
An e�cient multipath routing for distributed
computing systems with data replication

D.J. Chen *, P.Y. Chang

Department of Computer Science and Information Engineering, National Chiao Tung University,

Hsin Chu 30050, Taiwan, ROC

Received 3 February 1999; received in revised form 4 May 1999; accepted 2 August 1999

Abstract

In distributed computing environments, executing a program often requires the ac-

cess of remote data ®les. An e�cient data routing scheme is thus important for time-

critical applications. To ensure a prior desired communication quality, we present a

connection-oriented routing scheme, the multipath routing, which allows multiple

routes to be established between the source and the destination. Based on the multipath

routing scheme, the problem of ®nding a collection of routing paths for an application

to minimize its data transmission time is addressed. Such a problem becomes a complex

combinatorial one when the application accesses multiple replicated data sources. Since

®nding an optimal solution is computationally infeasible in practice, we thus propose a

heuristic method to get a sub-optimal solution. Ó 1999 Elsevier Science Inc. All rights

reserved.

Keywords: Virtual circuit; Multipath routing; Flow; Cut

1. Introduction

This paper presents a routing algorithm for time critical applications which
need to retrieve remote high-bandwidth data ®le(s) in a LAN-based distributed
computing system (DCS). A connection-oriented data forwarding technique,

Information Sciences 120 (1999) 143±157
www.elsevier.com/locate/ins

* Corresponding author. Fax: +886-03-572-4176.

E-mail address: djchen@csie.nctu.edu.tw (D.J. Chen)

0020-0255/99/$ - see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 0 2 0 - 0 2 5 5 (9 9) 0 0 0 5 6 - 0

virtual circuit [4,6,7], which enables bandwidth to be reserved through the
lifetime of a connection, is used in the network. Since the inherent link delay
(including propagation delay and transmission delay) is insigni®cant for bulk
data transfer in a high-speed LAN, the design objective of the routing algo-
rithm is to maximize data transfer rate (or throughput). For a source-to-des-
tination tra�c session, throughput can frequently be improved by splitting the
tra�c over several paths. The technique of using multiple paths between a
source±destination pair is called multipath routing.

Based on the multipath routing scheme, the problem of optimal routing can
be described as a multicommodity ¯ow problem if the number of paths in a
source±destination session is unlimited and the inherent link delay and control
overhead are negligible. Linear programming is hence a feasible technique to
solve it. However, since in a DCS data ®les are often replicated to improve
system (or program) reliability, the program may acquire data from any replica
[1,3]. This problem thus becomes a complex combinatorial one. An exhaustive
approach could of course ®nd the optimal solution, but it pays for high
computation price. Our previous work has developed an alternate, the critical-
cut algorithm, to solve the optimal routing problem [2]. For most experiment
cases, the algorithm yields short execution times. Occasionally, it still takes
exponential time. This paper thus proposes a heuristic routing algorithm to
obtain acceptable routing paths. Short and stable execution time makes the
proposed algorithm be applicable to the existent systems.

Assumptions: We assume that a distributed computing system can be de-
scribed as an undirected graph with nodes representing computing sites and
edges representing communication links. We assume virtual circuits for com-
munication between a source and a destination, and multipath routing is
supported in the virtual circuit schemes. Intermediate nodes do not bu�er
packets, but simply send all received packets immediately. Inherent link delay
is negligible. A given ®le cannot be split and distributed to multiple nodes.
A communication path cannot have loops.

2. Critical-cut algorithm

This section presents the critical-cut algorithm to ®nd the optimal routing.
Proofs of theorems behind the algorithm can be referred in [2].

