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Abstract

It is usually assumed that the ground state lattice con"guration of polyacetylene is a dimerized chain. We found that
the energy can be further reduced by an overall chain length contraction, which leads to a new bond length order
parameter, in addition to the well-known bond alternation order parameter. For quasi-particles like solitons and
polarons, these two order parameters are coupled with the electron wave functions and vary in space. We generalize the
Takayama}Liu}Maki equations in the continuum limit to incorporate this new order parameter. Signi"cant modi"ca-
tions are found for the polaron solution. Polyacene, a ladder polymer, is also studied with the inclusion of the bond length
order parameter. The ground state is predicted to be a non-alternating structure, with zero energy gap and unusually
high electric conductivity. ( 1999 Elsevier Science B.V. All rights reserved.

PACS: 71.20.Hk
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1. Introduction

Conjugated polymers are quasi-one-dimensional
systems with electron and lattice degrees of free-
dom. In most theoretical studies [1,2], the lattice
part is treated classically, i.e., within the adiabatic
approximation. The lattice con"gurations of both
ground state and the excited states are determined
not only by the p-bond elastic potential energy, but
also by the coupling between the p-electrons and
the lattice. Consider polyacetylene as an example. If
there were no electron-lattice coupling, it would

have only one carbon atom per unit cell, and the
total number of electrons would "ll half of the
single p-band, since there is one p-electron per
carbon p

z
orbital. However, according to Peierls

instability [3], a one-dimensional system with a
half-"lled band can lower its ground state energy
by a dimerization with doubled unit cell. In other
words, a uniform bond length becomes an alterna-
tion of short and long bonds, with their average
(and therefore the total chain length) remaining
the same. The question that whether the energy can
be further lowered by a tripling or quadrupling of
the unit cell still remains. This question is solved,
more recently, by Kennedy and Lieb [4] with a rig-
orous proof that the dimerized state with doubled
unit cell indeed has the lowest energy for a periodic
lattice with the nearest-neighbor electron hopping
integral varying linearly with the bond length.

0921-4526/99/$ - see front matter ( 1999 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 1 - 4 5 2 6 ( 9 9 ) 0 0 2 3 8 - 0



The purely dimerized structure is not, however,
the most general form of lattice distortion caused
by the coupling between the p-electrons and the lat-
tice. An over all lattice contraction or stretch can-
not be ruled out in the "rst place. In other words, it
is possible that the total energy can be further
lowered if, in addition to the alternation, the
change of the average bond length is allowed.
Simple calculation does show that the force exerted
on each p-bond by the p-electron coupling has
a uniform part as well as an alternating part. Such
force, therefore, cannot be completely counter bal-
anced by a pure dimerization. In view of this, we
introduced the second kind of order parameter: the
bond length order parameter, in addition to the
well-known bond alternation order parameter.
These two bond order parameters (BOP) must be
treated at equal footing in considering the lattice
con"gurations and electronic structures for both
the ground state and the quasi-particles. Through
explicit calculation of the total ground state energy
as a function of the BOPs, we found that there is
indeed an overall bond length contraction due to
the electron}lattice coupling. Therefore, for a given
set of physical parameters, the electronic band-
width and the band gap are di!erent for the cases of
including one and including two BOPs. The second
BOP has a even more pronounced e!ect on the
properties of the quasi-particles such as solitons,
polarons and bipolarons. Both of the BOPs have
non-uniform pro"les around the quasi-particles.
Because the BOPs are coupled to the electron wave
functions through a set of self-consistent equations,
the electron spectrum and wave functions are also
changed signi"cantly by the inclusion of the new
bond length order parameter.

Another kind of conjugated polymer that illus-
trates the dramatic e!ect of the bond length order
parameter is polyacene: the simplest ladder poly-
mer. Because polyacene with a very large number
of monomer units has not been synthesized, the
magnitude of its band gap, if any, has been theoret-
ically controversial. Most of the theoretical studies
predict the existence of an energy gap in the range
of 0.3}0.5 eV. We study the ground state of poly-
acene by including both of the two bond order
parameters, and found that the dimerized con"g-
uration with a gap is unstable against the non-

alternating con"guration. The consequence is that
the "nite band gap disappears in the true ground
state con"guration. We therefore predict that poly-
acene is a gapless semiconductor, for which the
thermally excited carriers dominate doping at most
temperatures. DC conductivity is expected to be
much higher than other conjugated conducting
polymers. We made explicit calculations and found
that, in addition to being large, the conductivity has
an unusual temperature and doping dependency as
compared with other more typical conjugated poly-
mers like polyacetylene.

