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Optimistic Shannon Coding Theorems
for Arbitrary Single-User Systems

Po-Ning Chen and Fady Alajaji,Member, IEEE

Abstract—The conventional definitions of the source coding rate and of
channel capacity require the existence of reliable codes forall sufficiently
large block lengths. Alternatively, if it is required that good codes exist for
infinitely many block lengths, then optimistic definitions of source coding
rate and channel capacity are obtained.

In this work, formulas for the optimistic minimum achievable fixed-
length source coding rate and the minimum"-achievable source coding
rate for arbitrary finite-alphabet sources are established. The expressions
for the optimistic capacity and the optimistic "-capacity of arbitrary
single-user channels are also provided. The expressions of the optimistic
source coding rate and capacity are examined for the class of informa-
tion stable sources and channels, respectively. Finally, examples for the
computation of optimistic capacity are presented.

Index Terms—Error probability, optimistic channel capacity, optimistic
source coding rate, Shannon theory, source-channel separation theorem.

I. INTRODUCTION

The conventional definition of the minimum achievable fixed-
length source coding rateT for a sourceZZZ [13, Definition 4] requires
the existence of reliable source codes forall sufficiently large block
lengths. Alternatively, if it is required that reliable codes exist for
infinitely many block lengths, a new, moreoptimistic definition of
source coding rate (denoted byT ) is obtained [13]. Similarly, the
optimistic capacityC is defined by requiring the existence of reliable
channel codes for infinitely many block lengths, as opposed to the
definition of the conventional channel capacityC [14, Definition 1].

This concept of optimistic source coding rate and capacity has re-
cently been investigated by Verdú et al. for arbitrary (not necessarily
stationary, ergodic, information stable, etc.) sources and single-user
channels [13], [14]. More specifically, they establish an additional
operationalcharacterization for the optimistic minimum achievable
source coding rate (T ) by demonstrating that for a given channel, the
classical statement of the source-channel separation theorem1 holds
for every channel ifT = T [13]. In a dual fashion, they also show
that for channels withC = C, the classical separation theorem holds
for every source. They also conjecture thatT andC do not seem to
admit a simple expression.
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1By the “classical statement of the source-channel separation theorem,” we

mean the following. Given a sourceZZZ with (conventional) source coding rate
T (ZZZ) and channelWWW with capacityC, thenZZZ can be reliably transmitted
overWWW if T (ZZZ) < C. Conversely, ifT (ZZZ) > C, thenZZZ cannot be reliably
transmitted overWWW . By reliable transmissibility of the source over the channel,
we mean that there exists a sequence of source-channel codes such that the
decoding error probability vanishes as the block lengthn!1 (cf. [13]).

In this work, we demonstrate thatT and C do indeed have a
general formula. The key to these results is the application of the
generalized entropy/information rates introduced in [3] and [4] to the
existing proofs by Verd́u and Han [7], [14] of the direct and converse
parts of the conventional coding theorems. We also provide a general
expression for the optimistic minimum"-achievable source coding
rate and the optimistic"-capacity.

In Section II, we briefly introduce the generalized sup/inf-infor-
mation/entropy rates which will play a key role in proving our
optimistic coding theorems. In Section III, we provide the optimistic
source coding theorems. They are shown based ontwo recent bounds
due to Han [7] on the error probability of a source code as a
function of its size. Interestingly, these bounds constitute the natural
counterparts of the upper bound provided by Feinstein’s Lemma and
the Verd́u–Han lower bound to the error probability of a channel
code. Furthermore, we show that for information-stable sources, the
formula for T reduces to

T = lim inf
n!1

1

n
H(Xn):

This is in contrast to the expression forT , which is known to be

T = lim sup
n!1

1

n
H(Xn):

The above result leads us to observe that for sources that are both
stationary and information-stable, the classical separation theorem is
valid for every channel.

In Section IV, we present (without proving) the general optimistic
channel coding theorems, and prove that for the class of information-
stable channels the expression ofC becomes

C = lim sup
n!1

sup
X

1

n
I(Xn; Y n)

while the expression ofC is

C = lim inf
n!1

sup
X

1

n
I(Xn; Y n):

Finally, in Section V, we present examples for the computation
of C andC for information-stable as well as information-unstable
channels.

