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Abstract

The object of this investigation is to develop equations of motion and analyze the eigenproperties of
spinning boring trepanning association (BTA) deep-hole drill shafts containing #owing #uid and subject to
compressive axial force. The energy formulations are based on a coordinate system attached to the spinning
shaft (#oating coordinate system), and the equations of motion were derived using Hamilton's principle. This
problem was studied for two di!erent models: a Timoshenko beam model (which includes shear deformation,
rotatory inertia moment, and gyroscopic moment e!ects) and a Euler}Bernoulli beam model. Galerkin's
method was used to obtain solutions of the dynamic system. And two kinds of experimental test were
performed to investigate the eigenproperties of spinning BTA deep-hole drill shafts: impulsive testing for
non-spinning tool shafts, and random-input excitation testing for spinning tool shafts. Experimental results
are also compared with simulation results. ( 1999 Elsevier Science Ltd. All rights reserved.
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Notation

x, y transverse displacement in the x
1

and x
2

directions
w axial displacement in the x

3
direction

uJ , tI complex transverse displacement and rotational angle
ds

1
, ds

2
shortening displacement due to compressive axial force P

A, A
f

cross-sectional area of drill shaft and #owing #uid, respectively

0020-7403/99/$ - see front matter ( 1999 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 2 0 - 7 4 0 3 ( 9 8 ) 0 0 0 9 1 - 5



o, o
f

mass density of drill shaft and #uid #ow, respectively
I moment of inertia of area A
I
f

moment of inertia of area A
f

J
P

polar mass moment of inertia of area A per unit length
J
Pf

polar mass moment of inertia of area A
f

per unit length
; #owing #uid velocity in axial direction
;

cr
maximum velocity of #owing #uid

;
c

critical #uid #ow velocity
!1 non-dimensional #uid #ow velocity
) spinning speed of drill shaft
I1 non-dimensional spinning speed
M mass of the #uid per unit length (M"o

f
A

f
)

a, b rotational angle in the x
1
}x

3
and x

2
}x

3
plane, respectively

c
1
, c

2
shear angle

l length of drill shaft
E Young's modulus of drill shaft
G shearing modulus of drill shaft
k Timoshenko shear coe$cient
P compressive axial force
P
cr

Euler critical buckling load ("n2EI/l2)
N

c
critical axial loading

R1 non-dimensional compressive axial force
p
ij

stress components
e
ij

strain components
q
i
(tN ) generalized time-dependent coordinates

/
i
(f) comparison function

j
i

non-dimensional eigenvalues of /
i
(f)

k complex eigenvalue k ("q#iu)
q real part of complex eigenvalue k
- natural frequency of the drill shaft
-
n

nth mode natural frequency
u

10
"rst mode &&at-rest'' natural frequency

-6 non-dimensional natural frequency parameter
IM identity matrix
01 zero matrix
n truncated number of Galerkin's method
M

1,2
bending moment

<
1,2

shear force
p #uid pressure
q shear stress on the internal surface of the drill tube

1. Introduction

Deep-hole drilling is de"ned as the ratio of a required hole depth to its diameter being greater
than 10. Because the shafts used for this purpose are extraordinarily long compared with their
diameter, the dynamics of drill shaft become important to cutting quality with respect to hole
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tolerances, roundness, and straightness. Therefore, it is necessary to examine the eigen- as well as
the dynamic properties of drill shafts.

1.1. Purpose of this study

Deep-hole drilling systems consist of long drill tubes with #uid through the bores of tubes and
drilling heads under high pressure. There are two types of deep-hole drilling, one uses a spinning
drill and a stationary workpiece, the other uses a spinning workpiece and a stationary drill.

Most researchers have studied how cutting quality is a!ected by cutting conditions, such as, tool
material, cutting forces, action of burnishing pads, drill wear, and cutting tool head design. The
behaviors of BTA deep-hole drill shafts have rarely been discussed in recent years. Chin et al. [1, 2]
recently attempted to predict the behavior of a non-spinning BTA deep-hole drill shaft with (and
without) #owing #uid, but spinning tool shafts have remained unstudied.

Since the characteristics of long spinning tubes with #uid #owing through them and subject to
axial compressive forces have rarely been discussed in the literature, this paper explores the
dynamic responses of spinning BTA drill shafts carrying #uid and subject to compressive forces in
the axial direction. We formulate the energy in terms of a #oating coordinate system and derive
equations of motion based on Timoshenko and Euler}Bernoulli beam theories using Hamilton's
principle. The dynamic-system solutions were found by Galerkin's method. Simulation and
experimental results are compared and discussed in the paper.

1.2. Literature review

Chin et al. [3, 4] proposed a mathematical model for simulating chip #owing in gun drilling and
experimentally monitored the pressure of the chip-carrying #uid using piezoelectric transducers.
Later, Chin and Lin [5] set up a theoretical model treating the tool shaft as a second-order lumped
mass system in order to investigate the stability of the gundrill cutting process. Sakuma et al. [6]
showed that the e!ects of tool-head vibration (one kind of self-excited vibration) formed polygonal
holes. He proposed a simple formula that described the mechanism by which multi-corner holes
were formed but did not study the bending vibration of the drill shaft carrying #uid.