This paper is organized as follows. In Section 2,
we obtain the true ground state of trans-polyacety-
lene by minimizing the total energy with respect to
the two uniform order parameters. In Section 3, the
self-consistency equations in the continuum limit
for the quasi-particles are derived. The intra-gap
energy levels and the BOP pro"les of solitons and
polarons are obtained by solving the continuum
equations numerically. The case of non-degenerate
ground state polymer is also discussed. In Section
4, the second BOP is applied to polyacene. We
make a summary and conclude in Section 5.

2. New bond order parameter and true ground state

We start with the Su}Schrie!er}Heeger (SSH)
model [5] with the Hamiltonian

H
SSH

"!+
l,s

[t
0
!a(u

l`1
!u

l
)]

](cs
l`1,s

c
l,s
#cs

l,s
c
l`1,s

)

#+
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K

2
(u

l`1
!u

l
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It is the simplest Hamiltonian that satis"es the
Kennedy}Lieb criterion [4]. Here cs

l,s
and c

l,s
are

the creation and annihilation operators of electrons
at lattice site l with spin s. u

l
is the displacement of

the carbon atom at site l. The constants t
0
, a, K,

are the electron hopping integral, electron}lattice
coupling, and lattice elasticity, respectively. As dis-
cussed in Section 1, this model is usually solved
with the dimerization ansatz. u

l`1
!u

l
"(!1)l2u.

the bond alternation order parameter u is a
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constant for the ground state. Such a lattice distor-
tion keeps the total chain length unchanged. Now
we go beyond the ansatz and allow the lattice
constant of the new unit cell, with one short bond
and one long bond, to be di!erent from twice of the
original unit cell. The di!erence is denoted as 2w. In
other words, the lattice can be stretched (w'0) or
contracted (w(0). The dimerization ansatz is re-
placed by

u
l`1

!u
l
"2w#(!1)l2u. (2)

The Hamiltonian in Eq. (1) becomes

H"!+
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One can easily get the ground state energy E
0

[5]
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with t@,t
0
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0
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/t@. N(<1) is the

total number of carbon atoms in the chain. For
convenience, we rewrite E

0
in terms of the dimen-

sionless variables.
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Here E(1!z2) is the elliptic integral. j, x, y, and
z are dimensionless parameters de"ned as j,
2a2/(pt

0
K), x,2au/t
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, and z,

x/(1!y). The ground state values of u and w can be
obtained by minimizing E

0
(x, y) with respect to
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Through the minimal energy condition

Re6
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Rx "0,
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we "nd the solutions x
0

and y
0
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The corresponding ground state BOPs are

w
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0
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The conventional result of the SSH model without
w can be reproduced if we set w"0(y"0) in Eq.
(7). The second kind BOP w

0
is in general not zero

as long as there is an electron}phonon coupling.
The negative w

0
implies the whole chain is contrac-

ted. The band gap E
'

also depends on w
0
. The

mathematical relations between observable quant-
ities (band gap and bandwidth) and the model
parameters (t

0
, a, K) are thus corrected by the sec-

ond BOP. So far there would be no di!erence in
experimental predictions with or without w

0
if we

consider only the ground state, because the e!ect of
the constant w

0
is equivalent to rede"ning a new

electron hopping integral t@,t
0
!2aw

0
. The

value of t@ is obtained, after all, by "tting the
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experimental spectrum. However, many new inter-
esting features arise if we consider the quasi-par-
ticles, in which w and u in Eq. (2) do vary in space.
So we need to make the generalizations uPu(l) and
wPw(l). They cause `bag-likea or `kink-likea vari-
ations not only in u(l) but also in w(l). This features
are the subject of the next section.

