) satisfies
Fig. 2, is exactly equivalent to one critically subsampled filtge condition
bank [23]. The filter bank is shown in Fig. 3. In analogy with =
the lossless DPCM, the integer highpass component can bez (t—k)"®(t— k)= b6(m), m=0~N-1 (4)
obtained similarly by truncating the noninteger number, as=—co
shown in Fig. 3. The symbol-] is the upward truncation, {hen ILFE) = FOlle < (M2 /NYIFN(®)]]e, where M
and the symbol|-| is the downward truncation. In the IDPCMijs 5 constant, and the norif(-)|l. = supcglf(®)| [26].
pyramid, the same downward truncation is used in both thee term (a72/¥ /N1)|| ™) (#)||. is the upper bound of the
_decomposition and reconstruction processes. On the_ Contr%ﬁyproximation error when the bagi€t) satisfying (4) is used.
in the filter bank, the upward and downward truncations afg, gerive this result, let us apply the Taylor series expansion

used in the analysis and synthesis parts, respectively. If theihe functionf(w) with respect to the point € R. That is
truncation is neglected, an associated set of biorthogonal bases N1

exists. The scaling function is called the interpolative scaling Flw) = Z Fm() (- 1™ + M@ (u— )N -
function since®(¢) is cardinal, i.e.,®(k) = 6(k),k € Z. = m! N!
According to the two-scale relation where is within the interval betweem and .

When the functionf(t) is sampled with a set of discrete
o(t) = > plk]®(2t — k) (3) points atu = 27k, 1,/(t) is defined as

L) = Y fERET - )

the values of®(¢) on the half-integer points can be computed

Fig. 3. Degenerate filter bank.

k=—oco
by ®(m/2) = X, p[k]®(m — k). Since &(k) = 6(k), oo N=1 (m)
®(k/2) = p[k]. This means that the filtesk] is the sampled - Z Z S ) (27 — )™
sequence of the scaling function sampled at half integer points. be—oo |Lm=0 m!
There is a close connection between a pair of biorthogonal FM )27k — N '
scaling functions and an interpolative scaling function [24], + N } b2t — k)

[25]. Itis easy to find that the waveletis(t) = &(2¢t—1). This N1
means that the wavelet is a translated and dilated version of the — M) & j -
scaling function itself. The dual scaling function is the delta Z Z (2k = )" (27t — k)

m!
function é(¢), and the dual wavelet is a linear combination of m=0 o b=
the delta function, i.e U (¢) = Xy (= 1) 1p[k + 1]6(2t — k). + 1 Z FNM Tk — )N B2t — k)
Strictly speaking, the delta functiof(¢) is not defined for NI~
any t. However, since they can satisfy the framework of oo
the biorthogonal wavelet transform, the functiom$t) and = f(t) Z d(27t — k)
W(t) are still named the dual scaling function and the dual b —oo
wavelet, respectively. A thorough treatment on the use of N—1 o) & ' '
interpolating wavelet transform can be found in [16]. This + Z — Z (2k—t)"®(277t - k)
kind of transform is claimed to be optimal from the point of e L S S
view of computing individual coefficients in parallel since the ] = . ' . '
coefficients are obtained from linear combination of samples + 51 > Mm@k -)Ne(27t - k). (6)

rather than integrals. k=—o0
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Since X2 (27k — t)™®(277t — k) can be rewritten as the discrete form as
(—1)m2m B0 (+— k)" ®(t — k), by (4), we have

k=—oc m n
Covan & i D (3 -F) plm—2t =6} n=0 (12)
LI =+ —g— > SDmE-kVer-k)
k=—oco 7) if t = (m/2) is considered. This property is the sum rule
and Sk (=1)*k"plk] = 0, n = 0,~N — 1 of the halfband filter.
N This is theA, condition mentioned in [9], indicating that there
1) = F®lle < = IFV Wl are N zeros atw = r. N
LN ) The above-mentioned Strang—Fix condition indicates that an
~C(AH)T (Ol (8)  N-regular halfband filter can be used to interpolate a polyno-

holds, whereM = sup.p % [t — k|V|®(¢ — k)|, and mial of degree/N' — 1. The minimum length of anV-regular