The studies mentioned below proposed theories concerning the dynamic responses of spinning
or non-spinning shafts with various considerations such as subject to a axial force, shear deforma-
tion, rotatory inertia moment, gyroscopic moment, etc. Huang [7] constructed a mathematical
model of a non-spinning beam with classical boundary conditions to estimate natural frequencies
and normal modes using Timoshenko beam theory. Thirty years later, Zu and Han [8] extended
this study to derive the exact natural frequencies and normal modes of a spinning Timoshenko
beam with general boundary conditions. Eshleman and Eubanks [9] investigated the e!ect of axial
torque on the critical speeds of a continuous rotor whose motion was described by a set of partial
di!erential equations that included consideration of the e!ects of transverse shear, rotatory inertia,
and gyroscopic moments. Nelson [10] used the "nite-element method to analyze the eigenquanti-
ties and critical speeds of a "nite spinning Timoshenko beam element. The e!ects of rotatory
inertia, gyroscopic moments, axial force, and internal damping were also considered, but shear
deformation was not. Bauer [11] published a thorough treatment of a spinning shaft under all
possible combinations of classical boundary conditions using Euler beam theory. Lee et al. [12]
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employed the modal analysis technique to study the forced responses of an undamped distributed-
parameter spinning shaft, including its rotatory inertia and gyroscopic e!ects, and allowing for
various boundary conditions. The non-self-adjoint eigenvalue problem was also considered in his
study using the modal analysis technique. Sato [13] examined the equations governing vibration
and stability of a Timoshenko beam from the stand point of Hamilton's principle. Choi et al. [14]
presented consistent derivation of a set of equations of motion describing the #exural and torsional
vibrations of a straight spinning shaft subject to axial loading. Farchaly and Shebl [15] derived the
exact mode shapes and natural frequencies of an axially loaded Timoshenko beam carrying
elastically supported end masses.

A study of a pipe containing #owing #uid was published by Housner and Calif [16] in 1952.
Paidoussis et al. [17, 18] extended this study to cover the dynamic stability of pipes conveying #uid
at constant and pulsating #ow velocities. Weaver and Unny [19] showed that the dynamic stability
of pipes conveying #uid is stimulated by transverse vibration based on observation of the
Trans-Arabian pipeline. Blevins [20] suggested that the planar lateral motions of pipes carrying
#uid at constant velocities, and critical #ow velocities are due to buckling and #uttering of the pipe.

Since BTA deep-hole drills combine beams, pipes, and pressurized internal #uid #ows, none of
the available equations of motion properly describe the behavior in particularly when they are also
subject to a compressive forces in the axial direction. In this paper, we attempt to establish
equations of motion for a spinning BTA deep-hole drill shaft containing #owing #uid and subject
to axial loading. The proposed equations were solved for lateral motions and the results were
veri"ed by experiment.

2. Equations of motion

The di!erential equations governing the transverse dynamic motion of a spinning drill shaft
containing #owing #uid and subject to a compressive axial force are derived in this section. This
problem is studied using two models: a Timoshenko beam model (which includes shear deformations,
rotatory inertia moment, and gyroscopic moment e!ects) and a Euler}Bernoulli beam model. The
basic assumptions about the drill shaft are as follows: (1) The drill shaft has a uniform cross section
along its length. (2) The plane sections is normal to the centroidal line of the drill shaft in its
undeformed state and Poisson e!ects are ignored, i.e., stresses through the thickness of drill shaft are
ignored. (3) The drill shaft is balanced, i.e., at every cross section, the mass center coincides with the
geometric center. (4) A compressive axial force P of constant magnitude is applied at the ends. (5)
Axial deformations due to the compressive axial force P are considered. (6) The drill shaft is spinning
at a constant angular velocity ) about its longitudinal axis. (7) The #uid #ow velocity is constant in
the axial direction. (8) The drill shaft material is assumed to be isotropic and homogeneous.

The inertial coordinate system OX
1
X

2
X

3
, and the #oating coordinate system ox

1
x
2
x
3

used in
formulating the equations of motion are shown in Fig. 1. The ox

1
x
2
x
3

system rotates at a constant
speed of ), and is attached to drill shaft at its centroid. According to the Timoshenko beam theory,
the deformed state can be expressed as two centerline elastic displacements of the drill shaft x, and
y, in the x

1
and x

2
directions, and the small rotations a and b about the x

2
and x

1
axes. A small

free-body diagram element of a drill shaft of length ds, and a corresponding enclosed #uid
component of volume d< are shown in Fig. 2.
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Fig. 1. The inertial and rotating coordinate system of the drill shaft.

Fig. 2. Free-body diagram of a drill shaft and a controlled volume of enclosed #uid on the x
1
}x

3
plane: (a) Tool shaft

element; (b) Fluid element.

