IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2623

Optimistic Shannon Coding Theorems In this work, we demonstrate th& and C' do indeed have a
for Arbitrary Single-User Systems general formula. The key to these results is the application of the
generalized entropy/information rates introduced in [3] and [4] to the
Po-Ning Chen and Fady Alajajviember, IEEE existing proofs by Vertl and Han [7], [14] of the direct and converse

parts of the conventional coding theorems. We also provide a general
expression for the optimistic minimuntachievable source coding
Abstract—The conventional definitions of the source coding rate and of rate and the optimistie-capacity.
channel capacity require the existence of reliable codes fall sufficiently In Section Il, we briefly introduce the generalized sup/inf-infor-
large block lengthsAlternatively, if it is required that good codes exist for mation/entropy rates which will play a key role in proving our
infinitely many block lengths then optimistic definitions of source coding S : . . TR
rate and channel capacity are obtained. optimistic c_odlng theorems. In Section Ill, we provide the optimistic
In this work, formulas for the optimistic minimum achievable fixed-  Source coding theorems. They are shown baseivonmecent bounds
length source coding rate and the minimume-achievable source coding due to Han [7] on the error probability of a source code as a
rate for arbitrary finite-alphabet sources are established. The expressions fynction of its size. Interestingly, these bounds constitute the natural

for the optimistic capacity and the optimistic e-capacity of arbitrary  .,nterparts of the upper bound provided by Feinstein’s Lemma and
single-user channels are also provided. The expressions of the optimistic

source coding rate and capacity are examined for the class of informa- the Verdi—Han lower bound to the error prqbability of a channel
tion stable sources and channels, respectively. Finally, examples for the code. Furthermore, we show that for information-stable sources, the

computation of optimistic capacity are presented. formula for T' reduces to
Index Terms—Error probability, optimistic channel capacity, optimistic o1 o
source coding rate, Shannon theory, source-channel separation theorem. T= hrlLTLI;}f ;H(A )-

This is in contrast to the expression fbr which is known to be
|. INTRODUCTION
The conventional definition of the minimum achievable fixed- T = lim sup ;H(}x )
length source coding raftE for a sourceZ [13, Definition 4] requires nTee
the existence of reliable source codes &irsufficiently large block The above result leads us to observe that for sources that are both
lengths Alternatively, if it is required that reliable codes exist forstationary and information-stable, the classical separation theorem is
infinitely many block lengthsa new, moreoptimistic definition of valid for every channel.
source coding rate (denoted ) is obtained [13]. Similarly, the In Section IV, we present (without proving) the general optimistic
optimistic capacityC' is defined by requiring the existence of reliablechannel coding theorems, and prove that for the class of information-
channel codes for infinitely many block lengths, as opposed to thtable channels the expression@fbecomes
definition of the conventional channel capaaity[14, Definition 1]. 1
This concept of optimistic source coding rate and capacity has re- C =lim sup sup —I(X"™; Y")

cently been investigated by Veret al. for arbitrary (not necessarily n—ee X
stationary, ergodic, information stable, etc.) sources and single-uggiile the expression of’ is
channels [13], [14]. More specifically, they establish an additional
operational characterization for the optimistic minimum achievable C = lim inf sup lI(X“; Ym.
source coding ratel{) by demonstrating that for a given channel, the e X m
classical statement of the source-channel separation thédrelds Finally, in Section V, we present examples for the computation
for every channel ifl’ = 7" [13]. In a dual fashion, they also showf ¢ and C for information-stable as well as information-unstable
that for channels witl’ = C, the classical separation theorem holdgpsnnels.
for every source. They also conjecture taendC' do not seem to
admit a simple expression.

1. =-INF/SUP-INFORMATION/ENTROPY RATES
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liminf in probability (resp.,limsup in probability of the sequence
of normalized information densiti€d /n) ¢ x=w=(X"; Y™), where
1 . n.agn A 1 PY”|X”(b"’|a") 1

;LA”M/”(CL N b ) = ; log T{b”)' ] /
When X is equal toY, T(X; X) (resp.,I(X; X)) is referred to a() u()
as thesup (resp.,inf) entropy rateof X and is denoted byd (X)
(resp., H(X)).

