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Abstract: The multiplier-free design of transforms implemented in LUT-based FPGAs is 
presented. To fit bit-level grain size in the FPGA device at algorithm level the authors use 
modified distributed arithmetic (DA) and a named adder-based DA to formulate bit-level 
transform expressions, then they further minimise hardware cost by the proposed vertical 
subexpression sharing. For implementation, the required input buffer design is also considered 
by employing FPGA device characteristics and cyclic formulation. The proposed design can offer 
savings in excess of two-thirds of hardware cost compared with ROM-based DA. 

1 Introduction 

Transforms are widely used in digital signal processing 
applications, such as multimedia, wireless and communi- 
cation systems, as basic computation units for hrther 
processing. Transforms such as discrete cosine transform 
(DCT) [ I ]  compute multiple inner products and the data 
inputs to the transforms are independent of each other. 
Direct computation of inner products often uses multi- 
pliers. However, since the multiplier costs too much in 
terms of silicon area, a more efficient way is to use 
distributed arithmetic (DA) [2], ROM-based DA, to imple- 
ment these fixed coefficient computations with ROM 
tables. Due to its bit-level reformulation DA is potentially 
suitable for the fine grain architecture of FPGA hardware. 

Field programmable gate arrays (FPGAs) are modem 
logic devices that can be programmed by the users to 
implement their own logic functions, in which the look- 
up table (LUT)-based architecture is the most popular one. 
A FPGA chip consists of many configurable k-LUT’s 
(called CLB in Xilinx FPGA chips) that can implement 
an arbitrary function with up to k inputs. For example, in 
Xilinx XC4000 series, k is equal to 5, and equivalent to 
memory size of 16w x 2b [3]. However, such limited 
memory size constrains the available filter tap numbers 
to implement ROM-based DA in a single FPGA chip. 
Besides, the routing channels in FPGA are often very 
limited. These limitations often result in inefficient hard- 
ware utilisation of the FPGA chip for ROM-based DA. 

To eliminate these drawbacks we adopt a modified DA 
formulation, called adder-based DA, first proposed in [4], 
to implement these transforms and filtering methods on 
FPGA chips. The adder-based DA preserves the advan- 
tages of the bit-level computation held by the ROM-based 
DA, but uses an adder network instead of ROM to on-line 
compute the summation. This bit-slice datapath logic is 
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more suitable for FPGAs and can efficiently utilise the 
FPGA routing channels. 

Although it has no advantage precomputation and 
storage in ROM, the adder-based DA has the benefit of 
sharing by scheduling the computation. Here we adopt and 
further modify the concept of common subexpression 
sharing [5-71 to efficiently minimise the numbers of 
adder. Common subexpression sharing shares common 
addition and subtraction between different constant coeffi- 
cient multiplications. Previous techniques based on word- 
level are not suitable for bit-level grain FPGA device. 
Thus, we use DA bit-level input and adopt bit-level shar- 
ing, i.e. vertical subexpression sharing. With these combin- 
ing techniques, inner products can be hardware efficiently 
implemented in the FPGAs. 

Though the above techniques can efficiently reduce hard- 
ware cost, transform design still needs special consideration 
towards its input interface circuits. These interface circuits, 
such as input delay chains and parallel to serial (P/S) 
converters, still entail large area costs for transform designs. 
Two techniques are proposed to overcome this problem. In 
the first technique we propose a skewed buffer design to 
implement the P/S converter. In the second, for transforms 
that can be formulated to be filter-like operations, we 
proposed a cyclic formulation to reformulate transform 
equations to filter-like operations to solve the problem. 

2 Adder-based DA and subexpression sharing 

In the following, we assume that the size of the inner 
product is L, word length of the variable input X is W, and 
word length of the coefficient A is W,. 