We derive the di!erential equations of motion of a spinning drill shaft using Hamilton's
principle, as given by

dP
t2

t1

(¹!<#=) dt"0, (1)

where ¹ and < are kinetic and potential energies and d= is the virtual work done by the
compressive axial force P. All of quantities below are speci"ed on the #oating coordinate system.

The kinetic energy of the drill shaft due to translation and rotation can be expressed as

¹
s
"

1
2P

l

0

MoA[xR 2#yR 2#2)(xyR !xR y)#)2 (x2#y2)]#oI[aR 2#bQ 2#)2 (a2#b2)]Nds, (2)

where o is the mass density, A is the cross-sectional area, I is the second moment of area, and ) is
the spinning speed of drill shaft.

The kinetic energy of the #owing #uid [19] is given by

¹
f
"

1
2P

l

0

MM[;2#(xR #;x
s
)2#(yR #;y

s
)2#2)x(yR #;y

s
)!2)y(xR #;x

s
)

#)2(x2#y2 )]#o
f
I
f
[aR 2#bQ 2#)2(a2#b2)]Nds. (3)
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The parameter M is the mass of #uid per unit length, o
f

is the mass density of the #owing #uid,
A

f
is the cross section of the #owing #uid in the drill tube, ; is the #uid #ow velocity in the axial

direction, I
f

is the second moment of area A
f
.

The total kinetic energy is the sum of the kinetic energy of the drill shaft and the #owing #uid. It
is written as

¹"¹
s
#¹

f
. (4)

The potential energy of the drill shaft due to bending and shear deformations is expressed as

<"
1
2P

v

p
ij
e
ij
dv

"

1
2 P

l

0

MEI(a2
s
#b2

s
)#kAG[(x

s
!a)2#(y

s
!b)2]Nds, (5)

where p
ij

and e
ij

are listed in Appendix A.
The virtual work due to the compressive axial force of a Timosheko beam, which includes the

e!ects of shear deformation and bending deformation is

d=
P
"dP

l

0

P(ds
1
#ds

2
), (6)

where ds
1

and ds
2

are geometric shortening at s"l on the x
1
}x

3
and x

2
}x

3
planes, respectively.

The following approximate relationships hold for a Timoshenko beam model.

ds
1
:!1

2
(x2

s
!c2

1
) ds, (7)

ds
2
:!1

2
(y2

s
!c2

2
) ds, (8)

where c
1

and c
2

are shear angles. The second terms in Eqs. (7) and (8) are ignored for the
Euler}Bernoulli beam model. Applying Hamilton's principle, the equations of motion for a spin-
ning drill shaft containing #owing #uid and subject to a compressive axial force expressed in the
#oating coordinate system can be obtained from

(oA#M)xK#2M;xR
s
!2)(oA#M)yR #M;Q xR

s
!2M;)y

s

!)2(oA#M)x#(kAG#P)a
s
#(M;2!kAG)x

ss
"0, (9)

(oA#M)yK#2M;yR
s
#2)(oA#M)xR #M;Q yR

s
#2M;)x

s
!)2(oA#M)y

#(kAG#P)b
s
#(M;2!kAG)y

ss
"0, (10)

(oI#o
f
I
f
)aK!EIa

ss
!(kAG#P)(x

s
!a)#)2(oI#o

f
I
f
)a"0, (11)

(oI#o
f
I
f
)bG!EIb

ss
!(kAG#P) (y

s
!b)#)2(oI#o

f
I
f
)b"0, (12)

where the subscript denotes partial di!erentiation with respect to s in the x
3

direction.
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If #uid #ow M is ignored for a non-spinning drill shaft with two degrees of freedom in Eqs.
(9)}(12), they are the same as the equations in [13, 15]. If #uid #ow M and compressive axial force
P are both ignored in Eqs. (9)}(12), they are the same as the homogeneous equations in [21]. Eqs.
(9)}(12) are coupled partial di!erential equations. For convenience, the complex rotation and
de#ection are used to Eqs. (9)}(12). Let

tI "a#ib, (13)

uJ "x#iy, (14)

i"J!1. (15)

Substituting tI and uJ into Eqs. (9)} (12), we obtain the complex-form Equations of motion as
follows:

(oA#M)uJ G#2M;uJQ
s
#i2)(oA#M)uJ Q #M;Q uJ

s
#i2M;)uJ

s

!)2(oA#M)uJ #(kAG#P)tI
s
#(M;2!kAG)uJ

ss
"0, (16)

(oI#o
f
I
f
)tI G!EItI

ss
!(kAG#P)(uJ

s
!tI )#)2(oI#o

f
I
f
)tI "0. (17)

The equation for transverse vibration of a spinning drill shaft containing #owing #uid and
subject to a compressive axial force for a Timoshenko beam model can be easily obtained from Eqs.
(16) and (17):

(oA#M)(oI#o
f
I
f
)

EI(kAG!M;2)
uJ GG#

2M;(oI#o
f
I
f
)

EI(kAG!M;2)
uJ GQ
s
#i

2) (oA#M)(oI#o
f
I
f
)

EI(kAG!M;2)
uJ GQ

!C
oA#M

kAG!M;2
#

oI#o
f
I
f

EI D uJ G
ss
#i

2M;)(oI#o
f
I
f
)

EI(kAG!M;2)
uJ G
s
#

(oA#M) (kAG#P)
EI(kAG!M;2)

uJ G

!