C = (M/N"). The constanCC and the exponen¥ depend halfband filter is2V — 1 and is called the maximally flat filter.
on the choice of®(t). When constructingl; f(¢), the step The above derivation shows the results that can be obtained
from At = 27 to At = 2/~ divides the approximation error when the maximally flat filter is used for interpolation. What
by about2?. Thus, the numbetV is critical. Usually, the (6) indicates is how the sampled points frgfft) can be used
constantC is less critical. The norn| f¥)(¢)||. of the Nth to interpolate the same polynomial functigit).
derivative depends on the sign(t). If the signal f(t) is For practical application, the signal is usually a time- or
smooth, thenf(™)(¢) is small, and the error will be small. If space-varying one. The order of the underlying polynomial is
the signalf(¢) contains abrupt changes, thgf¥)(¢) is large, difficult to predict in advance. For abrupt changing signals, we
and the error will be large. are often faced by the case of insufficient sampled points. In
What (8) indicates is that if the functigf{(¢) is a polynomial this situation, perfect polynomial reconstruction is not possible
of degree less than or equal M — 1, the interpolated signal because the number of zeros of the filterras less than the
L; f(t) will reproduce it if &(¢) satisfies (4). This fact has beerprder of the polynomial. This has been mentioned briefly above
indicated in [9]. However, if the functioif(¢) is a polynomial when the degree of the polynomial is larger thsn- 1 and
with degree larger thatV — 1, the approximation error will be the filter has onlyV zeros atr. Thus, for practical application
dominated by(M2/N /NY| ) (t)]|.. We will discuss this with a filter of fixed length, the prediction error is usually due
case later. to the above-mentioned phenomena. Since the error cannot
Now, let us concentrate on some basic properties of the avoided with a single filter bank, we then seek to use
basis. With the two-scale relation shown in (3), the propergn adaptive filter bank to minimize the prediction error. The
of the basis shown in (4) can be related to the property efisiest way is to use a degenerate filter bank with variable
the filter p[k]. Thus, the accuracy of the interpolation can bbalfband filters.
determined from the property of the filter. The highest degree

of the interpolated polynomial can be determined frolik] or . PARAMETERIZED HALFBAND FILTERS
from P(e?*). With the Poisson summation formula [26]

As mentioned in Section II-A, for a polynomial up to degree
Z (t— k)"t — k) = V2 Z (=)™ (2 k) eI 2R N — 1, the NV regular halfband filterp[k] can be used to
. = recover it from its sampled values. Let us denote this class
. (9) of polynomials as®y_;. Thus, with an interpolative filter
can be obtained, where(w) denotes the Fourier transform ofbank, if ¢/[k] = f(k/27), where f(t) € ©y_,, the highpass
‘P(t) Therefore, the condition in (4) is also equivalent to Componentﬂj—i_l[k] = 0 for any J The function f(t) can
. be recovered by iterative interpolation from its sampi€#]
(m) ) = &(k =0~N-— . . . :
T (2rk) = 8(k)b(m),  m=0~N-1 (10) 5ng the same filtep[k] at each stage. Since the filté¥(z)
has at leasiV zeros atr, the minimum length of such a filter

frequenciesw = 2k, k # 0. This is the so-called Strang—Fix'> 2V — 1. Thus, the minimum required number of sampled

condition [9]. Therefore, (4) can be regarded as the Strang—ﬁ&rt?_ltneede_g] to rector_lstruct the |fioly_n0m|aNs_ v flat
condition in the time domain. ilter with most its zeros atr is a maximally fla

Thus, if <i>(w) satisfies the Strang—Fix condition, then th%Ma):Llat) ngetr- 'I;he M?xflat .fl||tel’. IS tlheToptlmaIthmmlfrfnurtn f
corresponding requirement on the filtglé] is that it hasN l\jngﬂ tﬁ:ﬁ Ictor t?]r PO yr:tomlf s||gna s lptsee I ? € Iei 0
zeros atr, i.e., the transfer functiof?(e’*) can be represented . axfiat niters on the relsu s ofpo yr;"m'a Interpolation, 1€t us

first show an examplef! (¢) = (¢—1)° —(¢—1). The sampled

as . . . 1

sequences of the cubic polynomifd(t) with At = &3 and
P(7) = (14 )N R(e™) (11) At = i are shown in Fig. 4(a) and (b). The filter used for

interpolation isP(z) = (22/16)(1 + 27 1)*(—z +4 — z71),
where R(e/™) # 0. A filter with N zeros atw = =7 is a which is a seven-tap Maxflat filter. As discussed in Section II-
N-regular filter. With theN-regular filter, the correspondingA, any filter with more than four zeros at can be used
scaling function and its translates reproduce polynomials tpinterpolatef!(t). The corresponding interpolated sequence
to degreeN — 1. From the time-domain Strang—Fix conditionafter four iterations with this filter is shown in Fig. 4(c). The

this fact can also be seen. Condition (4) can be rewritten énrors between the interpolated signal and the sigih@t/64))

This means thatb(w) must have zeros of ordeN at all
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with At = T (b) Original sampled sequence witkt = 4 (c) Interpolated  with At = b . (b) Original sampled sequence witkt = =. (c) Interpolated
signal with the seven-tap Maxflat filter. (d) Errors between the original signsignal with the seven-tap Maxflat filter. (d) Errors between the original signal
and the interpolated signal. and the interpolated signal.
are plotted in Fig. 4(d). As can be seen, the interpolated resul? : : — 5 ; " T+
with the Maxflat filter is the same ag'(k/64). _a : L 4 ' :
] : : d
Now, let us consider two practical situations. The first i%, SRy 83 +
CI) . ot
when the degree of the polynomial is larger thah— 1. s : / gz
That is, the sampled points are less thénThe second case gz Y A @ ¥

corresponds to a time-varying signal. For these two casesi} / : 1 oV L
perfect polynomial reproduction cannot be obtained. Con5|de5 : ; : i

the two test signals es v 152 o o5 1 s 2
, () (b)
fAty=@t—-1°—-(—-1) and
5 0.05
3, <05 ~ P
£t = 2t3 — 0.13, 05<t<1 g ] °
3 4+t —0.07, 1<t<15 23 5 -0.05
0.33t> — 0.87t + 5.64, 1.5 <t. 5, G g
=%