Notations

source the node which holds data ®les
target the node which issues request for data ®les
cut set of edges such that the removal of the edges separates

a connected graph into two disconnected subgraphs

144 D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157

2.1. Cut-trees

The cut-tree theorem was proposed in order to e�ectively ®nd the maximum
¯ow values between all pairs of nodes in a network [5]. For a network with n
nodes, to ®nd the maximum ¯ow values between all pairs of nodes, one must
compute n � �nÿ 1�=2 such maximum ¯ow values. If the network topology is a
tree, the maximum ¯ow values between any two nodes can be easily determined
by ®nding the minimum edge capacity in the unique path connecting the two
nodes. Two networks are said to be ¯ow-equivalent if the maximum ¯ow values
between all pairs of nodes are the same. The construction of a ¯ow-equivalent
tree from a general graph G is presented in [5]. Therein, a tree that is ¯ow-
equivalent to G is called the cut-tree of G because each link of the tree repre-
sents a minimum cut of G. A cut-tree of G with n nodes shows the nÿ 1
minimum cuts of G that do not cross each other. Consider the example in Fig.
1. Fig. 1(a) illustrates an original network G. The numbers associated with the
links denote the link capacities. Fig. 1(b) depicts the cut-tree of G generated by
the cut-tree algorithm. Fig. 1(c) illustrates the cuts corresponding to the links in
the cut-tree. These cuts are referred to herein as partitioned cuts since they do
not cross each other.

2.2. Critical cut

When data are transferred with maximum rate, the cuts which are saturated
are referred to as the critical cuts. Critical cuts can be found by enumerating the

�X ;X � the cut separating the nodes in set X from the other
nodes (i.e., the nodes in X). Note that in presenting a cut
by the notation �X ;X �, target is always placed in X
throughout this paper

cap �X ;X � capacity of the cut �X ;X �, i.e. sum of the capacities of the
edges in set �X ;X �

LV the number of bytes from the data ®les in V, where V
denotes a set of nodes

Fig. 1. The relationship between a graph and a cut-tree. (a) The original network G. (b) The cut-

tree of G. (c) The partitioned cuts.

D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157 145

cuts that separate sources from the target. Consider a DCS in Fig. 2, where a
program on node N1 needs to retrieve data ®les F1, F2, and F3. Assume that F1

on N3, F2 on N4, and F3 on N2 are selected to be transmitted. All the possible
cuts that separate sources from the target are shown as the dotted lines in Fig. 2.
The corresponding parameters in determining the critical cut are listed in Table
1. The term LX=cap�X ;X � denotes the minimum time required to transmit data
through the cut �X ;X �. The overall data transfer time is thus bound by cut c2

(critical cut). Data are transferred through cut c2 requires 1.13 s.
In general, enumerating all the cuts as described above to ®nd the critical cut

is prohibitive for a large network. Therefore, the number of cuts to be explored
must be reduced. The following section describes how to achieve such a re-
duction.

2.3. Cut reduction

Some terminology needs to be de®ned before presenting the said cut re-
duction.

De®nition 1. Let ci � �X ;X � and cj � �Y ; Y � be two non-crossed cuts. If X � Y
(or equivalently, X � Y), ci is said to be an ancestor of cj, and cj is a descendant
of ci. If X \ Y � ;, ci and cj are said to be brothers of each other.

The relationship between any pair of partitioned cuts can be easily identi®ed
by the corresponding cut-tree. Let ei and ej be the edges in the cut-tree re-
garding the partitioned cuts ci and cj. By letting the target be the root of the
cut-tree, if there is a path from root to the leaf containing ei and ej, then ci and
cj have an ancestor/descendent relationship. Notably, cut ci is the ancestor of cj

if ei is closer to the root than ej is in this path. If no such path can be found,
then ci and cj have a brother relationship.

De®nition 2. A partitioned cut c is called the primary cut if c has no ancestor cut
or the capacity of c is smaller than the capacity of any ancestor cut of c (except
c itself).

Fig. 2. A simple distributed computing system.

146 D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157

T
a
b

le
1

C
u

ts
a

n
d

th
e

co
rr

es
p

o
n

d
in

g
p

a
ra

m
et

er
s

fo
r

th
e

ex
a
m

p
le

in
F

ig
.