II. "-INF/SUP-INFORMATION/ENTROPY RATES

Consider an input processXXX defined by a sequence of finite-
dimensional distributions [14]XXX

�
= fXn = (X

(n)
1 ; � � � ; X

(n)
n )g1

n=1.

Denote byYYY
�
= fY n = (Y

(n)
1 ; � � � ; Y

(n)
n )g1

n=1 the corresponding
output process induced byXXX via the channel

WWW
�
= fWn = PY jX : Xn ! Yng1n=1

which is an arbitrary sequence ofn-dimensional conditional distri-
butions fromXn to Yn, whereX andY are the input and output
alphabets, respectively. We assume throughout this correspondence
that X and Y are finite.

In [8] and [14], Han and Verd́u introduce the notions of inf/sup-
information/entropy rates and illustrate the key role these information
measures play in proving a general lossless (block) source coding
theorem and a general channel coding theorem.

The inf-information rate I(XXX; YYY ) (resp., sup-information rate
I(XXX; YYY )) between processesXXX and YYY is defined in [8] as the
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liminf in probability (resp., limsup in probability) of the sequence
of normalized information densities(1=n) iX W (Xn; Y n), where

1

n
iX W (an; bn)

�
=

1

n
log

PY jX (bnjan)

PY (bn)
:

WhenXXX is equal toYYY , I(XXX; XXX) (resp.,I(XXX; XXX)) is referred to
as thesup (resp., inf) entropy rateof XXX and is denoted byH(XXX)
(resp.,H(XXX)).

The liminf in probability of a sequence of random variables is
defined as follows [8]: ifAn is a sequence of random variables, then
its liminf in probability is the largest extended real numberU such that

lim
n!1

Pr [An < U ] = 0: (1)

Similarly, its limsup in probability is the smallest extended real
numberU such that

lim
n!1

Pr [An > U ] = 0: (2)

Note that these two quantities are always defined; if they are equal,
then the sequence of random variables converges in probability to
a constant.

It is straightforward to deduce that (1) and (2) are, respectively,
equivalent to

lim inf
n!1

Pr [An < U ] = lim sup
n!1

Pr [An < U ] = 0 (3)

and

lim inf
n!1

Pr [An < U ] = lim sup
n!1

Pr [An > U ] = 0: (4)

We can observe, however, that there might exist cases of interest
whereonly the liminf’s of the probabilities in (3) and (4) are equal
to zero, while the limsup’s donot vanish. There are also other
cases whereboth the liminf’s and limsup’s in (3) and (4) do not
vanish, but they are upper-bounded by a prescribed threshold".
Furthermore, there are situations where the interval[U; U ] does not
contain only one point; e.g., whenAn converges in distribution to
another random variable. This remark constitutes the motivation to
the recent work in [3] and [4], where generalized versions of the
inf/sub-information/entropy rates are established.

Definition 2.1—Inf/Sup Spectrums [3], [4]:If fAng
1
n=1 is a se-

quence of random variables taking values in a finite setA, then its
inf-spectrumu(�) and itssup-spectrumu(�) are defined by

u(�)
�
= lim inf

n!1
PrfAn � �g

and

u(�)
�
= lim sup

n!1
PrfAn � �g:

In other words,u(�) and u(�) are, respectively, the liminf and the
limsup of the cumulative distribution function (CDF) ofAn. Note that
by definition, the CDF ofAn—PrfAn � �g—is nondecreasing and
right-continuous. However, foru(�) andu(�), only thenondecreasing
property remains.

Definition 2.2—Quantile of Inf/Sup-Spectrum [3], [4]:For any
0 � " � 1, the quantilesU " andU " of the sup-spectrum and the
inf-spectrum are defined by

U "
�
= supf�: u(�) � "g

and

U "
�
= supf�: u(�) � "g

respectively. It follows from the above definitions thatU " andU " are
right-continuous and nondecreasing in". Note that Han and Verd́u’s
liminf/limsup in probability ofAn are special casesof U " andU ".
More specifically, the following hold:

U = U0 and U = U1

Fig. 1. The asymptotic CDF’s of a sequence of random variablesfAng1n=1:
u(�) = sup-spectrum andu(�) = inf-spectrum.

where the superscript “�” denotes a strict inequality in the definition
of U1 ; i.e.,

U "
�
= supf�: u(�) < "g:

Note also thatU � U " � U " � U . Remark thatU" andU " always
exist. For a better understanding of the quantities defined above, we
depict them in Fig. 1. If we replaceAn by the normalized information
(resp., entropy) density, we get the following definitions.