The results interpolated with the seven-tap Maxflat filter a@,
shown in Figs. 5 and 6. As shown in these figures, there

-0.15

0.2 "
exist errors in the interpolated results. The functjpi{t) is W os i 15 2 o o5 1 152
a time-varying signal. (© (d)
To overcome such problems, in this paper, a combineg . Interpolatlon of the polynomigi(z). (a) Orlglnal sampled sequence
interpolation scheme is proposed. That is, interpolation withith At = ;. (b) Original sampled sequence witht = . (c) Interpolated

muItipIe Maxflat filters is proposed The result of the inter&gnal with the seven-tap Maxflat filter. (d) Errors between the original signal
and the interpolated signal.
polation is the linear combination of the results from all the
Maxflat filters. The idea is to treat the above-mentioned two
cases as signals composed of polynomials of many differdr@sed predictive coding, we are considering a non-Maxflat
orders. Thus, in the prediction process, along the time or spdwdfband filter. There are two forms that can be used to
domain, each point to be interpolated will be characterized bgpresent the non-Maxflat halfband filter. The first form is the
a set of parameters corresponding to the weightings for all tisect linear combination of Maxflat filters of different lengths.
Maxflat filters used. From the coding point of view, the codinghis form is simple, but the distributions of the weighting
efficiency will depend on the distributions of these weightingarameters from many different blocks are quite large. For this,
parameters. In order to maximize the coding gain, block-basether bases derived from Bernstein polynomials are used [27],
prediction is considered. That is, we seek a common set[@8]. These basis filters can be called Bernstein filters. A non-
parameters for a block of signals such that the total predictidfaxflat filter can be described as the linear combination of the
errors are minimized. Bernstein filters. In the following, we first discuss the property
A linear combination of the Maxflat filters with differentof the Bernstein filter. Then, the transformation between the
orders will no longer be a Maxflat filter. Thus, for the blocktwo forms will be discussed.
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The nth-order Bernstein polynomials are defined as

b?(t)z(?)ti(l—t)“, i=0,n
1

0<t<1
where the binomial coefficient§}) are given by

n!
ny _ ) o———, 0<i<n
=8 dn =)
‘ 0, otherwise.

The Bernstein polynomials have the following properties:

br(0) = 1, b(1) = 1, and X, 07(¢) = 1 [29].

(13)

Givenn + 1 equally spaced sampled valugs0 < i < n,
over the interval[0, 1], the nth-order approximationB,,(¢)

based on Bernstein polynomials is defined as

:Z b (1),  0<t<L

(14)

Freqency Response
Freqency Response

Fregency Response
Freqency Response

] 1 2 3 4 0 1 2 3 4

() (d)

The sampleg:; are the weighting coefficients of the approx-
imation B,,(t). With the transform¢ = sin®(w/2) [11], [27],

the functionB,, () over the interval [0, 1] can be transforme
into the frequency responséP (e’v) of a filter over the

interval [0, 7].

It has been shown in [27] that to design a halfband 1‘|Ite1;j

the weighting coefficients,; can be set as

 fl-w, 0<i<N-1
M= o, N<i<2N-1

with «; = asny_1_;. With such design parameters, the half-

band condition can be achieved. That is
Bon_1(t) 4+ Bon_1(1 —t) = 1, 0<t<1.

The approximation functionByy_1(t) can be transformed
to the function 1P(¢i*"), and the approximation func-

(15)

Fig. 7. Frequency responses of the Bernstein filtersB@)z). (b) B} ().

d(C) Bj(2). (d) Bj(=).

can be rewritten as

4N-2 [N-1 N — 1 o z-l—j
-2 ()2 G
k=0 1=0 j=0

AN =220\ (20\] oy 1
2%—j J\i)J”
N-1 4N-2
1 2N —1
X (X (s ()
=0

k=0

tion Bany_1(1 — ¢) can be transformed to the function J=0
L P(e?"=)). Therefore, according to (15), the filtgt(e/*)

transformed fromBs_1(¢) is a halfband filter.

Using the mappingcosw = (2 + 27 1)/2, P(e’*) can

be transformed into the transfer functid?(z) with 4N — 1
coefficients in thez domain. However, among th&éN — 1
coefficients, onlyN of them need be specified due to the i=0

symmetric halfband condition. With this mapping(z) is where the filterPy(z) is a Maxflat filter with2N zeros at

then obtained as

P(z) =2~ 1% {AZ:_: (_1)i<2Ni— 1)

=

. (1 + 2—1)2(1\’—1—1‘)(1 _ Z—I)Qi
- ]\z_:l ) <2N = 1)
-(1+Z )2(]\ 1— z)( _271)21‘

IN—1
. 2N — 1
+ Z (-1) a?]\’—l—z( ; )

=N

. (1 +Z—1)2(N—1—i)(1 _ 2—1)21‘}.