2.1 Review of adder-based DA 
The conventional DA, ROM-based DA, decomposes the 
variable input Xi of the inner products into bit-level, that is 
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a ROM-based; b Adder-based 

Computation of ROM-based DA and adder-based DA 

Without loss of generality we use unsigned fraction 
numbers to keep equations simple. The term /= 1 Ai&,k 
is precomputed, stored in a ROM table and addressed by 
the input Xi,k 

Our recently proposed adder-based DA [4], in contrast to 
the ROM-based DA, decomposes the coefficient Ai into 
bit-level and thus results in bit-slice equation, i.e. 

L 

y = A  . X  = CAi& = C A i , j 2 - J  X, 
i= 1 i= 1 (J:1 ’) 

Adder-based DA constructs an adder network to compute 
the teim ,“= Ai,jX,. The major difference between the 
conventional ROM-based DA and our proposed DA is 
illustrated in Fig. 1. To reduce the routing requirement 
we reformulate the above equation into bit-serial form by 
decomposing S, and exchanging the summation, where 
S, = != 1 Ai, jX,., i.e. 

(3) 

The bit-serial design accumulates and shifts the term 
CF1 $,,2-J at each cycle t to obtain the inner product. 
The implementation of eqn. 3 depends on both L and W,. 
Adder-based DA only computes the non-zero bits. Designs 
with fewer nonzero bits will save more area. 

2.2 Review of previous common subexpression 
sharing approaches 
Computation of adder-based DA can be further minimised 
by common subexpression sharing [5-71 which shares the 
common subexpression among several multiplication- 
accumulation operations so that total operation count is 
reduced. For example, Fig. 2 shows the FIR filter coeffi- 
cients represented by the canonical signed digit (CSD). 
The circled groups of digits have the same subexpression. 
The filtering operation is 

y = 401 + x[O] << 1 + x[O] << 3 + x[ 11 
+ X U ]  << 2 +x[2] +x[2] << 1, (4) 

H2 

Fig. 2 
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A common subexpression example 

where x[a] << b denotes ‘a ’ sample delay and ‘b ’ digit left 
shifts of x. To illustrate the maximum possible sharing we 
adopt the following sharing pattern. If we define 

w[i] = x[i] < < 1 + x[i + 11, ( 5 )  
we can rewrite the filtering operation as 

y = w[O] + w[l] + x[O] -t x[O] << 3 + $21. (6) 

Thus, by sharing the common subexpression w[i], the 
number of additions is reduced from six to four. 

The drawbacks of previous common subexpression 
sharing techniques are: longer delay word length, addi- 
tional intermediate delays and word-level input. Longer 
I/O tap delay word length is due to the transposed direct 
form architecture. Additional intermediate delays that are 
due to sharing between different delayed version of input 
will easily offset the advantages of subexpression sharing. 
Word-level input results in word-level subexpression, 
which is not suitable for FPGA. 

2.3 The proposed vertical subexpression sharing 
To eliminate the above drawbacks we propose vertical 
subexpression sharing. Fig. 3 shows an example of vertical 
subexpression sharing, where the corresponding computa- 
tion is Y=Xl x 101 l 2  +x2 x 01012 +X3 x 001 12. With 
adder-based DA we can formulate bit-level output 
Y[3] =XI, Y[2] =x2, Y[1] = x 1  +x3, Y[O] =XI +x2 + 
X3, where Y[i] is the i-th bit of Y and each input to the 
expression is bit-serial input. Now with vertical common 
subexpression sharing (X1 +x3) between Y[1] and Y[O], 
we get the final adder network design as shown in Fig. 3. In 
this figure the carry output of each FA in adder network is 
routed back to its own carry input for bit-level operation. 
Vertical sharing ensures bit-level computations and 
communications and is suitable for bit-level grain FPGA. 
Besides, with vertical sharing, summation of the tap result 
is shared with the computation of tap multiplication. Thus 
lower total hardware cost is attained. 

To show the advantage of the proposed method we use 
the library data of XC4000E-3 [3] for delay and area 
calculations. For the same example with 8-bits input the 
hardware cost to implement Fig. 3 by using the proposed 
approach is three CLBs and the delay time is 6.2511s cycle 
time with eight computation cycles for one output. The 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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Fig. 3 
a Common subexpression 
b Adder network 

Adder network of adder-based DA with the shift adder part 
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word-level design in Fig. 2, using the previous approaches, 
uses 26 CLBs and needs 36.511s cycle time and one cycle to 
compute one output. Both designs use ripple carry adders 
for fair comparison and minimum cost. Compared with 
previous approaches, the proposed method can achieve 
lower area-time complexity for the bit-level FPGA envir- 
onment. 