2

C
u

t
X

X
L X

ca
p�

X
;X
�

L X
=c

ap
�X
;X
�

c 1
{N

1
}

{N
2
,N

3
,N

4
}

jF 1
j�
jF 2
j�
jF 3
j�

1
5
0
0

k
5
0
0

k
+

1
M
�

1
5
0
0

k
1

c 2
{N

1
,N

3
}

{N
2
,N

4
}

jF 2
j�
jF 3
j�

1
3
0
0

k
5
0
0

k
+

2
5
0

k
+

4
0
0

k
�

1
1
5
0

k
1
.1

3

c 3
{N

1
,N

2
,N

3
}

{N
4
}

jF 2
j�

5
0
0

k
4
5
0

k
+

4
0
0

k
�

8
5
0

k
0
.5

9

c 4
{N

1
,N

3
,N

4
}

{N
2
}

jF 3
j�

8
0
0

k
5
0
0

k
+

2
5
0

k
+

4
5
0

k
�

1
2
0
0

k
0
.6

7

c 5
{N

1
,N

2
,N

4
}

{N
3
}

jF 1
j�

2
0
0

k
1

M
+

2
5
0

k
+

4
0
0

k
�

1
6
5
0

k
0
.1

2

c 6
{N

1
,N

2
}

{M
3
,N

4
}

jF 1
j�
jF 2
j�

7
0
0

k
1

M
+

2
5
0

k
+

4
5
0

k
�

1
7
0
0

k
0
.4

1

D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157 147

De®nition 3. Let ci � �X ;X � and cj � �Y ; Y � be two non-crossed cuts. The
exclusive-or operation, denoted by Å, is de®ned as follows. If ci and cj have a
brother relationship, then ci � cj � �X \ Y ;X [Y �; if ci is an ancestor of cj,
then ci � cj � �X [Y ;X \ Y �.

Theorem 1. The critical cut can be factored into primary cuts based on exclusive-
or operation and none of these primary cuts is an ancestor (or descendant) of the
others.

The result of Theorem 1 suggests that we may apply exclusive-or operations
on primary cuts in order to generated a set of cuts, say S, which contains the
critical cut. Procedure Find-Possible-Critical-Cuts realizes the process to gen-
erate S.

Procedure (Find-Possible-Critical-Cuts)
// S is the set of possible critical cuts, Initially S is empty. Finally, S holds the
possible critical cuts.
// Q is a queue of cuts. Initially Q is empty.

Construct the cut-tree of the original network. In building the cut-tree,
only the sources and the target are considered.
Decide primary cuts
Add all primary cuts to set S
Enqueue all primary cuts to Q
REPEAT

c� dequeue(Q)
FOR each of the primary cuts, cP

Add and enqueue c� cp to S and Q respectively unless
cond.1: c contains a factor cut which is an ancestor, or a descendent, of
cP .
cond.2: c \ cp � ; // i.e. cuts c and cP have no common edges when they
are presented by sets of edges.

END_FOR
UNTIL Q is empty

END_PROCEDURE

2.4. Selection of ®le±servers

The routing optimization problem becomes a complicated combinatorial
problem if multiple replicated copies of data ®les are dispersed over the net-
work. The following theorem averts a situation which all of the combinations
are exhausted to obtain the optimal solution.

148 D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157

Theorem 2. Let M1 and M2 be two possible file±server combinations. M1 differs
from M2 only in selecting the copy of file F. M1 selects a copy of F from node i;
M2 selects a copy of F from node j. If node i is the ancestor node of node j in cut-
tree, then TMINM16 TMINM2 where TMINM1 and TMINM2 denote the data
transfer times via the optimal routing paths for M1 and M2, respectively.

An e�cient method for obtaining the optimal solution is described by the
following Find-Minimum-Transmission-Time algorithm. In this algorithm, the
®le±server combination with the smallest ``weight'' to the root (i.e. the target) is
processed ®rst. This strategy stems from Theorem 2, suggesting that the copy
nearest to the root in the cut-tree tends to have the shortest transmission time.
The weight of a ®le-source mapping is de®ned as follows.

De®nition 4. The weight of a ®le±server combination M is de®ned asX
Ni selected by M

�d�Ni�� � n�Ni��;

where d(Ni) is the number of hops (links traversed) from node Ni to the root in
the cut-tree, and n(Ni) the number of the required data ®les in node Ni for M.