(16)

LS Ly AN =220\ (20N | | awoin
; 2k —j ]
pord ‘ ‘

J

=Py(2)+ > ;B (2) (17

z = —1, and the filterB{¥ (z) is the associateith Bernstein
filter with length 4NV — 1. These Bernstein filters are also
halfband filters. As an example, the frequency responses of the
15-tap Bernstein filter8#(z),i = 0 ~ 3 are shown in Fig. 7.
There will be N Bernstein filters associated with a maxflat
halfband filter with lengttdN — 1. The Bernstein filters are
bandpass filters with peak frequenciescat=!(2N — 2i —
2/2N —1),i =0~ N — 1. It can be seen from these figures
that the frequency response of the Bernstein filter such as
BN(e/*),i =0~ N —1 has only one peak over the interval
[0, (w/2)]. The advantage to such a representation as shown in
(17) is that only one of the parametersneeds be adjusted if

a portion of the frequency respons¥c’*) is to be specified.
Therefore, the parameters; control how each part of the
frequency regions is to be adapted to the signals. Thus, the

This is the halfband filter with lengthV — 1 with «; as the linear combination of the Bernstein filters can be viewed as a
design parameter. To derive the Bernstein filter, the equatistequency-domain design method.
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With the halfband condition in (16), we hayi2k] = 6[k]. whereE"™! denotes theV x N upper-half matrix ofE,,, and

Let us denote! [k] = p[2k + 1]. With the first polyphase com- £ denotes theV x N lower-half matrix ofE,,,. Therefore,

ponente* [k] in the vector form, i.e.¢' = (¢'[-N],e'[-N+ the design of a non-Maxflat filter can be described as
1],---, €[N — 1])*, (16) can be rearranged as

e = ey + Fa (18) el =ey +Enfl (22)
where where 8 = [Bn,8n_1, -+, 31]7 is the weighting vector of
wo,0 Wo 1 Wo,N—1 the combination.
w10 w1 e WL N—1 Now, we discuss the relation between the two forms of the
F= . . . . halfband filters and derive the transformation between them.
' ' ' ' Since the first polyphase components of the Maxflat filters
WaN—-1,0 W2N-1,1 ~"°° W2N-—-1,N-1

. ~half ~ ) j
1 (2N-1 are symmetric.E,. = I x E™¥ The matrix B! is a
Wk < ) lower triangular matrix, its inverse matrix always exists, and

the following relations hold:
2k . .
> (2 () =B (B T= By < (B @9
J=0

. o The matrix(E!)~1 can be regarded as the transform matrix
3 Z (= 1)+ <4N -2- 21) <2'L> th?tlrtransforms the identity matrik to the polyphase matrix

— 2k —j 7 E;>". Consider the polyphase compondri in (18). Since

=0 the first polyphase components are symmetfigy can be

The vectorey = (ex[—N],en[-N +1],- -, en[N — 1)T half half -
corresponds to the first polyphase component of the Maxflat Fa= { Fhalf:|a7 whereF " = I x FIf
filter. It has2N zeros atr. Its elementey[k] is given in the
form = [ﬂFhaHa. (24)
N—-1 2k L
2N —1 (—1)7+i
GN[—N‘FI{J] = Z < i ) Z W ; half i
o = The matr_|xF (jenotes theéV x N upper-half matrix o_fF.
AN — 2 — 20\ /% Substituting (23) into (24), the componekity can be rewritten
. , ) as
2k =y J
E=0~2N—1. (20) Fa = E,, (B~ 1l
The vector = (o, a1, - -+, an—1)T consists of all the design =E,.f. (25)
parametersy;,i =0~ N — 1. If all the ¢;,i =0~ N — 1
are set to zero, the filter becomes a Maxflat filter. Thus

_3: 3 T’ B e 3 T _ Ehalf —thalf—. 26
B. Non-Maxflat Filter B=nPy-1, AL = (E7) @  (26)

In the beginning of this section, we have mentioned the Equation (26) describes the transform between the two
design of a non-Maxflat filter by linear combination of a sefepresentation forms. Thus, for any non-Maxflat filter, the
of Maxflat filters. Let us first defind as the identity matrix €ven-length first polyphase component can be written as

with 1’s on the cross diagonal. A 8 3 example is the linear combination of the even-length first polyphase
components of either a set of Maxflat filters or as a set of
- 0 0 1 Bernstein filters associated with a corresponding Maxflat filter.
I'=10 1 0F. For example, consider the case 8f = 2. From (18), the
100 Bernstein representation form is
The polyphase matrix that consjsts of.the_first polyphase -1 1 3
f:ompgnents of a set of Maxflat filters with different lengths L 9 15 =3 [
is defined as e =5x%(lg|T| {5 _3 [OJ (27)
en[—N] 0 0 0 -1 -1 3
GN[ N+1] @N—l[ N+ 1] 0 0 where
E, = el Jhalf _ 1 [ -1 3 }
: : e afl] 16|15 -3
CN[N - 2] CNfl[N - 2] 0 0 . . i
L en[N —1] 0 0 0 Jonun The half-polyphase matrix of the Maxflat filters is

B nate _ 1 [—1 0
= |:Eha1f:| (21) Ern = 1_6 |: 9 8:| :

m
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Its inverse is are linearly related, minimization with respect 4g is equal
16 0 to minimization with respect t@;. In the following, we will
€ e { 18 2}. discuss the minimization with respect #q.