Definition 2.3—"-Inf/Sup-Information Rates [3], [4]:The "-inf-
information rateI"(XXX; YYY ) (resp.,"-sup-information rateI"(XXX; YYY ))
betweenXXX and YYY is defined as the quantile of the sup-spectrum
(resp., inf-spectrum) of the normalized information density. More
specifically

I"(XXX; YYY )
�
= supf�: iXWXWXW (�) � "g

where

iXWXWXW (�)
�
= lim sup

n!1
Pr

1

n
iX W (Xn; Y n) � �

and

I"(XXX; YYY )
�
= supf�: iXWXWXW (�) � "g

where

iXWXWXW (�)
�
= lim sup

n!1
Pr

1

n
iX W (Xn; Y n) � � :

Definition 2.4—"-Inf/Sup-Entropy Rates [3], [4]:The"-inf-entro-
py rateH"(XXX) (resp.,"-sup-entropy rateH"(XXX)) for a sourceXXX is
defined as the quantile of the sup-spectrum (resp., inf-spectrum) of
the normalized entropy density. More specifically

H"(XXX)
�
= supf�: hXXX(�) � "g

where

hXXX(�)
�
= lim sup

n!1
Pr

1

n
hX (Xn) � �

and

H"(XXX)
�
= supf�: hXXX(�) � "g

where

hXXX(�)
�
= lim sup

n!1
Pr

1

n
hX (Xn) � �

and
1

n
hX (Xn)

�
=

1

n
log(1=PX (Xn)):
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III. OPTIMISTIC SOURCE CODING THEOREMS

In [13], Vembuet al. characterize the sources for which the clas-
sical separation theorem holds forevery channel. They demonstrate
that for a given sourceXXX, the separation theorem holds for every
channel if its optimistic minimum achievable source coding rate
(T (XXX)) coincides with its conventional (or pessimistic) minimum
achievable source coding rate(T (XXX)); i.e., if T (XXX) = T (XXX).

We herein establish a general formula forT (XXX). We prove that
for any sourceXXX

T (XXX) = H
1

(XXX):

We also provide the general expression for the optimistic minimum
"-achievable source coding rate. We show these results based ontwo
new boundsdue to Han (one upper bound and one lower bound) on
the error probability of a source code [7, Ch. 1]. The upper bound
(Lemma 3.1) consists of thecounterpartof Feinstein’s lemma for
channel codes (cf., for example, [14, Theorem 1]), while the lower
bound (Lemma 3.2) consists of thecounterpartof the Verd́u–Han
lower bound on the error probability of a channel code [14, Theorem
4]. As in the case of the channel coding bounds, both source coding
bounds (Lemmas 3.1 and 3.2) hold for arbitrary sources and for
arbitrary fixed block length.

Definition 3.5: An (n; M) fixed-length source code forXn is a
collection ofM n-tuples C�n = fcn1 ; � � � ; c

n

Mg. The error probability

of the code isP (n)
e

�
= Pr [Xn =2 C�n].

Definition 3.6—Optimistic"-Achievable Source Coding Rate:Fix
0 < " < 1. R � 0 is an optimistic"-achievable rate if, for every

 > 0, there exists a sequence of(n; M) fixed-length source codes
C�n such that

1

n
log M < R+ 
 and P (n)

e � " for infinitely manyn:

The infimum of all"-achievable source coding rates for sourceXXX is
denoted byT "(XXX). Also define

T (XXX)
�
= sup

0<"<1
T "(XXX) = lim

"#0
T "(XXX)

as the optimistic source coding rate.

Lemma 3.1—[7, Lemma 1.5]:Fix a positive integern. There ex-
ists an(n; M) source block codeC�n for PX such that its error
probability satisfies

P (n)
e � Pr

1

n
hX (Xn) >

1

n
log M :

Lemma 3.2—[7, Lemma 1.6]:Every (n; M) source block code
C�n for PX satisfies

P (n)
e � Pr

1

n
hX (Xn) >

1

n
log M + 
 � exp f�n
g

for every 
 > 0.
We next use Lemmas 3.1 and 3.2 to provegeneral optimistic

(fixed-length) source coding theorems.