The liminf in probability of a sequence of random variables is
defined as follows [8]: if4,, is a sequence of random variables, then
its liminf in probability is the largest extended real numiésuch that

lim Pr [A4, <U]=0. Q)
Similarly, its limsup in probability is the smallest extended real , .
numberU such that B U Ts U, U. U,- U
lim Pr[4, >U]=0. (2 : ; i
n—oo Fig. 1. The asymptotic CDF's of a sequence of random varighigs} >, :

Note that these two quantities are always defined; if they are equél,) = sup-spectrum ang(-) = inf-spectrum.
then the sequence of random variables converges in probability to

Gl

a co_nstant_. ~ where the superscript-
It is straightforward to deduce that (1) and (2) are, respectivelys U, e,

equivalent to
lim inf Pr[4,, < U] = lim sup Pr[4, < U] =0 3

denotes a strict inequality in the definition

U.. 2 sup{f: u(f) < =}.

n—o0 n—oo Note also thal/ < U. < U. < U. Remark that/. andU. always
and exist. For a better understanding of the quantities defined above, we
lim inf Pr[4, < U] = lim sup Pr[A4, >T] = 0. (4) depictthemin Fig. 1. If we replacé. by the normalized information
noee n—oo (resp., entropy) density, we get the following definitions.

We can observe, however, that there might exist cases of interest ] . ]
whereonly the liminf's of the probabilities in (3) and (4) are equal Definition 2.3—=-Inf/Sup-Information Rates [3], [4]: The c-inf-
to zero, while the limsup’s daot vanish. There are also otherinformation ratel.(X; Y) (resp.,c-sup-information ratd. (X; Y'))
cases wheréoth the liminf's and limsup’s in (3) and (4) do not PetweenX andY is defined as the quantile of the sup-spectrum
vanish, but they are upper-bounded by a prescribed threshold(resp"_ inf-spectrum) of the normalized information density. More
Furthermore, there are situations where the intefi/all’] does not SPecifically
contain only one point; e.g., whea,, converges in distribution to I.(X;Y) EN sup{8: ixw(6) < e}
another random variable. This remark constitutes the motivation to
the recent work in [3] and [4], where generalized versions of tHéhere
inf/sub-information/entropy rates are established. Txw(6) A sup Pr {llxw(x Y < 5}

n—oo

Definition 2.1—Inf/Sup Spectrums [3], [4]If {A.};2, is a se-
guence of random variables taking values in a finite.éethen its and

inf-spectrumu(-) and itssup-spectrunt(-) are defined by T.(X;Y) 2 sup{é: ixw(6) < e}
w(8) 2 lim inf Pr{4, <6} where
and R ixw(6) 2 lim sup Pr {li/\'ni,yn(Xn: Y") < 6}.
w(f) = lim sup Pr{4, < 6}. n—oo "
nTee Definition 2.4—=-Inf/Sup-Entropy Rates [3], [4]: Thez-inf-entro-

|Imsup Ofthe cumulative distribution funCthn-(CDF) ﬂtz NO’[.e that defined as the quant”e of the Sup_spectrum (resp.’ inf_spectrum) of
by definition, the CDF ofd,,—Pr {4,, < #}—is nondecreasing and the normalized entropy density. More specifically
right-continuous. However, fat(-) andz(-), only thenondecreasing

. A -
property remains. H.(X) = sup{é: hx(8) < e}
Definition 2.2—Quantile of Inf/Sup-Spectrum [3], [4For any Where

Q < e <1, the quan_tilesgs and U. of the sup-spectrum and the Tix (6) 2 lim sup Pr{lhxn (X™) < b}
inf-spectrum are defined by n— o0 n

U. = sup{6: u(9) < ¢} and
and H.(X) 2 sup{6: hx(8) < =}

U- 2 sup{f:u(f) < ¢} where
respectively. It follows from the above definitions tiat andU. are

A . 1 -
hx(6) = limsup Pr¢ —hx»(X") <6
right-continuous and nondecreasingzinNote that Han and Vetds b (6) l,llnjip ! {n (X7 < }

liminf/limsup in probability of 4,, are special casesf U. andU..
More specifically, the following hold:

U=Uy, and U=0T,-

and
1 F vy A 1 ; n
;h‘\'n()& ) = ; log(l/PXn(X ))
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Ill. OPTIMISTIC SOURCE CODING THEOREMS Note that actually, —.(X) = H.(X), except possibly at the points
In [13], Vembuet al. characterize the sources for which the clasof discontinuities of.(X) (which are countable).
sical separation theorem holds fevery channelThey demonstrate Proof:

that for a given sourceX, the separation theorem holds for every 1) Forward Part (Achievability)F,—.(X) < H.(X): We
channel if its optimistic minimum achievable source coding rafé®€d to prove the existence of a sequence of block C{Jd@(%:);zo
(T(X)) coincides with its conventional (or pessimistic) minimunsuch that, for every > 0, (1/n) log|€,| < He(X)+yandPe™ <

achievable source coding rat&(X)); i.e., if I'(X) = T(X). 1 — = for infinitely many n. Lemma 3.1 ensures the existence (for
We herein establish a general formula f6¢X). We prove that any~y > 0) of a source block codel, = (n, exp{n(H- +7/2)})
for any sourceX with error probability
(n) Al en Y
T(X)=H,-(X). P gPl{;h,\n(A )>g5+2},

We also provide the general expression for the optimistic minimuiherefore,

¢-achievable source coding rate. We show these results bassgbon 1 o
new boundsiue to Han (one upper bound and one lower bound) onlim inf P < lim inf Pr {;hx” (X")>H-+ 5}
the error probability of a source code [7, Ch. 1]. The upper bound

: . . 1 /
(Lemma 3.1) consists of theounterpartof Feinstein's lemma for =1—lim sup Pr {fhxn (X" <HAX)+ %}
channel codes (cf., for example, [14, Theorem 1]), while the lower e "
bound (Lemma 3.2) consists of ttmwunterpartof the Verdi—Han <l-e ®)

lower bound on the error probability of a channel code [14, Theorefhere (5) follows from the definition o . (X). Hence,P{™ < 1—=
4]. As in the case of the channel coding bounds, both source codiag infinitely many 7. o B

bou_nds (ITemmas 3.1 and 3.2) hold for arbitrary sources and for 2) converse Part#;_.(X) > H. (X): Assume without loss
arbitrary fixed block length. of generality thatH.— (X) > 0. We will prove the converse by
Definition 3.5: An (n, M) fixed-length source code fak™ is a contradiction. Suppose thdt,.(X) < H.-(X). Then(3y > 0)

collection of M n-tuples¢, = {c?, -, ¢ }. The error probability L1—<(X) < H.-(X) —3v. By definition of 7', _. (X)), there exists
of the code isP™ 2 Pr[X" ¢ G, ) a sequence of code¥, such that
, J. ) ’
Definition 3.6—Optimistie-Achievable Source Coding RateFix —log|n| <[H.—(X) = 37] +7

0 < e < 1. R > 0is an optimisticz-achievable rate if, for every gnq
~ > 0, there exists a sequence (@f, M) fixed-length source codes lim inf P <1 — = ©)
€, such that n—oo O T -

1 , By Lemma 3.2
- log M < R+~ and P < forinfinitely manyn. 1 )

’ P™ > pr {—th(X”) > = log €| + ‘»:| e
The infimum of allz-achievable source coding rates for souids " n

denoted byT'.(X). Also define > Pr FhX”(Xn) S (H._(X) - 27) _M} e
n -

T(X)2 sup T.(X)=lim IT.(X) Therefore
0<e<1 €0 )
. . 3 n . 1 n
as the optimistic source coding rate. lim inf P >1— lim sup Pr {;hxﬂ(X )< H.-(X) - W}
Lemma 3.1—[7, Lemma 1.5]Fix a positive integer. There ex- >1—¢
ists an(n, M) source block cod&, for Px~ such that its error ) ] o
probability satisfies where the last inequality follows from the definition &f.  (X).

Thus a contradiction to (6) is obtained.
’ 1 1 3) Equality: H.(X) is a nondecreasing function efhence the
P < Pr {—hxvm(X") > = log M}. number of discontinuous points is countable. For any continuous point
" " g, we have thatf. (X)=H_ (X), and thusT'. (X)=H.(X). O

Theorem 3.2—Optimistic Minimum Achievable Source Coding Rate
Formula: For any sourceX

I(X)=H,-(X).

Lemma 3.2—[7, Lemma 1.6]Every (n, M) source block code
<, for Px~ satisfies

P > py |:lh/"\'7z(Xn) > 1 log M + 'y:| —exp {—n~vy} Proof: By definition,
n n
T(X)2 sup T-(X)> sup H.(X)>H,—(X).
for every~ > 0. 0<e<d 0<e<
We next use Lemmas 3.1 and 3.2 to progeneral optimistic On the other hand, suppose th - (X) < T(X). Then3y > 0
(fixed-length) source coding theorems. such that
Theorem 3.1—Optimistic MinimumAchievable Source Coding H _(X)<T(X)-~.