Let us divide the input sequence€[k] into blocks with

Therefore, the representation wittcan be transformed {as 2+ samples. In each block, one optimum filter is determined.
For mathematical convenience, the error sequences in all the

-1 3 r —j
==X —16 0 T, 16 | |90 ). (28) resolution levelsd’ [k],i = 1 ~ J are described in vector
B\[18 2]|5¢ T/lm form as
Thus, we have the following relation: d— ((—iJ7(—lJ—17 o 731)T (30)
-1 —1 h
9 where
e =L g | T+ (@0 — 3a1) 9 P . '
1 1 & =@pLd [, AR -1 @D
0 The pointsc?~1[2k + 1] to be predicted are described as
8
+ (=30 +3an) 8 (29) y= (CJ—l’ CJ—Q’ L. ’CO)T (32)
0
where
where the vectorsz[-199 —1]7 and [0 8 8 0]” are the o e
first polyphase components of the Maxflat filters with length d = (1,3, 277 — 1), (33)

N =2 and N = 1, respectively.

Both forms can be used to describe a general halfb
filter. From the coding point of view, the Bernstein fornf’
@ is better due to the smaller dynamic rangeagfbut the e=Uel (34)
physical meaning of the interpolation in the time domain
can be more easily seen with thieform. In (29), the first wheree!, as shown in (18), is the first polyphase component
term can be seen as the Lagrange interpolation of a cubicthe halfband filterp[k], and
polynomial with the Maxflat filter. The second and third
terms are the compensation terms. The second term of (29) U0
is also the Lagrange interpolation of a cubic polynomial, but U— w1
is weighted bys, = «g — 3a;. The third term of (29) is :
the Lagrange interpolation of a first-order polynomial, i.e.,
linear interpolation. This term is weighted B} = —3«g +
3a1. Therefore, interpolation with the non-Maxflat filter is avhere the row vecto; . is defined as
g;n;}?fnatlon of various odd degree Lagrange filters welghtedujyk (I[N — k1], d[-N — k], I[N — k—2])

Therefore, if the point to be interpolated and its surrounding j=1~J, k=0~2/%170 1 (35)
neighbors are on a polynomiél,y_1, the Maxflat filter can o ) .
be used to interpolate it. If the point under consideration is n};pe pre_dlctlon errors over all resolution levels can be rewritten
on the polynomial passing through its surround2dg known 1N Mmatrix-vector form as
data points, it cannot be recovered by the Maxflat filter. For d=y-Uée,
this, a non-Maxflat filter with appropriate weightingscan be _
used. From the above discussion, it can be seen that the non- =y~ Uley + Fa)
Maxflat filter is very useful for general signal interpolation. In =(y—Uen) - UFa
the following, we will discuss a block-based coding scheme. =g—-Ua
Within a block, a common set of parameters is chosen for all
the points. This is equivalent to using a filter bank for a blockhereg = y — Uey,U = UF. Let® = U U andv = U §.
of signals and adjusting the parameters of the filter bank fghe average squared prediction errors can be formulated as
different blocks. Thus, an adaptation scheme will be discussed _
in the following section on a block-by-block basis. I3 =g"g — 2" a+ " ow. (36)

anbe corresponding interpolated sequerge![2k + 1] of
J=1[2k 4 1] is described in matrix-vector form as

Uy 27 +1-7 1

Our objective is to determine the parametarthat minimize
the average squared errhd||3.

In this section, we discuss the adaptive algorithm used toThe gradient vector is the column vector by differentiating
determine the design parameters of the halfband filter. With t{@5) with respect to the vectar

above pyramid decomposition, a block-based coding scheme _
is considered. The criterion is to minimize the sum of all the Vo a(|ld|I3)
prediction errors over all resolution levels. Sineg and 3; da

C. Adaptive Interpolation

= 20@ — 2v. (37)
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Fig. 8. Average squared errors versus the number of parameters (c) (d)

Fig. 9. Distributions of the values of the designed parametersada)b)

. . . - 1. (€) az. (d) as.
Since the squared error is quadratic, the global minimum & @ @2 @ @3

obtained whenv = 0. SettingV = 0 in (37) gives the
optimum parameters vectar* as

80

ot =01y (38) %
If © is positive definite, thef{d||3 attains its minimum value, * “
as in (38). If© is not positive definite, an optimal solution ,, "
can still be determined by replacing the inverse with a pseudd
inverse. We can use the least mean square (LMS) algorithm —-—=4%"——— T T s s o s
find the optimal parameters® with a few iterations [30]. Since @ ()

the filter is determined based on the known data sequence with
LMS algorithm, this optimization is a data-dependent cas#
The corresponding minimum error is given by