3. Continuum equations for quasi-particles

In order to obtain the lattice con"gurations and
the electron wave functions associated with the
quasi-particles, we take the continuum limit for
convenience. Takayama et al. [6] derived a set of
continuum equations which couple the electron
wave functions and the "rst BOP u(l) self-consis-
tently. We generalize the TLM equations in order
to incorporate the second BOP w(l). The single
electron wave function DW

k
T is expanded as
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DlT, (10)
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z
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The self-consistent equation for the BOPs are de-
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From Eqs. (12) and (13), the minimum condition
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The is actually the balanced force condition. The
RHS is the force exerted on the p"bond between
site l and l#1 by the p-electron coupling. It has in
general a uniform part in addition to an alternating
part. More speci"cally, it is of the form a#(!1)lb.
A purely dimerized structure, with the LHS pro-
portional to (!1)l, can never satisfy the balanced
force condition. Substituting
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Fig. 1. (a) The second kind of BOP (bond length contraction) is
shown for a soliton located at x"0. The dotted thin line is the
constant value X

0
for the ground state. The physical parameters

are chosen as t
0
"3, a"4.49 eV/As , and K"20 eV/As 2. (b) The

bond alternation order parameter D(x) (solid line) for a soliton is
shown. The dotted line denotes D(x) without the inclusion of
X(x) (TLM model). This "gure shows a slight central-symmetry
breaking of D(x).
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In order to arrive at those equations, we have to
identify both the average parts (e.g. X

l
) and the

alternation parts (e.g. (!1)lD
l
) of both sides of Eqs.

(11) and (14). Since all the functions u
k
(x), v

k
(x),

D(x) and X(x) are assumed to be slowly varying,
higher order terms like (R2/Rx2)u

k
(x),

(R2/Rx2)v
k
(x)(R2/Rx2)D(x), and (R2/Rx2)X(x) are ne-

glected. When X(x) is set to zero, Eqs. (18), (19), and
(21) reproduce the TLM continuum equations.
Since Eqs. (18)}(21) cannot be solved exactly, we
make iterations and choose TLM's exact solutions
Mu8

k
, v8

k
, DI (x)N [6,7] as the starting point. First, we

substitute u8
k

and v8
k

into Eqs. (20) and (21) to "nd
a new XI

1
(x) and DI

1
(x). Then we substitute

XI
1
(x), DI

1
(x) back into the electron wave function

Eqs. (18) and (19) to "nd new u8
1k

, v8
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and then
bring them back into Eqs. (20) and (21) to "nd
XI

2
(x) and DI

2
(x)2, and so on. Of course, the nor-

malization condition for the wave functions u
k

and
v
k

are kept through out the iteration.
Before presenting the quasi-particle solutions, we
"rst consider the ground state, for which both of
the BOPs are uniform and the solution is trivial.
For the discrete Hamiltonian in Section 2, we have
X

0
,2aw

0
"!2t

0
j. Using the parameters

t
0
"2.3 eV, K"20 eV/As 2, and a"4.55 eV/As , we

have X
0
"!1.3 eV. In the continuum approxima-

tion, X
0
"!1.03 eV is obtained for the ground

state using the same set of parameters. It is close to
the discrete model, which indicates that the con-
tinuum limit is a reasonable approximation. Be-
cause it is the band gap that is actually observable,
we use a slightly di!erent set of parameters below
for the continuum limit in order to "t the half band
gap D

0
of 0.7 eV. The values we use are t

0
"3 eV,

K"20 eV/As 2, and a"4.45 eV/As .

In Figs. 1(a) and (b), D(x) and X(x) for a soliton
are shown. D

0
and X

0
are their ground state values.

The fact that the variation is small can be under-
stood as follows. The charge-conjugate symmetry
[7] is an important feature of the TLM model. It
means that for every positive energy level e

`
with

solution Mu, vN, there is a negative energy level
e
~
"!e

`
with solution Miv,!iuN. Since the exist-

ence of X(x) does not change the charge-conjugate
symmetry of the original equations in the TLM
model, both the continuous band and discrete
intra-gap levels still keep the mirror symmetry with
respective to the Fermi level at zero energy. In
solitons, there is only one intra-gap level located at
the Fermi level and with the second BOP it is
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Fig. 2. Similar to Fig. 1, we show the bond length order para-
meter (a) and the alternation order parameter (b) for a polaron.
The dotted line in (b) is the usual polaron pro"le in the TLM
model.

impossible to cause any energy shift to this intra-
gap level. One can then imagine that the local
lattice structure around the center of the soliton
will not have a signi"cant change. Clearly such
constraint does not apply to polarons which have
two intra-gap levels symmetrically located at the
opposite sides of the Fermi level. Figs. 2(a) and (b)
show the BOPs for a polaron. As expected, the
changes of BOPs in the polarons are much larger
than that in the solitons. The inclusion of X(x) can
cause energy shifts to these two levels without
breaking their mirror-symmetry. We "nd that the
intra-gap level above the Fermi level moves up-
ward to the conduction band, while the other level
below the Fermi level moves downward to the
valence band. The magnitude of the energy shift of
e
`

(e
~

) is 0.034 eV (!0.034 eV), i.e., about 7%
change compared with TLM model without X(x). It
is also seen in Fig. 2(b) that D(x) of a polaron loses
the central inverse symmetry. This is no surprise
because it can be seen in Eq. (21), where the spatial
symmetry of the derivative part on the right-hand
side is opposite to the "rst part.