2M;
kAG!M;2

uJQ
sss
!i

2)(oA#M)
kAG!M;2

uJQ
ss
#

2M;(KAG#P)
EI(kAG!M;2) A

oI#o
f
I
f

kAG#P
)2#1B uJQ

s

#i
2)(oA#M)(KAG#P)

EI(kAG!M;2) A
oI#o

f
I
f

kAG#P
)2#1B uJQ

!

)2(oA#M) (KAG#P)
EI (kAG!M;2) A

oI#o
f
I
f

kAG#P
)2#1B uJ

#i
2M;)(KAG#P)
EI(kAG!M;2) A

oI#o
f
I
f

kAG#P
)2#1B uJ

s
#C

)2(oA#M)
kAG!M;2

!

KAG#P
EI A

oI#o
f
I
f

kAG#P
)2#1B

#

(KAG#P)2
EI(kAG!M;2)D uJ

ss
!i

2M;)
kAG!M;2

uJ
sss
#uJ

ssss
"0 (18)
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If #uid #ow M is ignored for a non-spinning drill shaft in Eq. (18), it is the same as the equation in
[13]. Fluid #ow M and compressive axial force P can be ignored for a non-spinning drill shaft in
Eq. (18). Eq. (18) then becomes the same as the equation in [7].

Eq. (18) can be rendered dimensionless by using the following dimensionless parameters:

g"
uJ
l
, f"

s
l
, tM"

t
l C

EI (kAG!M;2)
(oA#M) (oI#o

f
I
f
)D

1@4

)1 "l)C
(oI#o

f
I
f
)3(kAG!M;2)

(EI)3 (oA#M) D
1@4

,

;M ";C
EI(oA#M)3

(oI#o
f
I
f
) (kAG!M;2)3D

1@4
,

MM "C
EI(oA#M)

(kAG!M;2)(oI#o
f
I
f
)D

1@2
, (19)

mN "
M

oA#M
, PM "

M;2#P
kAG!M;2

,

KM "
kAG#P

EI
l2, RM "

kAG#P
kAG!M;2

,

which takes the following form:

gKK#
2m6 ;1
M1

gGQ f#i2MM )1 gKK!AM1 #
1
M1 BgK ff#i2m6 ;M )1 gK f#M1 K1 gK!2m6 ;1 gR fff

!i2)1 M1 2gR ff#2m6 ;1 (K1 #M1 )1 2)gR f#i2(K1 M1 2)1 #M1 3)1 3)gR

!(K1 M1 3)1 2#M1 4)1 4)g#i2(m6 ;1 K1 M1 )1 #m6 ;1 M1 2)1 3)gf#(M1 3)1 2!M1 )1 2!K1 #K1 R1 )gff
!i2m6 ;1 M1 )1 gfff#gffff"0. (20)

The equations of motion based on the Euler}Bernoulli beam theory for a spinning drill shaft
with #owing #uid and subject to a compressive axial force can be obtained in a similar way. In
Euler}Bernoulli beam theory, the e!ects of shear deformation, gyroscopic moment, and moment of
cross-sectional rotatory inertia are ignored. Therefore, we obtain the following equation:

oA#M
EI

uJ G#i
2) (oA#M)

EI
uJQ !

)2(oA#M)
EI

u8

#

2M;
EI

uJQ
s
#i

2M;)
EI

uJ
s
#

M;2#P
EI

uJ
ss
#uJ

ssss
"0. (21)

If the #uid #ow M and compressive axial force P are ignored for a non-spinning drill shaft in Eq.
(21), it is the same as the equations in [22, 2] where the damping e!ect is considered in [2].
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By introducing the following dimensionless terms to simplify Eq. (21):

g"
u8
l
, f"

s
l
, tN

E
"

t
l2C

EI
oA#MD

1@2

)1
E
"l2)C

oA#M
EI D

1@2
, ;M

E
"l;C

oA#M
EI D

1@2
(22)

mN "
M

oA#M
, KM "

M;2#P
EI

l2,

one gets the dimensionless equation of transverse vibration for a Euler}Bernoulli beam model:

gK#i2)1
E
gR !)1 2

E
m6 g#2m6 ;1

E
gR f#i2m6 ;1

E
)1

E
gf#K1 gff#gffff"0. (23)

In this study, we formulate the equations of motion in the #oating coordinate system. The mass
moment of inertia remains unchanged with spinning speed.

3. Method of solution

Galerkin's method was used analytically to solve the equations of a spinning Timoshenko beam
and a Euler}Bernoulli beam carrying #uid and loaded by compressive axial force. According to
Galerkin's method, the quantity g (f, tN ) can be expressed as a product of the time-dependent
generalized coordinates q

i
(tN ) and comparison functions /

i
(f):

g (f, tN )"
n
+
i/1

q
i
(tN )/

i
(f ), (24)

where /
i
(f) are comparison functions that satisfy the boundary conditions at the two ends of beam.