Iz =g"g—v"a" (39) w0

40
IV. EXPERIMENTAL RESULTS 20 J\/\\ 20 M
In the above sections, we have described the objective gf

o

our algorithm. These include the modeling of the signals a& ™ = ° *° ™ *® s s s e
polynomials, the optimum filter for polynomial prediction, and © (d)
the adaptive mechanism for block-based coding of practiday. 10. Distributions of the values of the combination weighting. {g)
signals. In this section, some simulation results are present@&lf’b' (©) fs. (d) fa-
For each block, a single interpolator is used for prediction.
The resultant representation for each block consists of timelicates that a single filter bank is not sufficient to attain the
prediction errors hierarchically from & 2 to 4 x 4, from optimum compression. Since the side information to encode
4 x 4t08x 8, ---, etc. The values ofi* are found by using the parameters can be kept very small, the adaptive one is a
the adaptive interpolation algorithm described in Section lIbetter choice.
C. For each block, extra bits are needed to encode the valu®&low, we discuss the choice of the weighting parameters.
of &*. This is the choice of the representation space. The distributions

First, we show the need for adaptive prediction. The averagkthe values of the design parametersfor image “Lena”
squared errors versus the order of the filter for the teate shown in Fig. 9. The distributions of and «; are con-
image “Lena” are shown in Fig. 8. It can be seen that theentrated in the neighborhood of zero. The distributiongof
average squared error is a monotonically decreasing functimmd ez are within the interval 1, 1] and [0, 2], respectively.
of the order of the filter. However, the average squared errbhese distributions of the values of the parametefsr image
saturates when the order of the filter is larger than four. Frena” are shown in Fig. 10. In this case, the dynamic ranges
comparison, the average squared error with the nonadaptdie3; are larger than that af;. This is because the frequency
Maxflat filter is also shown. In this case, the average squaresimpensation form provided by the Bernstein filters are more
error did not decrease with increasing order of the filter. Thigable than the time domain adaptation form provided by the

80

60 60
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TABLE | TABLE I
ENTROPY OF PREDICTION ERRORS OF TEST IMAGES ENTROPY OF PREDICTION ERRORS OF TEST IMAGES
Images | MED | GAP | Adaptive IDPCM pyramid Images | CALIC | Adaptive IDPCM pyramid + error modeling
couple | 2.74 | 3.00 2.80 couple 2.57 2.79
face 4.79 | 4.65 4.61 face 4.58 4.59
girl 4.17 | 4.08 4.09 girl 3.97 4.08
hat 4.50 4.41 4.40 hat 4.31 4.18
jet 393 | 4.25 4.28 jet 4.17 4.02
lena 4.55 | 4.39 4.35 lena 4.29 4.25
fondon | 3.78 | 3.93 3.77 london 3.74 3.75
baboon | 5.77 | 6.26 6.04 baboon 6.16 6.09
MRI1 444 | 440 4.24 MRI1 4.17 4.24
MRI2 4.74 | 4.68 4.58 MRI2 4.47 4.43
MRI3 440 | 4.34 4.29 MRI3 4.15 4.18
MRI4 458 | 454 4.53 MRI4 4.34 4.51
MRI5 445 | 441 4.37 MRI5 4.21 4.32
Average | 4.37 | 441 4.33 Average | 4.24 4.26

Maxflat filters. From the coding point of viewy, is chosen
rather thang;. 0O

In the following, the efficiency of some different adaptive “\%1
prediction schemes are investigated based on the measure of E\ =N

zero-order entropy, as shown in Table |. The first predictor
considered is the median edge detector (MED) [14]. The
MED is used as the predictor in LOCO-I for lossless image J
compression [13]. The MED selects the median from a set =
of three predictions to predict the current pixel. The second

predictor considered is the gradient adjusted predictor (GAP) Fig. 11. Contexts used for texture contexts.
[13]. The GAP is used as the predictor in CALIC [15]. CALIC

is a lossless image coder with an extra prediction stage that TABLE Il

handles the prediction error. This technique will be briefly AVERAGE ENTROPY AT DIFFERENT RESOLUTION LEVELS

reviewed in the following. The GAP adapts the prediction
according to local gradients in the neighborhood of the current

: : : . | dU[k] | d?[k] | dOlk] | d'[K]
predicted pixel. One point to be noted is that both the CALIC No error modeling | 4.18 | 462 | 5.38 | 6.00
and LOCO-I are single-resolution predictive coding schemes. Have error modeling } 4.10 1 4.61 ‘ 5.38 ‘ 6.00

The entropy of prediction errors with the MED, GAP, and
IDPCM predictor are listed in the second, third, and fourth

columns in Table I, respectively. As can be seen from the ] ) . o
results, minimizing the prediction error leads to the lowedvely. The vector is then quantized to an eight-bit binary

average entropy over the entire test images. numberb-bg - - - by using the prediction value as Fhe threshold
Now, let us discuss some well known techniques that a&P]- Energy contexts are formed by quantizing the error

used to deal with the prediction error for efficient coding. ThENergy4, which is defined as

performance of a predictor encoder can often be improved with A = ady, + bd, + cleg| (41)

these techniques. In multirate prediction, the zero-tree and set

partitioning are very efficient to encode the prediction error. mwhere dj,,d,., and ¢,, are defined in [13, (5)]. We chose

sequential prediction, errors modeling and feedback technique= b = 1 andc = 2. A is then quantized to eight levels

proposed in [15] perform very well. In the following, we firstby using the bins

investigate the performance of error modeling in the multi-

rate prediction. Then, we examine the encoder performance

affected by the use of error modeling and set partitioning. 45 =60, g6 =85, ¢7=140. (42)