3 FPGA-based transform design 

3. I DA architecture for transforms 
To simplify the explanation, we will use the l-D &point 
DCT shown in Fig. 4 as our transform example. This 
architecture can also be made suitable for the ROM- 
based DA by replacing the adder network with ROM. 
The input buffer or PIS converter is a shift register chain, 
which converts the word-serial bit-parallel input to word- 
parallel bit-serial output. The computation result of the 
adder network is out through an accumulator to get the 
final product. 

In the following, we will use the Xilinx XC4000-3 [3] to 
calculate the hardware cost and delay. 

3.2 Adder network design 
The structure of the adder network is like that in Fig. 3. To 
implement the adder network, half of the CLB is used for 
one bit adder and the output D flip-flops (DFFs) in each 
CLB store the carry output of the bit-serial adder. Most of 
the interconnections in the adder network are locally 
connected due to its tree structure. 

The hardware saving due to the adder network depends 
on the coefficients. For the l-D DCT example, we first use 
the split kernel method, i.e. 

cos48 cos48 cos48 cos48 
cos20 cos68 -cos60 -cos28 
cos48 -cos40 -cos48 cos48 
cos60 -cos28 cos28 -cos68 

input adder 
network buifer Output 

(7) 

Fig. 4 
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The DA architecture for I - D  X-point DCT 

Yl cos8 cos38 cos58 cos78 
= [cos30 -cos78 - C O S @  -cos58 

Yj cos50 -cos0 cos78 cos38 
Y? cos70 -cos58 ~ 0 ~ 3 %  -cos0 

where 0 = 71/16, X,  is the input sequences and the is the 
output sequences. Expanding the coefficients into bit-level, 
scaling with 1/42, and combining with vertical subexpres- 
sion sharing, we can get only 16 addition terms for total 
computation. The scaling factor is easily removed if the 1- 
D DCT is applied to 2-D DCT. 

The vertical subexpression sharing of DCT coefficients 
is shown in Fig. 5 for each output. From the tables, the 
network for output Yo, Y,, Y4 and Y, needs six bit-serial 
adders and the network for output Y,, Y,, Y j  and Y, needs 
10 bit-serial adders. The common subexpression sharing in 
this transform is different from that in the filter shown in 
the previous section. First, there is no relationship between 
the inputs so we cannot share the similar addition patterns 
between different inputs, such as the two terms of YO in 
Fig. 5. Second, we use the adder-based DA formulation, so 
all the shared terms are in a vertical direction, and the 
remaining nonzero bits will be directly fed into the final 
shift-adders without using more adders. This will embed 
the summation of each tap result in the sharing term and 
thus save hardware. 

Table 1 shows the hardware comparisons of two DA 
methods for the DCT example. The adder network cost of 
the proposed design is reduced to just 12.5% of the cost of 
ROMs in ROM-based DA. The savings mainly come from 
the bit-level formulation and subexpression sharing. Also, 
the two DFFs in the CLB are very useful to construct the 
bit-serial adders without increasing cost. 

The delay time of ROM-based DA design including the 
final accumulator is 10.411s from the ROM address input to 
the accumulator output. The delay time of adder-based DA 
with vertical subexpression sharing is 8.3511s from network 
input to the accumulator output. The cycle numbers of the 
two designs are the same for the case with the same input 
and output precision. The proposed design is faster. 

3.3 Hardware cost analysis 
Table 2 shows the hardware cost comparisons of different 
approaches for transform length N, where K is the address 
numbers of each partitioned ROM, B is word length of the 
ROM table (B 2 W,) and r .1 is the ceiling function. We 
choose K = 5  since one CLB can implement 32w x l b  
RAM. Only the cost of the adder network and the ROM 
table is shown here, since other parts are identical. The 
hardware cost of the adder network, which varies accord- 
ing to coefficient distribution, is estimated by assuming 
uniformly distributed coefficients. 