Theorem 3.1—Optimistic Minimum"-Achievable Source Coding
Rate Formula: Fix 0 < " < 1. For any sourceXXX

H" (XXX) � T 1�"(XXX) � H"(XXX):

Note that actuallyT 1�"(XXX) = H"(XXX), except possibly at the points
of discontinuities ofH"(XXX) (which are countable).

Proof:
1) Forward Part (Achievability)—T 1�"(XXX) � H"(XXX): We

need to prove the existence of a sequence of block codesf C�ngn�0
such that, for every
 > 0, (1=n) log j C�nj < H"(XXX)+
 andP (n)

e �
1 � " for infinitely manyn. Lemma 3.1 ensures the existence (for
any 
 > 0) of a source block codeC�n = (n; expfn(H" + 
=2)g)
with error probability

P (n)
e � Pr

1

n
hX (Xn) > H" +




2
:

Therefore,

lim inf
n!1

P (n)
e � lim inf

n!1
Pr

1

n
hX (Xn) > H" +




2

=1� lim sup
n!1

Pr
1

n
hX (Xn) � H"(XXX) +




2

< 1� " (5)

where (5) follows from the definition ofH"(XXX). Hence,P (n)
e � 1�"

for infinitely many n.
2) Converse Part—T 1�"(XXX) � H" (XXX): Assume without loss

of generality thatH" (XXX) > 0. We will prove the converse by
contradiction. Suppose thatT 1�"(XXX) < H" (XXX). Then (9
 > 0)
T 1�"(XXX) < H" (XXX)� 3
. By definition ofT 1�"(XXX), there exists
a sequence of codesC�n such that

1

n
log j C�nj < [H" (XXX)� 3
] + 


and

lim inf
n!1

P (n)
e � 1� ": (6)

By Lemma 3.2

P (n)
e � Pr

1

n
hX (Xn) >

1

n
log j C�nj+ 
 � e�n


� Pr
1

n
hX (Xn) > (H" (XXX)� 2
) + 
 � e�n
:

Therefore,

lim inf
n!1

P (n)
e � 1� lim sup

n!1

Pr
1

n
hX (Xn) � H" (XXX)� 


> 1� "

where the last inequality follows from the definition ofH" (XXX).
Thus a contradiction to (6) is obtained.

3) Equality: H"(XXX) is a nondecreasing function of"; hence the
number of discontinuous points is countable. For any continuous point
", we have thatH"(XXX)=H" (XXX), and thusT "(XXX)=H"(XXX).

Theorem 3.2—Optimistic Minimum Achievable Source Coding Rate
Formula: For any sourceXXX

T (XXX) = H1 (XXX):

Proof: By definition,

T (XXX)
�
= sup

0<"<1
T "(XXX) � sup

0<"<1
H" (XXX) � H1 (XXX):

On the other hand, suppose thatH1 (XXX) < T (XXX). Then9
 > 0
such that

H1 (XXX) < T (XXX)� 
:

But by definition ofT (XXX), there exists0 < " = "(
) < 1 such that

T (XXX)� 
 < T "(XXX):
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Therefore,

H
1

(XXX) < T (XXX)� 
 < T "(XXX) � H1�"(XXX) � H
1

(XXX)

and a contradiction is obtained.

We conclude this section by examining the expression ofT (XXX)
for information stable sources. It is already known (cf., for example,
[13]) that for an information-stable sourceXXX

T (XXX) = lim sup
n!1

1

n
H(Xn):

We herein prove a parallel expression forT (XXX).

Definition 3.7—Information-Stable Sources [13]:A sourceXXX is
said to be information-stable ifH(Xn) > 0 for n sufficiently large,
andhX (Xn)=H(Xn) converges in probability to one asn ! 1,
i.e.,

lim sup
n!1

Pr
hX (Xn)

H(Xn)
� 1 > 
 = 0; 8 
 > 0

whereH(Xn) = E[hX (Xn)] is the entropy ofXn.