Rate Formula: Fix 0 < ¢ < 1. For any sourceX e )
But by definition of T'(X), there existd) < ¢ = 2(v) < 1 such that

H. (X)<Ti_.(X)< H(X). I(X) -y < L(X).
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Therefore,
H (X)<T(X)-v<TA(X)<Hi-(X)<H,(X)
and a contradiction is obtained.

We conclude this section by examining the expressiod 0X)
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Observations:

« If the sourceX is both information-stableand stationary, the
above Lemma yields

lim lH(X").

n—oo 1N

T(X)=1T(X)

for information stable sources. It is already known (cf., for example,

[13]) that for an information-stable sourcé
T(X) = lim sup lH(X").
n—oo 1N

We herein prove a parallel expression f6¢X).

Definition 3.7—Information-Stable Sources [13) source X is
said to be information-stable # (X ") > 0 for n sufficiently large,
andhx»(X")/H(X") converges in probability to one as— oo,
i.e.,

h)(n (Xn)
H(X™)

where H(X") = F[hx»(X")] is the entropy ofX".

lim sup Pr |:

n—oo

—1‘>7} =0, Yy >0

Lemma 3.3: Every information sourcéX satisfies
T(X) = lim inf ZH(X™).
71— 00 n
Proof:
1) (T(X) > lim inf,—oo (1/n)H(X™)): Fix = > 0 arbitrarily

This implies that given a stationary and information-stable
source X, the classical separation theorem holds for every
channel.

« Recall that both Lemmas 3.1 and 3.2 hold not only for arbitrary
sourcesX, but also forarbitrary fixed block length.. This leads
us to conclude that they can analogously be employed to provide
a simple proof to the conventional source coding theorems [8]

T(X)=HX),
and
H.-(X)<T -(X) < H(X).

IV. OPTIMISTIC CHANNEL CODING THEOREMS

In this section, we state without proving the general expressions for
the optimistice-capacity (C.) and for the optimistic capacityC)
of arbitrary single-user channels. The proofs of these expressions
are straightforward once the right definition (bf(X; Y)) is made.
They employ Feinstein’s lemma and the MeréHan lower bound [14,

small. Using the fact thdt x» (X ™) is a (finite-alphabet) nonnegative Theorem 4], and follow theamearguments used in [14] to show the
bounded random variable, we can write the normalized block entroggneral expressions of the conventional channel capacity

as
%H(X") =E Ehm (X”)}
=E Ehm (X”)l{O < %hxn (X")<H,-(X)+ H
e[Lnooenfine o s a0+
@

From the definition off , - (X), it directly follows that the first term
in the right-hand side of (7) is upper-bounded By - (X) + ¢, and
that the liminf of the second term is zero. Thus

T(X) = H,—(X) > lim inf ~H(X™).
n—00 n

2) (I(X) < lim inf, o (1/n)H(X™)): Fix e > 0. Then for
infinitely many »
-1> 6}

hxn(}(")
P{W

> Pr

1 e
{;h,\vn(x )> (142)
oL .1 "
: <hm inf ~H(X")+ :)}
n—oo VA
Since X is information stable, we obtain that

{%th(X”) S (1+e) <lim inf JH(X") + f)}

n—oo N
=0.

lim inf Pr

n—oo

By the definition of #, - (X'), the above implies that
T(X)= H,-(X) < (1+7) <lim it LH(X") + g>.
n— o0 n

The proof is completed by noting that can be made arbitrarily
small. O

C=sup Lo(X: Y) = sup I(X; ¥),
X X

and the conventionat-capacity

sup I, (X;Y)<C.<sup I.(X;Y).
X X

We close this section by proving the formula Gffor information-
stable channels.

Definition 4.8—Channel Block Codén (n, M) code for channel
W™ with input alphabetX and output alphabed’ is a pair of
mappings

L2, M- X"
and
g Y —={1,2,---, M}.
Its average error probability is given by
M

my a1
AT D>

m=1 {y™: g(y™)#m}

W™ (y"|f(m)).

Definition 4.9—Optimistie-Achievable Rate:Fix 0 < ¢ < 1.
R > 0 is an optimistics-achievable rate if, for every > 0, there
exists a sequence o¢fi, M) channel block codes such that

log M

n

>R—~ and P"™ <c forinfinitely manyn.