In this study, the boundary condition of the drill shaft is assumed to be clamping at one end and
hinging at the other end. Thus,

g (0, tN )"0, gf (0, tN )"0,

g (1, tN )"0, gff(1, tN )"0. (25)

The comparison functions /
i
(f ) are found to be

/
i
(f)"cosh j

i
f!cos j

i
f#p

i
(sinh j

i
f!sin j

i
f ) (26)

with

p
i
"!

cosh j
i
!cos j

i
sinh j

i
!sin j

i

, (27)

where j
i
are the solutions of

tanh j
i
"tan j

i
. (28)

The dimensionless values j
i
are listed in Table 1.
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Table 1
The values of j

i

j
i

value of j
i

j
i

value of j
i

j
1

3.92660246 j
6

19.63495408
j
2

7.06858275 j
7

22.77654674
j
3

10.21017612 j
8

25.91813939
j
4

13.35176878 j
9

29.05973205
j
5

16.49336143 j
10

32.20132470

Substituting Eq. (24) into Eq. (20), multiplying by /
j
(f), and integrating it from 0 to 1, due to the

orthonormal property of the comparison functions used, the resulting dimensionless equation of
motion in matrix form for a Timoshenko beam model becomes

AM sKK#B1 sG0 #C1 sK#D1 sR #E1 s"0, (29)

where matrices AM , BM , CM , DM , and EM are de"ned as

[AM ]
ij
"aN

ij
,

[BM ]
ij
"

2mN ;M
MM

bN
ij
#i2MM )1 aN

ij
,

[CM ]
ij
"!AMM #

1
MM B cN

ij
#i2mN ;M )1 bN

ij
#MM KM aN

ij
,

[DM ]
ij
"!2mN ;M dM

ij
!i2)1 MM 2cN

ij
#2mN ;M (KM #MM )1 2)bN

ij
#i2()1 3MM 3#KM )1 MM 2)aN

ij
,

[EM ]
ij
"eN

ij
!i2mN ;M )1 MM dM

ij
#()1 2MM 3!)1 2MM !KM #KM RM )cN

ij

#i2(KM mN ;M MM )1 #)1 3mN ;M MM 2)bN
ij
!()1 4MM 4#KM )1 2MM 3)aN

ij

and

aN
ij
"P

1

0

/
i
(f)/

j
(f) df"G

0, iOj,

1, i"j,

bN
ij
"P

1

0

/
i
(f)/

j,f(f) df"

i
g
j
g
k

4j2
i
j2
j

j4
j
!j4

i

[(!1)i`j!1], iOj,

0, i"j,

cN
ij
"P

1

0

/
i
(f)/

j,ff(f) df"

i
g
j
g
k

4j2
i
j2
j

j4
j
!j4

i

(j
j
p
j
!j

i
p
i
) [(!1)i`j#1], iOj,

0, i"j,
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dM
ij
"P

1

0

/
i
(f)/

j,fff(f) df"

i
g
j
g
k

4j2
i
j2
j

j4
j
!j4

i

[p
i
p
j
!(!1)i`j], iOj,

0, i"j,

eN
ij
"P

1

0

/
i
(f)/

j,ffff(f) df"G
0, iOj,

j4
i
, i"j,

where the operator ( )
j,f in the expressions above denotes di!erentiation with respect to the f of jth

comparison function. In order to obtain a set of 4n "rst-order di!erentiation equations, we can
de"ne the state vector as

Z"G
s
s
sK
sKQ H , ZQ "G

sR
sK
sG0

sKK H . (30)

Substituting Eq. (30) into Eq. (29) yields

G
sR
sK
sK0
sKK H"

01 IM 01 01

01 01 IM 01

01 01 01 IM
!AM ~1EM !AM ~1DM !AM ~1CM !AM ~1BM G

s
sR
sK
sG0 H$ (31)

Or Eq. (31) can be compactly rewritten in matrix form

ZQ "HZ. (32)

In Eq. (31), 01 is zero matrix and IM is the identity matrix of size n]n. It is an eigenvalue problem
and k represents the eigenvalues of matrix H. For non-trivial solutions, the characteristic equation
is

det DH!kI1 D"0. (33)

The values of k are complex eigenvalues that comprise real parts of q's and imaginary parts of
u's, i.e., k"q#iu. Note that the imaginary parts of u's are transverse natural frequencies of the
drill shaft.

The solution for the Euler}Bernoulli beam model of a spinning drill shaft containing #owing
#uid and loaded by a compressive axial force can be easily found in a similar way.