Lemma 3.3: Every information sourceXXX satisfies

T (XXX) = lim inf
n!1

1

n
H(Xn):

Proof:
1) (T (XXX) � lim infn!1(1=n)H(Xn)): Fix " > 0 arbitrarily

small. Using the fact thathX (Xn) is a (finite-alphabet) nonnegative
bounded random variable, we can write the normalized block entropy
as
1

n
H(Xn) = E

1

n
hX (Xn)

= E
1

n
hX (Xn)1 0 �

1

n
hX (Xn) � H

1
(XXX) + "

+ E
1

n
hX (Xn)1

1

n
hX (Xn) > H

1
(XXX) + " :

(7)

From the definition ofH
1

(XXX), it directly follows that the first term
in the right-hand side of (7) is upper-bounded byH

1
(XXX) + ", and

that the liminf of the second term is zero. Thus

T (XXX) = H
1

(XXX) � lim inf
n!1

1

n
H(Xn):

2) (T (XXX) � lim infn!1(1=n)H(Xn)): Fix " > 0. Then for
infinitely many n

Pr
hX (Xn)

H(Xn)
� 1 > "

= Pr
1

n
hX (Xn) > (1 + ")

1

n
H(Xn)

� Pr
1

n
hX (Xn) > (1 + ")

� lim inf
n!1

1

n
H(Xn) + " :

SinceXXX is information stable, we obtain that

lim inf
n!1

Pr
1

n
hX (Xn) > (1 + ") lim inf

n!1

1

n
H(Xn) + "

= 0:

By the definition ofH
1

(XXX), the above implies that

T (XXX) = H
1

(XXX) � (1 + ") lim inf
n!1

1

n
H(Xn) + " :

The proof is completed by noting that" can be made arbitrarily
small.

Observations:

• If the sourceXXX is both information-stableand stationary, the
above Lemma yields

T (XXX) = T (XXX) = lim
n!1

1

n
H(Xn):

This implies that given a stationary and information-stable
sourceXXX, the classical separation theorem holds for every
channel.

• Recall that both Lemmas 3.1 and 3.2 hold not only for arbitrary
sourcesXXX, but also forarbitrary fixed block lengthn. This leads
us to conclude that they can analogously be employed to provide
a simple proof to the conventional source coding theorems [8]

T (XXX) =H(XXX);

and

H" (XXX) �T1�"(XXX) � H"(XXX):

IV. OPTIMISTIC CHANNEL CODING THEOREMS

In this section, we state without proving the general expressions for
the optimistic"-capacity2 (C") and for the optimistic capacity(C)
of arbitrary single-user channels. The proofs of these expressions
are straightforward once the right definition (ofI"(XXX; YYY )) is made.
They employ Feinstein’s lemma and the Verdú–Han lower bound [14,
Theorem 4], and follow thesamearguments used in [14] to show the
general expressions of the conventional channel capacity

C = sup
XXX

I0(XXX; YYY ) = sup
XXX

I(XXX; YYY );

and the conventional"-capacity

sup
XXX

I" (XXX; YYY ) � C" � sup
XXX

I"(XXX; YYY ):

We close this section by proving the formula ofC for information-
stable channels.

Definition 4.8—Channel Block Code:An (n; M) code for channel
Wn with input alphabetX and output alphabetY is a pair of
mappings

f : f1; 2; � � � ; Mg ! Xn

and

g: Yn ! f1; 2; � � � ; Mg:

Its average error probability is given by

P (n)
e

�
=

1

M

M

m=1 fy : g(y ) 6=mg

Wn(ynjf(m)):

Definition 4.9—Optimistic"-Achievable Rate:Fix 0 < " < 1.
R � 0 is an optimistic"-achievable rate if, for every
 > 0, there
exists a sequence of(n; M) channel block codes such that

log M

n
> R� 
 and P (n)

e � " for infinitely manyn:

Definition 4.10—Optimistic"-CapacityC": Fix 0 < " < 1. The
supremum of optimistic"-achievable rates is called the optimistic
"-capacity,C".

Definition 4.11—Optimistic CapacityC: The optimistic channel
capacityC is defined as the supremum of the rates that are optimistic
"-achievable for all0 < " < 1. It follows immediately from the

2The authors would like to point out that the expression ofC" was also
separately obtained in [11, Theorem 7].
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definition that

C = inf
0<"<1

C" = lim
"#0

C"

and thatC is the supremum of all the ratesR for which, for every

 > 0, there exists a sequence of(n; M) channel block codes such
that

1

n
log M > R� 
 and lim inf

n!1
P (n)
e = 0:

Theorem 4.3—Optimistic"-Capacity Formula: Fix 0 < " < 1.
The optimistic"-capacityC" satisfies

sup
XXX

I" (XXX; YYY ) � C" � sup
XXX

I"(XXX; YYY ): (8)

Note that actuallyC" = supXXX I"(XXX; YYY ), except possibly at the
points of discontinuities ofsupXXX I"(XXX; YYY ) (which are countable).