Definition 4.10—Optimistie-CapacityC'.: Fix 0 < £ < 1. The
supremum of optimistic-achievable rates is called the optimistic
e-capacity, C-.

Definition 4.11—Optimistic Capacity: The optimistic channel
capacityC is defined as the supremum of the rates that are optimistic
c-achievable for all0 < = < 1. It follows immediately from the

2The authors would like to point out that the expressiorCof was also
separately obtained in [11, Theorem 7].
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definition that

C = inf C. _thg

0<e<1
and thatC is the supremum of all the rate2 for which, for every
~ > 0, there exists a sequence (of
that
lim inf P = 0.

n—oo

1
—log M >R—~v and
n

Theorem 4.3—Optimistic-Capacity Formula: Fix 0 < ¢ < 1.
The optimistice-capacityC'. satisfies
supI_.— (X;Y) < C. <sup I.(X; Y). )

Note that actuallyC. = supy I.(X;Y), except possibly at the
points of discontinuities ofupy I.(X;Y) (which are countable).

Theorem 4.4—Optimistic Capacity Formul&he optimistic ca-
pacity C' satisfies

C=sup I1(X;Y).
X

We next investigate the expression 6f for information-stable

, M) channel block codes such

2627

A
)

Finally, the proof is completed by noting that can be made
arbitrarily small. O

Since the channel is information-stable, we get that

lim inf Pgyypa

n—oo

1 . T Fn
g")?nwn(X ;Y")<(1-2) <111n sup Cp —

17— 00

By the definition ofC, the above immediately implies that

F_supIO(X Y) > To(X; Y)>(1—t)<111’11 sup Cn, — &

n—oo

Observations:

« Itis known that for discrete memoryless channels, the optimistic
capacityC is equal to the (conventional) capacify [5], [14].
The same result holds fanodulo — ¢ additive noise channels
with stationary ergodic noise. However, in gene€aly C since
I(X;Y) > I(X;Y) [3], [4]

e Remark that [13, Theorem 11] holds if and only if

sup I(X; Y) =sup Io(X; Y).
X X

Furthermore, note that, i€ = C and there exists an input
distribution Py that achieves”, then Py also achieves.

V. EXAMPLES

channels. The expression for the capacity of information-stable chan¥Ve provide four examples to illustrate the computatiod’andC.

nels is already known (cf., for example [13])

C = lim inf sup I(X" Y™

n—oo xn N

where

. 1
c, 2 sup —I(X™; Y"™).
Xxn n
We prove a dual formula fo€'.

Definition 4.12—Information-Stable Channels [6], [9% channel
W is said to be information-stable if there exists an input prodess
such thatd < C,, < oo for n sufficiently large, and
—lX”VV” (—X- ; } ) - 1‘ > A)/:| = 03

nC. YV~ > 0.

Lemma 4.4: Every information-stable chann® satisfies

n—oo

lim sup Pr |:

C =1lim sup sup - I(Y“ Y™).

n—oc X
Proof:

1) (C <lim sup,___ supy.(1/2)I(X"; Y™)): By using a

similar argument as in the proof of [14, Theorem 8, property h)],

we have
I (X;Y)< hm sup sup - I(X

Xn

Y.

Hence

1
C = qup Ty(X;Y) < lim sup sup —I(X"; V™).
XxXn n

2) (C >1lim sup,, ___ supyn (1/n)I(X"; Y™)):

n—o0

Supposef(

The first two examples present information-stable channels for which
C > C. The third example shows an information-unstable channel for
which C' = C. These examples indicate that information stability is
neither necessary nor sufficient to ensure that C or thereby the
validity of the classical source-channel separation theorem. The last
example illustrates the situation wheiec C' < C < Csc <log, |V
where Cs¢: is the channel strong capacityWe assume in this
section that all logarithms are in ba®so thatC' andC are measured

n bits.