4. Simulation results

The theoretical equations of motion based on the #oating coordinate system derived in the
preceding section were numerically simulated using MATLAB software. Drill shaft parameters and
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Fig. 3. Variations in natural frequency with spinning speed; without static #uid, P"0 kg (F: forward precession B:
backward precession).

material properties for these numerical simulations are listed in Appendix B. In the computer
program, the assumed mode number n in Section 3 was set to 40 for convergence using Galerkin's
method. The Timoshenko beam and Euler}Bernoulli beam models formulated in Eqs. (20) and (23)
were studied under various drilling conditions such as di!erent spinning speeds ()), compressive
axial forces (P), and #uid #ow velocities (;). The complex eigenvalues of the dynamic system were
calculated using the characteristic Eq. (33). The transverse natural frequencies of the drill shaft were
determined from the imaginary parts of the complex eigenvalues k. The theoretical results for the
Timoshenko beam and Euler}Bernoulli beam models were compared with each other.

The following dimensionless parameters were de"ned for the sake of clear representation: (a)
uN "u

n
/u

10
, nth-mode non-dimensional natural frequency parameter; (b) I1 ")/u

10
, non-dimen-

sional spinning speed parameter; (c) !1 ";/;
cr
, non-dimensional #uid #ow velocity parameter

along the axial direction; (d) R1 "P/P
cr
, non-dimensional compressive axial force parameter. u

10
is

natural frequency of the "rst mode of a non-spinning drill shaft without #uid. ;
cr

is the maximum
value in the range of #uid #ow velocities that we were interested in. Here, we set;

cr
to 32 m/s from

Chang [23, 24]. P
cr

is the Euler critical buckling load given by n2EI/l2.
Variations in natural frequencies corresponding to the "rst four mode-shapes of drill shaft at the

dimensionless spinning speed parameter I1 are sketched in Figs. 3 and 4 for the clamped-hinged
Timoshenko beam model described in Eq. (20). It can be seen that the static cutting #uid contained
in BTA deep-hole drill tube decrease the transverse natural frequencies, and also that a natural
frequency bifurcation occurred. There were four natural frequencies in each mode for the
Timoshenko beam model. One pair of natural frequencies occurred at lower-orders of magnitude,
the other at higher-orders of magnitude. Since the pair of natural frequencies occurring at higher
orders of magnitude were of little signi"cance, we considered only the pair of natural frequencies
occurring at lower orders. There was only one pair of natural frequencies at lower-orders of
magnitude for the Euler}Bernoulli beam model. It should be noted that if spinning ceases, only one
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Fig. 4. Variations in natural frequency with spinning speed; with static #uid, P"0 kg (F: forward precession B:
backward precession).

Fig. 5. Variations in the "rst natural frequency with spinning speed; with static #uid, P"0 kg (F: forward precession B:
backward precession).

natural frequency instead of two natural frequencies remains for each mode. The additional natural
frequency is the bifurcation induced by Coriolis e!ects. In Figs. 3 and 4, the lower branches
correspond to forward precession of the natural frequencies and the upper branches correspond to
backward precession of the natural frequencies. This distinction between forward and backward
precessions becomes more obvious at higher spinning speeds. The forward natural frequency
decreases with increased spinning speed. When the forward natural frequency of the "rst mode
decreased to zero, instability of the drill shaft occurred, see Fig. 5. The natural frequencies of the
"rst four modes predicted by Timoshenko beam theory and Euler}Bernoulli beam theory are
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Fig. 7. Variations in the "rst natural frequency with velocity of #owing #uid; P"0 kg, )"0 rpm, (F: forward precession
B: backward precession).

Fig. 6. Variations in natural frequency with spinning speed; with static #uid, P"0 kg (F: forward precession B:
backward precession) (}) Timoshenko beam, (]) Euler}Bernoulli beam).

plotted in Fig. 6. It can be seen that the two generated very close results for smaller drilling
diameters. Slight di!erences occurred the lower modes at higher spinning speeds, but the di!erence
in natural frequency between the two models became larger for the ¹-Max (drilling diameter
greater than 65 mm) type deep-hole drill shaft.

The in#uence of #uid #ow velocity on the "rst natural frequency, with no spinning speed and
compressive axial force, is shown in Fig. 7. It can be observed that the natural frequencies depend
heavily on #uid #ow velocity. Fluid #ow velocity tends to lower the transverse natural frequencies
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Fig. 8. Variations in the "rst natural frequency with compressive axial force; with static #uid, )"0 rpm, (F: forward
precession B: backward precession).

Table 2
The natural frequencies of modes 1}4 of transverse vibration of a BTA drill shaft; without
#uid; spinning speed )"0 rpm (unit: Hz)

Mode 0 kg 20 kg 40 kg 60 kg 80 kg 100 kg

u
1

30.809 30.490 30.168 29.842 29.512 29.177
u

2
99.743 99.279 98.813 98.345 97.874 97.400

u
3

207.759 207.239 206.717 206.195 205.670 205.144
u

4
354.452 353.901 353.350 352.797 352.243 351.689

of spinning drill shafts, especially, for the "rst natural mode, at which the e!ect of #uid #ow velocity
will result in instability in BTA deep-hole drilling as the critical #ow velocity;

c
is approached, i.e.,

the forward precession of natural frequencies decreases to zero.
The in#uence of compressive axial loads on the "rst natural frequency of a drill shaft with static
#uid is plotted in Fig. 8. Variations in the "rst}fourth natural frequencies under compressive axial
loading are listed in Tables 2}4. Compressive axial force applied to drill shafts tends to lower
natural frequencies because the compressive axial forces soften the e!ective shaft sti!nesses. By
contrast, the tensile force strengthens the e!ective shaft sti!ness for higher-order vibration mode,
decreasing the importance of this e!ect. Thus, we were concerned with lower-order vibration
modes. In particular, the critical axial loading N