Fig. 6 shows that the proposed adder network requires 
only 4% of the ROM table cost. Exponential growth of the 
ROM table cost inhibits its applicability. Fig. 7 shows that 
the proposed network with vertical subexpression sharing 
can reduce the hardware cost by up to 70% compared with 
that without sharing. Compared with previous subexpres- 
sion sharing, Fig. 8 shows that up to 70% of hardware cost 
can be saved, in which the proposed design has combined 
the PIS converter cost for fair comparison. The main 
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Fig. 5 Common subexpressions of DCT computation 

Table 1: Hardware comparisons of two DA methods for 1-D split kernel DCT 

Method ROM-based DA Adder based DA 

ROM table network without vertical network with vertical 
subexpression sharing subexpression sharing 

Hardware eight 16Wx 16 bit 102 bit-serial adders for 16 bit-serial adders for the 
Item memory two networks two networks 

CLB no. in 1 CLB=16Wx2 bit 1 CLB=2 bit-serial 1 CLB = 2 bit-serial 
Xilinx 4000 Total 8 x 8 = 64 adders adders 
series CLBs Total 51 CLBs Total 8 CLBs 

The two methods use 16-bits precision 

Table 2: Hardware cost comparisons of adder network and ROM table using 
different approaches 

Method CLB number 

ROM-based DA 

Previous sharing 

Adder-based without sharing rWJ2 1 x N/2 

DA with sharing 

N x  ( rNIK1 x 2K x 8/32 + (rN/K1 - 1) x 8/2) 

N x  WJ2 for Wc=8, N x  W,for Wc=16 

(N+ WJ2 for Wc=8, (2 x N+ Wc)/2 for Wc= 16 
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Fig. 8 
sharing against adder network with common subexpression sharing 
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* Wc= Ww= 16 

Hardware cost ratio of adder network with vertical subexpression 
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Fig. 9 
DA 
+ W,= w,= 8 
* Wc= W,= 16 

Hardware cost ratio between proposed design and ROM-based 

savings come from the DA bit-level formulation instead of 
word-level one. 

The hardware complexity of peripherals in the proposed 
transform design is: PIS converter: WJ2 x [logz W,l x ([It/ 
Wxl + 1) + rN/W,l x WJ2; accumulation adder: N x B/2; 
and SIP converter: N x  Wx12. The PIS converter used the 
skewed buffer design introduced later and controller cost is 
ignored. Fig. 9 shows the overall hardware cost ratio 
between the proposed design and ROM-based DA, where 
B is assumed to be W, and has the same partition strategy 
as previous paragraph. At least two-thirds of the hardware 
cost can be saved. 

4 Interface circuit design 

4.1 Input buffer fP/S converter) design with 
skewed buffer approach 
In previous designs [S-101 of PIS converter, direct imple- 
mentation of PIS converter with DFFs seems to be the only 
way for FPGA based transform designs. Thus, they can not 
be efficiently implemented with RAM, as proposed in [ 1 1, 
121, for filters. However, DFF implementation is very 
inefficient since DFF is a very scarce resource in FPGAs 
(only two DFFs in one CLB). 

Fig. 10 shows the proposed skewed buffer design. To 
illustrate the process, Fig. 11 shows the RAM contents for 
L = 4 and Wc = 4. Each small block surrounded by double 
lines is one RAM bank implemented by a CLB. The 4 x 4 
regions constitute one RAM block in Fig. 10. At the initial 
point, input is first rotated shifted by a W,-bits barrel 
shifter, and stored in the RAM banks. These inputs are 
skewed by 1-bit. Then the RAM content is accessed by a 
diagonal line order to implement PIS conversion. After the 
content is read out, new input can be written to the same 
address, since old data is not used any more. Half-cycle 
read and half-cycle write can perform this read-write 
operation. The read out data is rotated to match the input 