For the non-degenerate ground state conjugated
polymers with an extrinsic hopping alternation
such as cis-polyacetylene, the Hamiltonian is
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Minimizing the ground state energy as in Section 2,
we get similar results that the chain is contracted as
well as dimerized. The parameters t

0
"2.5 eV,

a"4.63 eV/As , K"21 eV/As 2, and t
%
"0.17 eV are

adopted to "t the band gap of 2.05 eV2 for cis-
polyacetylene. The energy minimum is found to be
at u

0
"0.046 As , and w

0
"!0.138 As . In the con-

tinuum limit, we can follow the same steps in
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Fig. 3. (a) The chemical structure of polyacene. There is one
carbon atom at each vertex. (b) Parallel ordered dimerization
con"gurations. (c) Anti-parallel ordered dimerization con"gura-
tion.

Section 2 to get the self-consistent equations similar
to Eqs. (18) and (19), except the replacement of D(x)
by D

1
(x)"D

*
(x)#D

%
. The intrinsic part D

*
(x)

satis"es precisely the same relation as Eq. (21), and
the extrinsic part D

%
is equal to t

%
. The self-consis-

tent equation of X(x) is the same as Eq. (20).

4. Conjugated ladder polymer

Ladder polymers are conjugated polymers with
at least two conduction paths in parallel. They
share many of the properties with the polymers
with a single conjugation path. In particular, many
of the ladder polymers support polarons and bi-
polarons [8]. Polyacene is the simplest ladder poly-
mer. The polyacene chain, with two identical
backbone in parallel, can be viewed as two strongly
interacting chains of trans-polyacetylene (see Fig.
3(a)). Polyacene is yet to be synthesized as a poly-
mer with a large number monomer unit [9]. The
electronic structure of polyacene has been the ob-

ject of many theoretical studies [10}13]. Due to the
lack of direct experimental evidences, there is some
controversy about the existence and the size of the
energy gap due to bond alternation. Among the
works that support its existence, the predicted
values of the gap have been in the range of 0.3}
0.5 eV.

In this section, we study the electronic structure
of polyacene, with both of the two bond order
parameters (alternation and contraction) taken
into account in the search for the true ground state
con"guration. We predict that the dimerized con-
"guration is unstable against a non-alternating
con"guration. The result is a gapless band struc-
ture, contrary to most of the previous theoretical
works.

4.1. Gapless band structure

Let us consider a single chain of polyacene
consisting of 2N sites. It can be treated as two inter-
acting chains of polyacetylene. Each chain of poly-
acetylene is described by the SSH Hamiltonian:

H
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where j"1, 2 denotes the chain index. The inter-
chain hopping is described by
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c
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Here u
j,n

are the displacement coordinates and
c
j,n

the annihilation operator at the nth lattice site
on the jth chain. For simplicity, spin indices are
omitted. The interchain hopping integral t

M
is of

the form

t
M
"1

2
[ t

1
#(!1)nt

2
],

with t
1
"t

2
for the case of polyacene. Now we look

for the ground state con"guration of polyacene by
minimizing the total energy, with the ansatz that
u
j,n`1

!u
j,n

"w#(!1)nu
j
. The reason that we

allow u to be j-dependent will be clear later. The
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Hamiltonian becomes
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j,n

[!(t
0
!2aw)#(!1)n2au

j
]

](cs
j,n

c
j,n`1

#h.c.)

#+
n

!

1

2
t
0
[1#(!1)n](cs

1n
c
2n
#h.c.)