C
results in instability as forward precession of the

"rst natural frequency decreases to zero. This e!ect is similar to that of spinning speeds and #uid
#ow velocities in BTA deep-hole drill shaft. Results for both models for the "rst to fourth average
natural frequencies of the drill shafts with and without static #uid, and spinning speed at 300 rpm
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Table 3
The natural frequencies of modes 1}4 of transverse vibration of a BTA drill shaft; with static #uid;
compressive axial force P"0 kg (unit: Hz)

Spinning speeds

Mode 0 rpm 75 rpm 300 rpm 450 rpm 675 rpm 1050 rpm 1425 rpm

u
1

31.250 30.950 30.500 30.250 30.000 29.300 29.000
u

2
98.750 95.250 95.000 95.000 95.000 93.750 93.750

u
3

202.750 191.500 190.000 190.000 190.000 189.000 190.000
u

4
325.000 307.500 311.250 307.500 306.250 305.000 303.750

Table 4
The natural frequencies of modes 1}4 of transverse vibration of a BTA drill shaft; without
#uid; compressive axial force P"0 kg (unit: Hz)

Spinning speeds

Mode 0 rpm 300 rpm 525 rpm 750 rpm 1050 rpm 1425 rpm

u
1

32.450 31.577 31.250 31.250 31.250 31.250
u

2
102.500 97.745 97.500 97.500 96.250 93.750

u
3

208.496 206.386 205.625 205.000 205.000 203.750
u

4
345.514 333.372 332.500 332.500 332.500 331.250

Table 5
The natural frequencies of modes 1}4 of transverse vibration
of a BTA drill shaft; with static #uid; compressive axial force
P"0 kg; spinning speed )"300 rpm (unit: Hz)

Mode Experiment Timoshenko Euler

u
1

30.500 29.470 29.477
u

2
95.000 95.408 95.526

u
3

190.000 198.734 199.307
u

4
311.250 339.062 340.827

under zero compressive axial force are listed in Tables 5 and 6. Agreement was obtained for smaller
drill shaft in this study. But for ¹-Max (above 65 mm) type deep-hole drill shafts, the e!ects of shear
deformation, rotatory inertia moment, and gyroscopic moment could not be ignored. The di!er-
ence in natural frequency between the two models was about 10% for 75 mm diameter drill shafts
in numerical simulations.
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Table 6
The natural frequencies of modes 1}4 of transverse vibration
of a BTA drill shaft; without #uid; compressive axial force
P"0 kg; spinning speed )"300 rpm (unit: Hz)

Mode Experiment Timoshenko Euler

u
1

31.577 30.808 31.259
u

2
97.745 99.742 100.004

u
3

206.386 207.760 208.430
u

4
333.372 354.452 356.354

5. Experiments

The experimental equipment used in this study is listed in Appendix B, and the experimental
setups are shown schematically in Fig. 9. Impulsive and random-input-excitation tests were applied
to non-spinning and spinning drill shafts to obtain the frequency responses from the dynamic
systems. Test tool speci"cations are given in Appendix B.

Variations in the experimental "rst to fourth natural frequencies at various spinning speeds with
and without #owing #uid are listed in Tables 3 and 4, respectively. The experimental and
theoretical "rst to fourth natural frequencies of the spinning drill shaft with static #uid, no
compressive axial force applied, and a spinning speed of 300 rpm are listed in Table 5. Similarly, the
experimental and theoretical results for a spinning drill shaft without #owing #uid are listed in
Table 6. We found that the experimental natural frequencies were in good agreement with the
values predicted by our simulations.

6. Summary and conclusions

Two theoretical models of dynamic transverse vibrational behavior of spinning BTA deep-hole
drill shafts were investigated on the basis of Timoshenko beam and Euler}Bernoulli beam theories,
using formulations based on a #oating coordinate system. Investigation of the Timoshenko beam
model included considering the e!ects of shear deformation, rotatory inertia, gyroscopic moment,
compressive axial force, and #uid #ow velocity. The Euler}Bernoulli beam model of a spinning drill
shaft is easily characterized using some simpli"cations of the equations for the Timoshenko beam
model. The theoretical model presented here is closer to the complete physical tool shaft at high
spinning speeds than the models established by Chin et al. [2] and Chin and Lee [1], who studied
non-spinning simpli"ed Euler}Bernoulli beam models.

Analyses of theoretical simulations and experimental investigations have been presented in this
paper. The "ndings can be summarized as follows: (1) There are two sets of natural frequencies for
each mode in the Timoshenko beam model, a higher order and a lower order of magnitude. There
is only one set of a lower order of magnitude for the Euler}Bernoulli beam model. (2) The
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Fig. 9. Experimental setup for random-input testing.