E�ciency of this algorithm follows from the fact that many cuts and ®le±
server combinations can be excluded from consideration. Outputs of the al-
gorithm include the best ®le±server combination, the critical cut, and the
minimum data transmission time. Optimal tra�c routing can be easily ob-
tained by executing an additional maximum ¯ow computation. A new graph
can be constructed from the original network by adding a super node S� and
connecting S� to the source nodes with proper edge capacity assignment.
Applying the maximum ¯ow algorithm on this new graph, allowS us to obtain
the optimal tra�c routing.

Algorithm (Find-Minimum-Transmission-Time)
// MOP the optimal valid ®le±server combination.
// TMINOP the minimum transmission time for MOP .
// CCOP critical cut for MOP .
// VinXbarM the number of bytes of the requested data in X for the valid ®le±
server combination M, where �X ;X �is a critical cut found for M.
Execute Procedure Find-Possible-Critical-Cuts.
Create the set of valid ®le±server combinations, say U.
TMINOP � 1;CCOP � ;;MOP � ;
REPEAT

Select a valid ®le±server combination with the minimum weight, say Mi,
from U
Find TMINMi and critical cut �X ;X � for Mi.

D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157 149

FOR each valid ®le±server combination Mj in U DO if
VinXbarMj P VinXbarMi then remove Mj from U
END_FOR
IF TMINMi < TMINOP THEN

TMINOP � TMINMi; CCOP � �X ;X �; MOP � Mi
END_IF

UNTIL U � ;
Calculate routing paths for MOP

END_ALGORITHM

2.5. An illustrative example

Consider a DCS in Fig. 2, where a program running on node needs to re-
trieve data ®les F1, F2 and F3. Fig. 3 illustrates the cut-tree and the corre-
sponding non-crossed cuts. In this network, there are two copies of F1 in nodes
N2 and N3. According to Theorem 2, the copy of F1 in N3 is selected to be
transmitted since N3 is the ancestor of N2. Similarly, there are two copies of F3

in nodes N2 and N4 and the copy in N2 is selected to be transmitted. We thus
obtain an unique ®le±server combination: selecting F1 from N3, F2 from N4,
and F3 from N2. Since all the partitioned cuts (c1, c2, and c3) are primary, the
procedure Find-Possible-Critical-Cuts begins by adding cuts c1, c2, and c3 to S,
the set of possible critical cuts. Table 2 lists the details of this process to
generate other possible critical cuts. Since cuts c1, c2, and c3 have ancestor/
descendent relationship, no more new possible critical cuts can be generated.
The minimum data transfer time can be obtained by

TMINOP �MAX
jF1j � jF2j � jF3j

Cap�c1� ;
jF2j � jF3j
Cap�c2� ;

jF2j
Cap�c3�

� �
�MAX

1500

1500
;
1300

1150
;
500

850

� �
� 1300

1150
� 1:13

and cut c2 is the critical cut.

Fig. 3. The cut-tree and the corresponding partitioned cuts for the example in Fig. 2. (a) The cut-

tree. (b) Partitioned cuts.

150 D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157

Tra�c routing of this optimal transmission can be obtained by executing the
maximum ¯ow algorithm on the graph in Fig. 4. The graph in Fig. 4(a) is
constructed by adding a supernode S� and the pseudoedges between S� and the
source nodes. The capacities of edges between S� and nodes N2, N3, and N4 are
given as 800 k=1:13 � 707, 200 k=1:13 � 176, and 500 k=1:13 � 442 k, respec-
tively. Fig. 4(b) presents the solution of the maximum ¯ow from node S� to
node N1, where the supernode and pseudoedges have been removed. Multi-
plying the ¯ow values on the edges by TMINOP allows us to obtain the volume
of data transmitted via the edges.