In .CALIC, the contexts to model the prediction errorgyith these settings, the error modeling is done by using
consist of the texture contexts and the energy contexts. Textyee oyt re contexts and eight energy contexts for a total of
contexts are formed by quantizing the local neighborhogghsg compound contexts. In CALIC, the estimated error is
pixels into a binary vector. The vector of local values ig,qp compared with the GAP prediction error to generate an
selected as improved prediction error. With this approach, the entropy

[zo, - - -, x7] = [n,w, nw, ne, nn, ww, 2n — nn, 2w — ww of the prediction errors with different images with CALIC is

(40) listed in the second column in Table II. It can be seen that the

performance is improved about 3.85% from 4.41-4.24 b/pixel.

where n, w, nw,ne,nn, and ww denote north, west, north- The use of error modeling in the multirate prediction has
west, north-east, north-north, and west-west neighbors, respalso been mentioned in [31]. The method employed is similar

g1 =9 q=15, q3=25 qu =42
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TABLE IV
AcTUAL BIT-RATE OF TEST IMAGES

Images S | S+P | Non-Adaptive | Adaptive IDPCM pyramid | +-error modeling
couple | 3.72 | 2.93 3.23 3.09 3.08
face |5.14 ] 4.92 4.88 4.75 4.73
girl 4.65 | 4.42 4.44 4.31 4.30
hat 5.08 | 4.69 4.73 4.64 4.38
jet 4.85 | 4.61 4.69 4.58 4.50
lena 4.57 | 4.43 4.47 4.37 4.31
london {4.33 | 3.96 4.25 4.14 4.12
baboon | 6.66 | 6.49 6.53 6.42 6.48
MRI1 [ 4.87 | 4.18 4.58 4.25 4.25
MRI2 | 5.21 | 4.58 4.96 4.51 4.48
MRI3 |4.86 | 425 4.60 4.20 4.11
MRI4 | 5.07 | 4.46 4.89 4.78 4.76
MRI5 | 4.92 | 4.32 4.66 4.24 4.19
Average | 4.92 | 4.48 4.69 4.48 4.45

Amplitude

Amplitude

3.5

(b)

Fig. 12. Frequency responses of the resultant lowpass analysis filters. (a) First case. (b) Second case.

to that used in CALIC. The difference is the use of context TABLE V
information. The contexts used for texture contexts are shown ENTROPY OF PREDICTION ERRORS OFTEST IMAGES
in Fig. 11. For the LH (low-high) band and the HL (high-I0w) Tmages [ No primal lifting | With primal lifting 1 | With primal lifting 2
band, the texture contexts are formed by the four neighboringpuple 2.80 2.87 311
prediction errors and the parent errors. For the HH (high-high) o PR o
band, the two corresponding coefficients in the LH band andfat 4.40 446 4.49
HL band are used instead of the diagonally adjacent neighbors jet 4.28 4.37 4.52
Prediction errors within the context are then quantized intolleféa ;g? ‘;-‘; i-‘;‘;
1 H ondon . - .
five levels using+3 qu +13 as threshold._ Energy contexts , ., 6.04 6.09 6.23
are formed by quantizing the error energy in LH, HL, and HH R 404 1.32 453
bands, respectively, as MRI2 4.58 4.63 4.87
MRI3 4.29 4.38 448
Arg = MRI4 4.53 462 472
LH o+ alh|nn| + blh|pn| (43) MRI5 437 4.43 4.56
Apr =6+ aplww| + bpi|pwl (44)  Average 133 140 154
Agg =6+ aulen] + bunlcul (45)

wherep,, andp,, are the parent prediction errors to the nortof the current pixels, wheré is defined [31, (2)]; we chose
and west, and;, and ¢;,; are the brother prediction errorsag,, ang, ann, bin, by, andby,;, all equal to 1. Energy contexts
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TABLE VI
AcTUAL BIT-RATE OF TEST IMAGES