Theorem 4.4—Optimistic Capacity Formula:The optimistic ca-
pacity C satisfies

C = sup
XXX

I0(XXX; YYY ):

We next investigate the expression ofC for information-stable
channels. The expression for the capacity of information-stable chan-
nels is already known (cf., for example, [13])

C = lim inf
n!1

sup
X

1

n
I(Xn; Y n)

where

Cn
�
= sup

X

1

n
I(Xn; Y n):

We prove a dual formula forC.

Definition 4.12—Information-Stable Channels [6], [9]:A channel
WWW is said to be information-stable if there exists an input processXXX

such that0 < Cn < 1 for n sufficiently large, and

lim sup
n!1

Pr
iX W (Xn; Y n)

nCn
� 1 > 
 = 0; 8 
 > 0:

Lemma 4.4: Every information-stable channelWWW satisfies

C = lim sup
n!1

sup
X

1

n
I(Xn; Y n):

Proof:
1) (C � lim supn!1 supX (1=n)I(Xn; Y n)): By using a

similar argument as in the proof of [14, Theorem 8, property h)],
we have

I0(XXX; YYY ) � lim sup
n!1

sup
X

1

n
I(Xn; Y n):

Hence

C = sup
XXX

I0(XXX; YYY ) � lim sup
n!1

sup
X

1

n
I(Xn; Y n):

2) (C � lim supn!1 supX (1=n)I(Xn; Y n)): Suppose~XXX
is the input process that makes the channel information-stable. Fix
" > 0. Then for infinitely manyn

P ~X W

1

n
i ~X W

( ~Xn; Y n) � (1� ") lim sup
n!1

Cn � "

� P ~X W

i ~X W
( ~Xn; Y n)

n
< (1� ")Cn

= P ~X W

i ~X W
( ~Xn; Y n)

nCn
� 1 < �" :

Since the channel is information-stable, we get that

lim inf
n!1

P ~X W

1

n
i ~X W

( ~Xn; Y n)�(1�") lim sup
n!1

Cn�"

= 0:

By the definition ofC, the above immediately implies that

C = sup
XXX

I0(XXX; YYY ) � I0( ~XXX; YYY ) � (1� ") lim sup
n!1

Cn � " :

Finally, the proof is completed by noting that" can be made
arbitrarily small.

Observations:

• It is known that for discrete memoryless channels, the optimistic
capacityC is equal to the (conventional) capacityC [5], [14].
The same result holds formodulo� q additive noise channels
with stationary ergodic noise. However, in general,C � C since
I0(XXX; YYY ) � I(XXX; YYY ) [3], [4].

• Remark that [13, Theorem 11] holds if and only if

sup
XXX

I(XXX; YYY ) = sup
XXX

I0(XXX; YYY ):

Furthermore, note that, ifC = C and there exists an input
distributionP

X̂XX
that achievesC, thenP

X̂XX
also achievesC.

V. EXAMPLES

We provide four examples to illustrate the computation ofC andC.
The first two examples present information-stable channels for which
C>C. The third example shows an information-unstable channel for
which C = C. These examples indicate that information stability is
neither necessary nor sufficient to ensure thatC = C or thereby the
validity of the classical source-channel separation theorem. The last
example illustrates the situation where0<C<C<CSC < log2 jYj
where CSC is the channel strong capacity.3 We assume in this
section that all logarithms are in base2 so thatC andC are measured
in bits.

A. Information-Stable Channels

Example 5.1:Consider a nonstationary channelWWW such that at odd
time instancesn=1; 3; � � � ; Wn is the product of the transition distri-
bution of a binary-symmetric channel with crossover probability1=8
(BSC(1=8)), and at even time instancesn = 2; 4; 6; � � �, Wn is the
product of the distribution of a BSC(1=4). It can be easily verified
that this channel is information-stable. Since the channel is symmet-
ric, a Bernoulli(1=2) input achievesCn = supX (1=n)I(Xn; Y n);
thus