Wx-bits barrel I/ RAM H shifter 4 Wx-bits barrel H : 

shifter 

Wx-bits barrel 
shifter I I RAM H 

Fig. 10 The skewed buffer design 
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t=O, initial t=l, read out shading t=l,write into shading 
area area 

- 

t=2, read out shading 

input PIS - summation accumu. output 
permutation ---+ converter network --+ adder __L permutation + 

t=2, wnte into shading 
area area area 

t=5, wnte into shading t=6, read out shading t=6, wnte into shading 
area area area 

Fig. 11 
the i-th input 

RAM contents on different time slots, where X<,, is the j-th bit of 

of the adder network. The address generation for each 
RAM is just a simple counter and can be easily imple- 
mented by SRAM-based CLB. Thus, with this architecture, 
we can implement PIS converter with RAM instead of 
DFFs. 

The cost of the skewed buffer design includes the barrel 
shifter: W,l2 x [logz W,l, and RAM: WJ2. While for direct 
DFF-based design, PIS converter requires N x WJ2 CLB 
for equal throughput as a skewed buffer design. Fig. 12 
shows that at least half the CLB count can be saved by 
using the presented approach. 

0.70 0.651\ 

0,3545 20 25 30 35 40 45 50 55 60 65 
transform length, N 

Hardware cost ratio of P/S converter design with skewed buffer Fig. 12 
versus DFF-based design 
+ w,=s  
* W,=16 

4.2 Transform design with cyclic formulations 
By creating pseudo-input delay dependency, PIS converter 
design of the transform can be efficiently implemented by 
RAM-based delay. This can be done by reformulating 
transform equations into cyclic convolution form. Let’s 
take 1-D 5-point DFT as an example. The input sequence 
{x(n), n = 0,1,2,3,4} is expressed as 

1 w3 

where W=exp( - j2~15) .  By using the approach in [13], a 
cyclic convolution form can be expressed as: 

4 

Fig. 13 shows the transform architecture with cyclic 
formulation. This design is also an adder-based DA 
design but with as added I 1 0  permutation stage to reorder 
the input for cyclic convolution. Thus, the PIS converter 
can be efficiently implemented by RAM-based CLB tech- 
nique as proposed in [ 1 1,121, where one bit in RAM can be 
a delay without extra circuitry. 

The overall cost for a prime length DFT is 
Input permutation: r(N - 1)116112 x W,, 
PIS converter: (N - 1) x rWx/161/2, 
Adder network: (N+ WJ12 for W, = %bits, (2  x N +  

Accumulation adder: Bl2, 
Output permutation: r(N - 1)116112 x W,, 
Accumulation adder for Y(0): Bl2, 

WJ2 for W, = 16-bits 

where B is the output word length (B  2 W J ,  control cost is 
ignored and the adder network cost is a typical estimation. 
Fig. 14 shows that the proposed design can save at least 
two-thirds of the hardware cost due to saving in a PIS 
converter and accumulation adder. The cost of this design 
is also lower than that of the skewed buffer approach. 
However, this architecture has longer latency because of 
block input of transform and bit-serial input. The latency 
for one block is (2N - 1 )  x W, for the architecture, and is 
W, for direct implementation. The latency can be reduced 
by bit-parallel input. 
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Fig. 13 Transform architecture with cyclic formulation 
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+ Wc= Wx= 8 
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5 Conclusion 

In this paper, we have proposed the hardware-efficient 
FPGA design and implementations for transforms by 
considering both algorithm and architecture level. At 
algorithm level, we use adder-based DA instead of ROM- 
based DA, and propose a modified common subexpression 
sharing technique for more hardware sharing. This leads to 
large savings. The bit-level algorithm formulation matches 
the FPGA bit-level gain feature well. As for interface 
considerations, by exploiting the features of FPGA archi- 
tecture, we proposed two transform designs: a skewed 
buffer design and cyclic formulated transform. At least 
two-thirds of the hardware cost is saved, compared with 

ROM-based DA. For different tradeoff considerations, the 
first design is suitable for high-speed design while the 
second design is suitable for area-critical design. 
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