3. Heuristic routing algorithm

The performance of critical-cut method depends on the cut tree and the
distribution of ®les. For the case such as the example in Section 2.5, the cut tree
is a linear array and the algorithm therefore yields very short execution time.
However, for some other cases, critical cut method may take exponential time
to obtain the optimal routing. In practical environments, a routing algorithm
with short and stable execution time is important in real-time applications. We
thus propose a heuristic method to decide the routing paths. The main concept
of the proposed algorithm is quite simple. Each ®le is assigned a proper portion

Table 2

The process to generate S, the set of possible critical cuts

Cut Enter S? Remark

c1 Yes Primary cut

c2 Yes Primary cut

c3 Yes Primary cut

c1 Å c2 No c1 and c2 has ancestor/descendant

c1 Å c3 No c1 and c3 satisfy ancestor/descendant

c2 Å c3 No c2 and c3 satisfy ancestor/descendant

Fig. 4. The way to obtain the tra�c ¯ow along each edge. (In (b), values in parenthesis denote the

data volume shipped via the edges.) (a) Graph with supernode S� and pseudoedges. (b) The ¯ow

tra�c of the optimal solution.

D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157 151

of the total available communication capacity for its transfer. The reserved
communication capacity for a data ®le is proportional to the size of the ®le.
The routing strategy is that all data ®les are routed simultaneously, and, ide-
ally, will complete their transfers at the same time. This strategy stems from the
optimal routing. Compared with the intuitive approach in which data ®les are
routed one after the other, such a simultaneous ®le transfer can result in higher
link utilization and can have shorter transmission time.

However, the total available communication capacity (i.e. the capacity of
the critical cut) is not easily determined. The algorithm thus uses the available
capacity around the target instead to calculate the appropriate communication
capacity for each ®le's transfer. For the DCS in Fig. 2, the routing algorithm
will initially assign the capacities of 200 �� 1500� 200=1500� kbytes/s for F1Õs
transfer, 500 �� 1500� 500=1500� kbytes/s for F2Õs transfer, and 800
�� 1500� 800=1500� kbytes/s for F3Õs transfer. The algorithm then operates in
a breadth-®rst-search (BFS) order, with the target as the root of the graph, to
visit the nodes and try to ®nd the paths with the assigned communication
capacities to transmit the data ®les (if any). Unfortunately, it is typically not
the case that all of the ®les can be transmitted with the initially assigned ca-
pacities. Some ®les that are located on nodes far from the target may fail to get
their deserved communication capacities. These ®les will then be transmitted at
a lower speed or be pending until the transmission of some other ®le is ®nished
and the occupied channels are released. The released capacity will then be al-
located to transmit those ®les that have not been completely transferred. This
process repeats until all the data ®les are entirely delivered. The algorithm is
shown below.

Algorithm (Heuristic multipath routing)
// FS set of data ®les. Initially, all data ®les are in FS.
// FS1 set of data ®les. Initially, FS1 is empty.
// NSd set of nodes with distance d, where ``distance'' is the minimum num-
ber of links between the node and the target.
// Maxdist the longest distance in the network.
// Cap�Ni;Nk� available capacity of the link connecting nodes Ni and Nk.
Complete�FALSE
WHILE NOT Complete

Compute the deserved capacity for each data ®le in FS.
FOR d � 1 to Maxdist DO

WHILE NSd 6� ; DO
Select a node Ni which have the largest value of

P
NK2NSdÿ1

Cap�Ni;Nk�,
from set NSd .
WHILE node Ni is in NSd DO
IF there are no ®les in FS can be found in Ni or there are no paths con-
necting Ni and target THEN

152 D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157

Remove node Ni from set NSd .
ELSE
Transmit ®le Fj (where Fj is in FS and a copy of Fj is found in node Ni)

via established virtual circuit(s) with the capacity as computed for FjÕs
transfer, or with the current maximum communication capacity if FjÕs de-
served communication capacity is not satis®ed (in such case, add Fj to set
FS1).

Remove ®le Fj from set FS.
END_IF
END_WHILE

END_WHILE
END_FOR
IF ®le FjÕs transmission-completed signal is received THEN

Release the communication channels allocated to Fj.
FS � FS [FS1ÿ fFjg; FS1 � ;
IF FS � ; THEN

Complete�TRUE
ELSE

Send signals to pause the transmission of ®les in FS and release the allo-
cated channels.
Adjust the sizes of ®les still remain in FS to be the lengths of untransmit-
ted portions.