Images | With primal lifting 1 | +error modeling | With primal lifting 2 | +error modeling
couple 3.14 3.10 3.24 3.19
face 4.79 4.76 4.93 4.89
girl 4.35 4.33 4.35 4.33
hat 4.70 4.64 4.80 4.73
jet 4.64 4.59 4.68 4.62
lena 4.42 4.37 4.56 4.50
london 4.15 4.12 4.26 4.22
baboon 6.45 6.41 6.58 6.53
MRI1 4.29 4.25 4.36 4.30
MRI2 4.54 4.51 4.59 4.55
MRI3 4.21 4.17 4.26 4.21
MRH4 4.79 4.76 4.84 4.76
MRI5 4.26 4.23 4.40 4.38
Average 4.52 4.48 4.60 4.55

are quantized to eight levels. Then, the error modeling is dotie results with error modeling are also shown. In most cases,
by using 5° texture contexts and eight energy contexts fdhe adaptive IDPCM pyramid performs better than thePS
a total of 25000 compound contexts. With the context-base@dnsform. The slight improvement due to the error modeling
error modeling in the adaptive IDPCM prediction, the entropgan also be seen.
of the prediction errors for different images are listed in the Direct decimation causes the aliasing problem. To remove
third column in Table Il. The improvement is about 1.62%his, the primal lifting step is needed. A primal lifting step
from 4.33-4.26 b/pixel. consists of applying an update filtes{l] to the highpass
There can be many reasons that the improvement in themponents to update the lowpass components. Let us denote
multirate case is less than that in the sequential case. Sevétft] as the updated lowpass component. The primal lifting
possible reasons include [7] can be described as
1) the setting of the threshold values; i ; —j
2) the selection of context information; ¢'[k] = <'Tk] + Z d [k — sl (46)
3) the neighborhood relationship is weaker in the multirate !

environment (especially in the lower resolution levels)Vith the primal lifting step, the equivalent analysis lowpass
etc. filter can be described in the domain as

The error modeling has no effect in the lower resolution H(z) =1+ 2P(~2)S(2?) (47)
levels. Since most of the large prediction errors are found in

these levels, how to utilize the error modeling at these levelthereS(z) is the » transform ofs[]. In general, one lowpass
becomes an interesting problem. The entropy improvementfiffer can be obtained if the updated filtei(z) is chosen
the prediction errors at different resolution levels are shown éppropriately.

Table IlI. It can be seen that the entropy reduction by the errorOne important thing to note is that the primal lifting step will
modeling is only significant at the fine resolution leve= 1. change the lowpass sequence during the iterative prediction.
Now, let us consider the multirate encoding. The codiriphus, not all the decimated pixels are used to determine.the
results for various images are shown in Table IV. To encodrrther, a full adaptive lifting scheme is too complex for the
the prediction error, the set partitioning in hierarchical tregwactical applications. Therefore, two alternative approaches

(SPIHT) method is used. The test images include the natusaé considered in our experiments. The updated fi{i¢used
images and the medical MRI images. In this simulation, tha the primal lifting steps is kept fixed and set to k] =
block size is 32x 32 corresponding to four decomposition(§[7]/2). In the first case, only the pixels in the finest resolution
levels. The order of the halfband filters is fau¥ = 4). From level J = 1 are used to determine the values within the

Fig. 9, it can be seen that, is near zero. This indicates thatblock. The frequency responses of the analysis lowpass filters
at least two zeros at is necessary for practical interpolation4 () are shown in Fig. 12(a). It can be seen that effective
corresponding to a linear interpolation. The valueagfcan lowpass filters to reduce the aliasing errors can be derived with
also indicate the regularity of the filter. From the abovthe primal lifting steps. The resultant entropy are listed in the
observation, thexg is set to be zero, and the remaininghird column in Table V. In the second case, the values
three free parameters; ~ «3 are decided by the adaptiveare determined the same way as the case without the primal
interpolation algorithm. If the length of the filter 48V —1, we lifting steps. The frequency responses of the analysis lowpass
need2N neighborhood points at resolutignfor prediction a filters H(z) are shown in Fig. 12(b). The resultant entropy are
point at resolutiory — 1. For comparison, the results with the Sisted in the fourth column in Table V. For both of the two
transform and the 8P transform are also shown in this tableapproaches, the parameters are not optimal in minimizing the
In the S+P transform, the predictor C used in [1] is chosenotal prediction errors. However, as shown in Table V, for the
The nonadaptive case is also shown. In this case, the sevenfitap case, only a slight degradation is seen. The way to derive
Maxflat filter is used. In the case of adaptive IDPCM pyramidhe optimala; values efficiently when the primal lifting steps
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are considered is still under investigation. The correspondifig] X. Wu, “Lossless compression of continuous-tone images via context

bit rates are shown in Table VI. The average bit rate is about
the same as that oH3° and is slightly worse than that without;¢;

the primal lifting.

the

[17]

(18]

V. CONCLUSIONS

[19]
A design method for adaptive predictor in the lifting scheme
was discussed. Based on the polynomial interpolation, a &
of basis filters is proposed to construct the predictor. The1]
nonmaximally flat adaptive predictor is shown to be useful
for interpolation of time-varying signals. For efficient comyp
pression, the dynamic ranges of the weighting variables are
specially considered, and a different representation space[z'bﬁ
used to represent them. With only the dual lifting, an algorithm
has been derived to minimize the total prediction error. Witl34]
only the dual steps, parallel computation of all the predictio[%]
errors can be achieved. However, for progressive transmission,
primal lifting is needed to reduce the aliasing error. ThrLS ]

will slightly increase the bit rate. Simultaneous minimizatio

of the prediction error and reduction of the aliasing error is [a7]
problem for future research. In this case, an iterative step to
determine the predictor parameters is needed.
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