Cn =
1� hb(1=8); for n odd
1� hb(1=4); for n even

where

hb(a)
�
= � a log2 a� (1� a) log2(1� a)

is the binary entropy function. Therefore,

C = lim inf
n!1

Cn = 1� hb(1=4)

and

C = lim sup
n!1

Cn = 1� hb(1=8)> C:

3The strong (or strong converse) capacityCSC is defined [2] as the
infimum of the numbersR for which there exists
 > 0 such that for all
(n; M) codes with(1=n) log M > R � 
; lim infn!1 P

(n)
e = 1. This

definition of CSC implies that for any sequence of(n; M) codes with
lim infn!1 (1=n) log M > CSC , P (n)

e > 1 � " for every " > 0
and forn sufficiently large. It is shown in [2] thatCSC = lim""1 C" =
supXXX I(XXX; YYY ).
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Example 5.2: Here we use the information-stable channel pro-
vided in [13, Sec. III] to show thatC > C. Let N be the set of
all positive integers. Define the setJ as

J
�
= fn 2 N : 22i+1 � n < 22i+2; i = 0; 1; 2; � � �g

= f2; 3; 8; 9; 10; 11; 12; 13; 14; 15; 32; 33; � � � ; 63;

128; 129; � � � ; 255; � � �g:

Consider the following nonstationary symmetric channelWWW . At times
n 2 J , Wn is a BSC(0), whereas at timesn =2 J , Wn is a
BSC(1=2). Put Wn = W1 � W2 � � � � �Wn. Here againCn is
achieved by a Bernoulli(1=2) input X̂n. We then obtain

Cn =
1

n

n

i=1

I(X̂i; Yi) =
1

n
[J(n) � (1) + (n� J(n)) � (0)]

=
J(n)

n

whereJ(n)
�
= jJ \ f1; 2; � � � ; ngj. It can be shown that

J(n)

n
=

1�
2

3
�

2blog nc

n
+

1

3n
; for blog2 nc odd

2

3
�

2blog nc

n
�

2

3n
; for blog2 nc even.

Consequently,

C = lim inf
n!1

Cn = 1=3

and

C = lim sup
n!1

Cn = 2=3:

B. Information-Unstable Channels

Example 5.3—The Polya-Contagion Channel:Consider a discrete
additive channel with binary input and output alphabetf0; 1g de-
scribed by

Yi = Xi � Zi; i = 1; 2; � � �

whereXi, Yi, andZi are, respectively, theith input, ith output, and
ith noise, and� represents modulo-2 addition. Suppose that the input
process is independent of the noise process. Also assume that the
noise sequencefZngn�1 is drawn according to the Polya contagion
urn scheme [1], [10], as follows: an urn originally containsR red
balls andB black balls withR < B; we make successive draws
from the urn; after each draw, we return to the urn1 + � balls of
the same color as was just drawn(� > 0). The noise sequencefZig

corresponds to the outcomes of the draws from the Polya urn:Zi = 1

if ith ball drawn is red andZi = 0, otherwise. Let�
�
= R=(R+B)

and�
�
= �=(R+B). It is shown in [1] that the noise processfZig is

stationary and nonergodic; thus the channel is information-unstable.
From Lemma 2 and [4, Sec. IV, Pt. I], we obtain

1�H1�"(ZZZ) �C" � 1�H(1�") (ZZZ)

and

1�H1�"(ZZZ) �C" � 1�H(1�") (ZZZ):

It has been shown [1] that�(1=n) log PZ (Zn) converges in

distribution to the continuous random variableV
�
= hb(U), whereU

is beta-distributed(�=�; (1� �)=�), andhb(�) is the binary entropy
function. Thus

H1�"(ZZZ) =H(1�") (ZZZ) = H1�"(ZZZ) = H(1�") (ZZZ)

=F�1V (1� ")

whereFV (a)
�
= Pr fV � ag is the cumulative distribution function

of V , andF�1
V

(�) is its inverse [1]. Consequently,

C" = C" = 1� F�1V (1� ")

and

C = C = lim
"#0

1� F�1V (1� ") = 0:

Example 5.4: Let ~W1; ~W2; � � � consist of the channel in Example
5.2, and letŴ1; Ŵ2; � � � consist of the channel in Example 5.3. Define
a new channelWWW as follows:

W2i = ~Wi and W2i�1 = Ŵi; for i = 1; 2; � � � :