END_IF
END_IF
END_WHILE
END_ALGORITHM

As an example, consider the DCS in Fig. 2, where FS � fF1; F2; F3g;
NS0 � fN1g;NS1 � fN2;N3g, and NS2 � fN4g (see Fig. 5(a)). According to ®le
sizes, the reserved capacities for F1, F2, and F3 are 200, 500, and 800 kbytes/s,
respectively. The ®rst ®le transfer will start at a node selected from NS1 (if a
copy of any required data ®les can be found in that node). In this example, N3

is selected since
P

NK2NS0
Cap�N3;Nk� � Cap�N3;N1� � 1 Mbytes/s, which is

greater than
P

NK2NS0
Cap�N2;Nk� � Cap�N2;N1� � 500 kbytes/s. F1 in N3 is

then transmitted at the rate of 200 kbytes/s along path N3±N1, and the esti-
mated F1Õs transfer time is 200 k=200 k � 1 s. FS becomes {F2, F3}. Since there
is not any other ®les in FS can be found in N3, N3 is removed from NS1 (see
Fig. 5(b)).

Node N2 is the next one to be explored. File F3 in N2 will be transmitted.
The virtual circuits with 800 kbytes/s (for example, 500 kbytes/s along path
N2±N1, 250 kbytes/s along path N2±N3±N1, and 50 kbytes/s along path N2±
N4±N3±N1) are allocated for F3Õs transfer. The estimated transfer time is
800 k=800 k � 1 s. FS becomes {F2}. Likewise, no other copies of ®les in FS

D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157 153

can be found in N2, N2 is removed from NS1 and thus NS1 becomes empty
(see Fig. 5(c)).

The algorithm will next explore the nodes in set NS2. Since N4 is the only
node in NS2, F2 in N4 will be transmitted. The algorithm tries to ®nd path(s)
with the overall capacity of 500 kbytes/s to transmit F2. However, only a path
(N4±N3±N1) with 350 kbytes/s can be found. F2 is thus transmitted via such a
path. The algorithm then adds F2 to set FS1, and removes F2 from FS. Fig. 5(d)
shows the remaining available capacities after allocating capacities for F2Õs
transfer.

Fig. 5. The statuses for the example in Section 4 by employing Heuristic multipath routing algo-

rithm. (a) The initial status. (b) After establishing path N3±N1 (200 kbytes/s) for F1Õs transfer. (c)

After establishing paths N2±N1 (500 kbytes/s), N2±N3±N1 (250 kbytes/s), and N2±N4±N3±N1 (50

kbytes/s) for F3 Õs transfer. (d) After establishing path N4±N3±N1 (350 kbytes/s) for F2 Õs transfer.

154 D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157

After F1 and F3 have completed their ®le transfers (i.e. 1 s later since their
transmissions begin), Set FS is updated as FS [FS1ÿ fF1; F3g � fF2g and, in
addition, size of F2 is adjusted to be 150 �� 500 kÿ 350 k� kbytes. The com-
munication channels allocated to F1, F2, and F3 are released. Sets NS0, NS1,
and NS2 are reinitialized and, by assuming that the current available link ca-
pacities are the same as shown in Fig. 5(a), the reserved communication ca-
pacity for F2 is recomputed as 1500 kbytes/s.

Again, nodes are visited in the sequence given by the algorithm, and ®nally
the untransmitted part of F2 in N4 will be transmitted. Since the path(s) with
the overall capacity of 1500 kbytes/s are not found, The remaining 150 kbytes
of F2 is transmitted by the paths, N4±N2±N1 (450 kbytes/s) and N4±N3±N1 (400
kbytes/s). The estimated data transfer time for the 150 kbytes is 150 k/(400
k + 450 k)� 0.18 s. When F2 is completely transferred, FS becomes empty and
the routing process stops. Thus the total data transfer time, without consid-
ering the control signal processing time and the algorithm execution time, is
1 + 0.18� 1.18 s.