#+
j,n

K

2
[(2u

j
)2#(2w)2]. (26)

One can introduce the annihilation operators a
jk

and b
jk

for electrons belonging to the conduction
and valence bands, respectively, through the rela-
tion

c
j,n

"

1

JN
+
k

e*kna[(!1)na
jk
#ib

jk
],

!p/2a(k(p/2a. (27)

Then H
j

can be diagonized by the Bogoliubov
transformation

a
jk
" cos h

jk
a
jk
# sin h

jk
b
jk

,

b
jk
" cos h

jk
b
jk
! sin h

jk
a
jk

, (28)

provided that tan(2h
jk

)"!D
j
(2t

0
)~1 tan(ka),

with D
j
"4au

j
. We then have

H
j
"+

k

E
k
(as

jk
a
jk
!bs

jk
b
jk

), (29)

and H
M

becomes

H
M
"!

t
1
2

+
k

M[(cos(h
1k
!h

2k
)#i sin(h

1k
!h

2k
))

](as
1k

a
2k
#bs

1k
b
2k

)#h.c.]

# [(! sin(h
1k
!h

2k
)#i cos(h

1k
!h

2k
))

](as
1k

b
2k
!bs

1k
a
2k

))#h.c.]N, (30)

with

E
k
"[4t2

@@
cos2(ka)#D2

0
sin2(ka)]1@2. (31)

The full Hamiltonian can now be diagonized for the
case of u

1
"u

2
(parallel ordering, see Fig. 3(b)) and

u
1
"!u

2
(anti-parallel ordering, see Fig. 3(c)). We

"nd that the anti-parallel ordering case is always
energetically favorable. Below we set u

1
"u, and

u
2
"!u, then calculate and minimize the ground

state energy with respect to u and w. The energy
dispersion of the two bands e

vB
(k) below the Fermi

level are

e
vB

"!CA
t2
0
4
#4t@2B!(4t@2!D2

0
) sin2(ka)D

$

t
0
2

, (32)

where t@,t
0
!2aw, and gap parameter D

0
,4au.

The two band above the Fermi level e
#B

(k) are
equal to !e

vB
(k). The band gap (at ka"$p/2) is

E
'
"2SD2

0
#

t2
0
4
!t

0
.

The total energy per electron turns out to be

e6"!

4

pS4t@2#
t2
0
4

E(Z)#
K

2
(4u2#4w2),

(33)

with

Z"

4t@2!D2
0

4t@2#t2
0
/4

.

In the following we adopt the physical parameters
for polyacetylene and search for u

0
and w

0
that

minimizes e6 . Surprisingly, the minimal value of e6 oc-
curs at u

0
"0 and w

0
"!0.119As . The fact that

u
0
"0 at the minimum appears to be a general

property of the function e6 (u, w), and does not de-
pend on the particular choice of the physical para-
meters. The dimerization order parameter u

0
"0

implies D
0
"0 and E

'
"0. Polyacene, therefore,

should be classi"ed as a `gapless semiconductora.
Its band structure and density of state are plotted in
Fig. 4. Since the density of state near the Fermi level
(e
F
"0) is singular, many properties are expected to

be di!erent from the conventional metals or
semiconductors. The interesting point here is that
the consideration of bond length alternation para-
meter w makes our result qualitatively di!erent
from the others. In fact, a nonzero u

0
and E

'
do

develop if we force the bond length order parameter
w to be zero.
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Fig. 4. The band structure (a) and the density of states (arbitrary
unit) (b) of the ground state of polyacene.

4.2. High DC conductivity

Doping-induced quasi-particles with strong lat-
tice distortion are widely believed to be the main
charge carriers in most conducting polymers. For
a gapless polymer, the quasi-particles like solitons
or polarons are unstable compared with the Bloch
electron, whose energy can be arbitrarily small.
One then expects that the transport properties of
polyacene to be very di!erent from other more
conventional conducting polymers. The carriers
contributing to the conductivity include electrons
(conduction band) and holes (valence band). For
both bands, the electric conductivity is

p"!N
#P

e0

0

p(e)
Rf

0
Re de, (34)

where N
#

is the number of polyacene chains per
cm2, and

p(e)"e2v(e)2q(e)o(e). (35)

Here f
0
, q,o are the Fermi distribution function,

carrier relaxation time, and density of state, res-
pectively. The carrier velocity v is equal to
(1/+)Re/Rk. We apply a model developed by Conwell
[14] for one-dimensional organic semiconduc-
tors to calculate the relaxation time q. The interac-
tion Hamiltonian of the electrons with LA
phonons is

H
%}1)