As in the previous examples, the channel is symmetric, and a
Bernoulli(1=2) input maximizes the inf/sup-information rates. There-
fore, for a Bernoulli(1=2) input XXX, we have the equations at the
bottom of this page. The fact that�(1=i) log[PZ (Zi)] converges

in distribution to the continuous random variableV
�
= hb(U), where

U is beta-distributed(�=�; (1� �)=�), and the fact that

lim inf
n!1

(1=n)J(n) = 1=3 and lim sup
n!1

(1=n)J(n) = 2=3

imply that

iXWXWXW (�)
�
= lim inf

n!1
Pr

1

n
log

PW (Y njXn)

PY (Y n)
� �

=1� FV
5
3
� 2�

and

iXWXWXW (�)
�
= lim sup

n!1
Pr

1

n
log

PW (Y njXn)

PY (Y n)
� �

=1� FV
4
3
� 2� :

Consequently,

C" =
5

6
�

1

2
F�1V (1� ") and C" =

2

3
�

1

2
F�1V (1� "):

Pr
1

n
log

PW (Y njXn)

PY (Y n)
� � =

Pr
1

2i
log

P ~W (Y ijXi)

PY (Y i)
+ log

P
Ŵ

(Y ijXi)

PY (Y i)
� � ; if n = 2i

Pr
1

2i+ 1
log

P ~W (Y ijXi)

PY (Y i)
+ log

P
Ŵ

(Y i+1jXi+1)

PY (Y i+1)
� � ; if n = 2i+ 1

=

1� Pr �
1

i
log PZ (Zi) < 1� 2� +

1

i
J(i) ; if n = 2i

1� Pr �
1

i+ 1
log PZ (Zi+1) < 1� 2�

1

i+ 1
� +

1

i+ 1
J(i) ; if n = 2i+ 1.
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Thus

0 < C =
1

6
< C =

1

3
< CSC =

5

6
< log

2
jYj = 1:
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Gaussian Codes and Shannon Bounds
for Multiple Descriptions

Ram Zamir,Senior Member, IEEE

Abstract—A pair of well-known inequalities due to Shannon up-
per/lowerbound the rate-distortion function of a real source by the rate-
distortion function of the Gaussian source with the same variance/entropy.
We extend these bounds to multiple descriptions, a problem for which
a general “single-letter” solution is not known. We show that the set
DX(R1; R2) of achievable marginal (d1; d2) and central (d0) mean-
squared errors in decodingX from two descriptions at ratesR1 and R2

satisfies

D
�(�2x; R1; R2) � DX(R1; R2) � D

�(Px; R1; R2)

where �2x and Px are the variance and the entropy-power ofX, respec-
tively, and D�(�2; R1; R2) is the multiple description distortion region
for a Gaussian source with variance�2 found by Ozarow. We further
show that like in the single description case, a Gaussian random code
achieves theouter bound in the limit as d1; d2 ! 0, thus the outer
bound is asymptotically tight at high resolution conditions.

Index Terms—Gaussian codes, high resolution, multiple descriptions,
Shannon lower bound.

I. INTRODUCTION

The multiple description problem [6] arises in communicating
analog source information (speech, image, video) via lossy packet
networks. In this increasingly frequent scenario, a source code is
broken into a few packets, some of which may not arrive at the
destination. Suppose the network does not support retransmission of
lost packets (due, e.g., to restrictions on delay, loading, or capacity
of feedback channel). In such a case, the decoder wishes to achieve
a certain basic reproduction quality if a small subset of the packets
arrives, and an improved quality if more packets or the whole source
code arrives. Thus portions of various size of the code should contain
individually good, complementary descriptions of the source.

The basic formulation of the multiple description problem in the
information-theoretic literature involves two (noiseless) subchannels
of rates R1 and R2, corresponding to two “packets,” and three
receivers. Each receiver corresponds to a possible case of packet
arrival, the first arrived, the second arrived, or both arrived, as
depicted in Fig. 1. In response to a source blockxxx = (x1; � � � ; xn);
the encoder generates two codewords (indices)f1(xxx) and f2(xxx) at
rates

Ri =
1

n
log jfi(�)j; i = 1; 2

where jfij denotes the size of codefi(�), and transmits codeword
fi through subchanneli; i = 1; 2. The two individual (“marginal”)
receivers and the combined (“central”) receiver then generate recon-
structionsxxx1; xxx2; andxxx0; respectively, using the decoding functions
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