Timoshenko beam and Euler}Bernoulli beam model display that the natural frequencies of the
dynamic system possess backward and forward precession natural frequencies which depend
strongly on spinning speeds. When spinning ceases, only one instead of two natural frequencies
remain. The additional natural frequency is a bifurcation induced by Coriolis e!ects. (3) The
distinction between backward and forward precessions becomes more obvious at higher spinning
speeds. Since advances in bearing technology have made it possible to increase spindle speeds up to
60 000 rpm in high speed drilling, the e!ects of rotatory inertia and gyroscopic moments are
signi"cant when using BTA deep-hole drills. (4) The e!ect of #uid #ow velocity tends to decrease
transverse natural frequencies of spinning drill shafts. (5) Compressive axial force applied to
spinning drill shafts softens the e!ective sti!ness of the shafts, but the tensile force strengthens the
e!ective sti!ness of the shafts. The transverse natural frequency of a dynamic system decreases with
applied force. (6) Theoretical simulations and experimental investigations showed good agreement.

1318 Y.-L. Perng, J.-H. Chin / International Journal of Mechanical Sciences 41 (1999) 1301}1322



Acknowledgements

The authors thank the National Science Council of the Republic of China for its support of this
study under Grant Number NSC-86-2212-E-009-048.

Appendix A

From Fig. 2, the total slope of axis of a spinning drill shaft is equal to the sum of the slopes due to
bending and shear angle.

Lx
Ls

"a#c
1
, (A.1)

Ly
Ls

"b#c
2
, (A.2)

where a and b are rotational angles on the x
1
}x

3
and x

2
}x

3
planes, respectively. c

1
and c

2
are shear

angles.
The axial displacement w of a point (xN , yN ) from the centroidal line of the cross section can be

expressed as

w"!xN a!y6 b. (A.3)

The strain components of drill shafts are

e
11

"e
22
"0, (A.4)

e
33

"w
s
"!x6 a

s
!y6 b

s
, (A.5)

e
23

"1
2
(!b#y

s
), (A.6)

e
31

"1
2
(!a#x

s
). (A.7)

The stress components of drill shafts are

p
11
"p

22
"0, (A.8)

p
33
"Ee

33
"!Ex6 a

s
!Ey6 b

s
, (A.9)

p
23
"2Ge

23
, (A.10)

p
31
"2Ge

31
, (A.11)

where E and G are Young's modulus and the shear modulus, respectively. In Timoshenko beam
theory, shear coe$cient k is introduced in the shear}stress equation as a correction factor [25]
dependent on cross-sectional geometry. Therefore, shear}stress equations are given by

p
23
"2kGe

23
, (A.12)

p
31
"2kGe

31
. (A.13)
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The strain energy is

<"
1
2P

v

p
ij
e
ij
dv (A.14)

Appendix B

The experimental apparatus used:

1. Lathe: SAN SHING SK26120 heavy-duty precision lathe.
2. Deep-hole drill

(a) Drill head (SANDVIK 420.6-0014D 18.91 70):
Mass: 0.030205 kg
Mass moment of inertia J: 1.420]10~6 kgm2

(b) Drill shaft (SANDVIK 420.5-800-2):
Length: 1.6 m
Internal diameter: 11.5 mm
External diameter: 17 mm
Material: JIS SNCM 21
Density o: 7860 kg/m3
Young's modulus E: 206]109 pa
Shear modulus G: 81]109 pa

(c) Cutting #uid (R32):
Densityo

f
: 871 kg/m3

Absolute viscosity: 0.383 kg/m s
3. Impulsive testing apparatus

(a) Hammer (PCB 086 C03 SN7627):
Range: 0-500 lb
Ampli"er: PCB model 480D06 power unit

(b) Accelerometer (TEAC 601Z):
Weight: 0.3 g
Ampli"er: TEAC SA620

(c) Spectrum Analyzer: Signal doctor (PW-145C):
Frequency range: 20}20 kHz
Channel number: 2

(d) Structural measuring system: STAR MODAL
4. Random-input testing apparatus:

(a) Spectrum analyzer: same as that for impulsive testing
(b) Structural measuring system: same as that for impulsive testing
(c) Vibrator (LDS V203):

Maximum sine force peak: 26.7 N (6.0 lb)
Armature resonance frequency: 13 kHz
Useful frequency range: 5}13000 Hz
Ampli"er: PW-PA100
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(d) Force transducer (PCB 208 B01 SN 12904):
Calibration range: 0}10 lb
Sensitivity: 497.8 mV/lb
Linearity error: less than 1.0%
Resonance frequency: 70 kHz

(e) Eddy current probe (WS-2000):
Frequency range: 0}10 kHz
Gap range: 10}80 mils (1 mil"25.4]10~3 mm)
Sensitivity: 200 mV/mil
Linearity error:$4%
Power supply: PW PS401, 24 Vdc, 16 mA (MAX).
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