4. Simulation results

To evaluate the performance of the proposed heuristic routing algorithm,
we compared the routes found by the heuristic algorithm with the optimal
routing paths. The optimal routing paths were obtained by the critical-cut
method as described in Section 2. Many factors such as the network topol-
ogy, available link capacities, the number of replicated copies of each data
®le, and the dispersal of the program and the data ®les in the sense will
in¯uence the performance. In order to fairly evaluate the proposed algorithm,
the simulation programs were tested on various scales of randomly generated
graphs, with an average node degree in the range of 2.5±3.0. Each linkÕs
available capacity and the size of each data ®le were randomly generated as
well.

We use the ratio of TOP to THEU to measure the e�ciency of the routing
paths found by the heuristic routing algorithm. Fig. 6(a) shows that all TOP /
THEU values fall into the range between 0.70 and 0.89, no matter what scale of
the network is or how many copies each data ®le has. The relationship of the
number of the replicas versus the algorithm execution time is shown in Fig.
6(b)±(d). Obviously, the execution time of the critical-cut algorithm increased
with the growth of the number of replicas. On the other hand, the algorithm
execution time of the heuristic approach was not a�ected by such factor.
Fig. 6(e) depicts that both algorithms were network size dependent. That is, if
the network extends to some scale, both of the routing algorithms are no longer
applicable.

D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157 155

5. Conclusion

In this paper, we propose a heuristic multipath routing algorithm on virtual
circuit based DCS. Such a routing scheme is appropriate for high-bandwidth
demanded data transfers issued by real-time applications. To evaluate how well
the algorithm performs, we made experiments on various networks to monitor
the algorithm execution time and the communication capacities of the found
routing paths. These observed experimental data are compared with the results
obtained by the critical-cut algorithm, which is an e�cient optimal routing
algorithm proposed in our previous work. Experimental results show that the
paths found by the heuristic routing algorithm carry about 70±90% data ¯ow
of the optimal routing.

Fig. 6. The comparison of execution time between the heuristic routing algorithm and the critical-

cut algorithm. (a) # of replicas vs. TOP/THEU. (b) # of replicas vs. execution time for 10-nodes

graph. (c) # of replicas vs. execution time for 50-nodes graph. (d) # of replicas vs. execution time

for 100-nodes graph. (e) # of node vs. execution time (without ®le replication).

156 D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157

The proposed routing algorithm is a centralized routing. One common
problem of the centralized routing is that the time for routing calculation will
increase with the network size. Fortunately, this problem may be relieved as
more and more powerful computers are developed. We learn from the exper-
iments that the current personal computers execute the algorithm to calculate
the routes (for the 100-nodes network) in 0.2 s. For bulk data transfer, such
program execution time is acceptable if data transfer time takes seconds.

References

[1] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Database

Systems, Addison-Wesley, Reading, MA, 1987.

[2] P.Y. Chang, D.J. Chen, Optimal routing for distributed computing systems with data

replication, in: Proceedings of IEEE International Computer Performance and Dependability

Symposium, Urbana-Champaign, USA, 1996.

[3] A. El Abbadi, S. Toueg, Maintaining availability in partitioned replicated databases, ACM

Transaction on Database Systems 14 (2) (1989) 264±290.

[4] D. Ferrari, A. Banerjea, H. Zhang, Network support for multimedia: A discussion of the telnet

approach, Comput. Networks and ISDN System (1994) 1267±1280.

[5] T.C. Hu, Combinatorial Algorithms, Addison-Wesley, Menlo Park, CA, 1986.

[6] B. Jabbari, A bandwidth allocation technique for high speed networks, in: Proceedings of IEEE

GLOBECOMÕ90, vol. 1, San Diego, CA, 1990, pp. 355±359.

[7] A. Lazar, C. Paci®ci, Control of resources in broadband networks with quality of service

guarantees, IEEE Commun. Mag. (1991) 66±73.

D.J. Chen, P.Y. Chang / Information Sciences 120 (1999) 143±157 157