A. Information-Stable Channels

Example 5.1Consider a nonstationary chani¥¥l such that at odd
time instancea =1, 3,---, W" is the product of the transition distri-
bution of a binary-symmetric channel with crossover probabiljtg
(BSC(1/8)), and at even time instances= 2, 4, 6, ---, W" is the
product of the distribution of a BSQ/4). It can be easily verified
that this channel is information-stable. Since the channel is symmet-
ric, a Bernoulli(1/2) input achieves,, = sup y.(1/n)I(X"; Y™);

thus
_[1-h(1
Cn = { 1—he(l

for n odd
for n even

/8),
/4),
where

he(a) 2 4 logy a — (1 —a) log,(1 —a)
is the binary entropy function. Therefore,

C=lim inf C, =1—h,(1/4)

is the input process that makes the channel information-stable. Rixg

e > 0. Then for infinitely manyn

1 . N n . 1
Pgoyyn |:51ann(}i ;Y") < (1-9) <11m sup C,, — 6>:|

n—oo
Xnwn |:

= P”nv[/n |:

an W (Xn; }fn)

n

Py

IN

<(1-e)C,

ignyn (X" V")

—1<—<].
nCh,

C =lim sup Cn, =1—hy(1/8) > C.

n—oo

3The strong (or strong converse) capacifizc is defined [2] as the
infimum of the numberg? for which there existsy > 0 such that for all
(n, M) codes with(1/n) log M > R — ~, lim inf, oo P{™ = 1. This
definition of C's implies that for any sequence ¢h, M) codes with
lim inf, .o (1/n) log M > Csc, Pé") > 1 — ¢ for everye > 0
and forn sufficiently large. It is shown in [2] tha€'sc = lim.q; C. =
supy I(X;Y).
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Example 5.2: Here we use the information-stable channel prazorresponds to the outcomes of the draws from the Polyadre: 1

vided in [13, Sec. lll] to show thaC > C. Let A" be the set of
all positive integers. Define the sgt as

T2 neN:22F <n<2?? 1=0,1,2, -}
=1{2,3,8.,9, 10, 11, 12, 13, 14, 15, 32, 33, ---. 63,
128, 129, -+, 255, ---}.

Consider the following nonstationary symmetric charikel At times
n € J, W, is a BSC0), whereas at times ¢ 7, W, is a
BSC(1/2). PutW" = Wy x Wy x --- x W,. Here againC, is
achieved by a BernoulliL/2) input X". We then obtain

c :% 3 1% v) nl[.](n) (D) + (= T(n)) - (0)]

_Jm
- n
whereJ(n) £ |7 N {1, 2, ---, n}|. It can be shown that
2 2Uog2 n] 1
J(TI) _ 1 - g X T + 3—’[17 fOr |_10g2 nJ Odd
n ‘ llogy n] c
% x ZT - 3% for [log, n| even.
Consequently,
C =lim inf C,=1/3
and

C =lim sup C, = 2/3.

n—oo

B. Information-Unstable Channels
Example 5.3—The Polya-Contagion Chann€lonsider a discrete
additive channel with binary input and output alphaljet 1} de-
scribed by
Y, =X, Z, i=1,2,-

where X, Y;, andZ; are, respectively, thih input,ith output, and
ith noise, andp represents moduld-addition. Suppose that the inpu

if ith ball drawn is red and; = 0, otherwise. Lep = R/(R+ B)

ands £ A/(R+4+ B). Itis shown in [1] that the noise proce§g; } is

stationary and nonergodic; thus the channel is information-unstable.
From Lemma 2 and [4, Sec. IV, Pt. 1], we obtain

1-H, (Z2)<C.<1-H(_ .- (2)
and

1-Hi (Z)<C.-<1-Hy_.,-(2).
It has been shown [1] that-(1/n) log Pz»(Z™) converges in
distribution to the continuous random variable= hy(U), wherelU

is beta-distributedp/6, (1 — p)/8), andhs(-) is the binary entropy
function. Thus

F1_€<Z) :F(l_s)f(Z) = E]—E(Z) = E(l—s)*(z)
=F/'(1-2)

where Fy (a) 2 Pr{V < a} is the cumulative distribution function
of V, and F;;'(-) is its inverse [1]. Consequently,

C.=C.=1-F;'(1—¢
and

025:1_1?31—1?;1(1—5):0.

Example 5.4: Let 11, 15, - - - consist of the channel in Example
5.2, and letV;, W5, - - - consist of the channel in Example 5.3. Define
a new channeW as follows:

Woy =W, and Wy =W;, fori=1,2,---.