"N~1@2+
q

g
k,q

cs
k`q

c
k
(b

q
#bs

~q
), (36)

where b
q

is the annihilation operator for a phonon
with wave vector q, and c

k
is the annihilation oper-

ator of a conduction or valence state with wave
vector k. The electron}phonon coupling constant
g
k,q

is

g
k,q

"i4aA
+

2Mu
q
B

1@2
[sin(k#q)a!sin ka]. (37)

M is the total mass of the unit cell, and a is the
electron-lattice coupling constant in the SSH
model. In one-dimensional system, scattering basi-
cally take place between $k and Gk because the
acoustic mode scattering is essentially elastic. In
such cases we have

g
k,q

"i8aA
+

2Mu
q
B

1@2
sin ka. (38)

The relaxation time q can be expressed as 1/q"
1/q

%.
#1/q

!"4
. The subscripts `ema and `absa indi-

cate phonon emission and absorption, respectively.
The formula for them are derived by Conwell

1

q
%.

"

2p
+

g2
k
H(e!+u

2k
)o(e!+u

2k
)(n

2k
#1)

]A
1!f

0
(e!+u

2k
)

1!f
0
(e) B,

1

q
!"4

"

2p

+
g2
k
H(e

0
!(e#+u

2k
))o(e#+u

2k
)n

2k

]A
1!f

0
(e#+u

2k
)

1!f
0
(e) B, (39)
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Fig. 5. Comparison of the DC conductivity (p) of polyacene and
trans-PA under various dopant concentrations. The dopant
concentration n

"
"10~6/As , and p

"
denotes the conductivity of

trans-polyacetylene for n
$01

"n
"

at 300 K.

Fig. 6. The temperature (¹) dependence of the DC conductivity
(p) of polyacene without doping is shown. One can see that p is
almost linear in ¹ below about 200 K.

where H is the step function. The density of state
o(e) for polyacene is

o(e)"
1

pa

e#t
0
/2

(t
0
!2au

0
)2

]AsinC2 cos~1C
Je2!et

0
2(t

0
!2au

0
)DDB

~1
. (40)

Substituting Eqs. (39) and (40) back into Eq. (35)
and including both the electrons and the holes, we
obtain the electric conductivity p. Because of its
peculiar gapless band structure, one expects that
under low doping level the thermal electron will
dominate, and the conductivity is independent of
the doping concentration, contrary to the conven-
tional conducting polymers like polyacetylene.
Fig. 5 shows our numerical results of the conductiv-
ity of polyacene as a function of dopant level at two
opposite temperature limits. Results for polyacety-
lene, a typical one-dimensional semiconductor with
a band gap of 1.4 eV, are also shown for compari-
son. One sees that the conductivity of polyacene
remains unchanged for ¹"300 K. For ¹"0.1 K,
its conductivity keeps constant until the dopant
concentration reaches as high as 10~4 carriers/As .
For polyacetylene, the conductivity increases lin-
early with the dopant concentration. In Fig. 6, we
show the temperature dependency of the conduct-
ivity. Instead of an exponential growth, the con-
ductivity is proportional to the temperature below
200 K. Sommerfeld expansion of Eq. (34) in ¹ ac-
tually leads to a positive linear term and a negative
quadratic term.

5. Conclusion

Dimerization has been believed to be the only
e!ect the electron-lattice coupling causes to the
lattice con"guration for the ground state of con-
jugated polymers. We found that the chain length
contraction also happens simultaneously. The con-
traction leads to a new bond length order para-
meter, which varies in space around quasi-particles
like solitons and polarons. A set of self-consistent
equations is derived and solved numerically for the
order parameter. The resulting electron spectrum

for polaron is quite di!erent from the case that only
dimerization is considered. The polaron mobility,
which is determined by the particular form of lat-
tice distortion around the carrier, will also be modi-
"ed signi"cantly. By including the bond length
order parameter, we also predict that the ground
state con"guration of polyacene is a gapless
semiconductor, contrary to many previous sugges-
tions that it has a gap around 0.4 eV. Due to such
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a peculiar band structure, polyacene is a much
better conductor compared with other conducting
polymers. The conductivity can be as high as
4]104 s/cm without doping, which is at least one-
order of magnitude larger than the typical conduct-
ing polymers like polyacetylene. Of course our cal-
culations apply to the intrachain transport only.
The actual value of the conductivity is limited by
the interchain hopping and depend on the level of
disorder, which we do not consider in this work. In
addition, a small gap may develop purely due to the
Coulomb interaction. Our prediction of a high con-
ductivity should still hold qualitatively even in such
case.
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