As in the previous examples, the channel is symmetric, and a
Bernoulli(1/2) input maximizes the inf/sup-information rates. There-
fore, for a Bernoull{1/2) input X, we have the equations at the
bottom of this page. The fact that(1/4) log[P:(Z')] converges

in distribution to the continuous random variaBle= hy(U), where

U is beta-distributedp/6, (1 — p)/6), and the fact that

lim inf(1/n)J(n) =1/3 and lim sup(l/n)J(n)=2/3

{l log g@}
n

=1 Fy (3 - 26)

imply that
P\/Vn (Y‘n |X n)

xw(6) = lim inf Pr
ixw(6) = lim inf Pr Pro (V)

n—oco

and

t P (Y"|X™)

ixw(f) 2 i Prd L og <
process is independent of the noise process. Also assume that the ixw(f) = M L % T Ry o
noise sequencéZ, },>1 is drawn according to the Polya contagion —1—Fy (1 _ 20).
urn scheme [1], [10], as follows: an urn originally contaifisred 3
balls andB black balls withR < B; we make successive drawsConsequently,
from the urn; after each draw, we return to the drg- A balls of = 9 lF’l(l —¢) and C.= 2 EF’I(l — o)
the same color as was just drai > 0). The noise sequendeZ; } 76 27 N T3 27 o
(Y X Py (VX' _ ,
I Pr{l, |:10g Py (Y 1X ) +log — ¥ ( ):| < H}, if n=2¢
Pr{l log Py» (VX)) _ ) _ 2i Pi(Y7) P, (Y7)
n Pyn(Yrm) = f 1 Py (VXY P (Y X
p log == L log —V2 : <8y, ifn=2+1
r{2z+ 1 {Og Py T T Ly |2 =2
l—Pr{—llog Pzi(Zi)<1—29+l,J(i)}, if n=2i
1 1
- 1—Pr<— L log Pypici(ZH') <1 - Q—L 6+ ! J(i) if n=2i+1
i+1 oA i+ 1 i+17 AT
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Thus

(1]

(2]

(3]
(4]
(5]
(6]

(7]
(8]
(9]
[20]
(1]

[12]

[13]

[14]

— 1
<(C==<Csc =

0<C=
< 3

<log, || = 1.

D=
| Ct
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where ¢2 and P, are the variance and the entropy-power ofX, respec-
tively, and D*(a2, Ry, Rz) is the multiple description distortion region
5@: a Gaussian source with variances? found by Ozarow. We further
Show that like in the single description case, a Gaussian random code
achieves theouter bound in the limit as dy, do — 0, thus the outer
bound is asymptotically tight at high resolution conditions.

Index Terms—Gaussian codes, high resolution, multiple descriptions,
Shannon lower bound.

I. INTRODUCTION
The multiple description problem [6] arises in communicating

Y. Steinberg, “New converses in the theory of identification via chamnalog source information (speech, image, video) via lossy packet

nels,” IEEE Trans. Inform. Theoryol. 44, pp. 984-998, May 1998.

Y. Steinberg and S. Vetd “Simulation of random processes and rate
distortion theory,”IEEE Trans. Inform. Theoryol. 42, pp. 63-86, Jan.
1996.

networks. In this increasingly frequent scenario, a source code is

broken into a few packets, some of which may not arrive at the
destination. Suppose the network does not support retransmission of

S. Vembu, S. Verd, and Y. Steinberg, “The source-channel separatiolpost packets (due, e.g., to restrictions on delay, loading, or capacity

theorem revisited,"lEEE Trans. Inform. Theoryvol. 41, pp. 44-54,
Jan. 1995.

S. Verdi and T. S. Han, “A general formula for channel capacitizEE
Trans. Inform. Theoryvol. 40, pp. 1147-1157, July 1994.

of feedback channel). In such a case, the decoder wishes to achieve
a certain basic reproduction quality if a small subset of the packets
arrives, and an improved quality if more packets or the whole source
code arrives. Thus portions of various size of the code should contain
individually good, complementary descriptions of the source.

The basic formulation of the multiple description problem in the
information-theoretic literature involves two (noiseless) subchannels
of rates R, and R, corresponding to two “packets,” and three
receivers. Each receiver corresponds to a possible case of packet
arrival, the first arrived, the second arrived, or both arrived, as
depicted in Fig. 1. In response to a source bleck (z1, ---, x5),
the encoder generates two codewords (indigg$)) and f.(x) at
rates

Ri= loglfi(), =12

where |f;| denotes the size of codg(-), and transmits codeword

fi through subchannél i = 1, 2. The two individual (“marginal”)
receivers and the combined (“central”) receiver then generate recon-
structions#;, ., andZy, respectively, using the decoding functions
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