AxsJAX: A Talking Translation Bot Using Google IM

Bringing Web-2.0 Applications To Life

Charles L. Chen

Google Inc.
clchen@google.com

ABSTRACT

Web-2.0 applications turn static Web documents into dy-
namic user interfaces. They epitomize the final realization
of the vision “The Document Is The Interface!”. This tran-
sition from static Web pages to interactive Web applications
also requires the introduction of a fresh set of innovations
to how such applications are accessed in conjunction with
adaptive technologies.

Asynchronous JavaScript and XML (AJAX) breathes life
into static Web pages. ARIA live regions helps bring such
interaction to life when used in conjunction with adaptive
technologies such as screenreaders and self-voicing browsers.
This paper introduces the motivation behind live regions
in ARIA, and describes how this support can be used to
enhance the user interaction provided by Google Talk —an
instant-messaging client that is integrated into the GMail
Web interface. We describe the interaction model as it is
surfaced to the end-user, and show how the introduction of
live regions makes all aspects of the resulting Ul usable with
adaptive technologies.

Web-2.0 applications —especially mashups —excel at cre-
ating end-user solutions that are greater than the sum of
their individual building blocks. We demonstrate this by
bringing together Google Talk, Live Regions and Natural
Language translation by demonstrating a multi-lingual talk-
ing translation interface that is the result of speech-enabling
these applications using the Google AxsJAX framework.

1. INTRODUCTION

Web applications turn static web documents into highly
reactive user interfaces. In this model of interaction, Web
pages behave like traditional desktop applications —the Web
page is the user interface canvas, and portions of this canvas
update as a result of user interaction.

Enabling adaptive technologies like screenreaders and self-
voicing browsers work with such applications requires the
following;:

Reflection The ability to discover the role and state of

Permission to make digital or hard copies of all or part o thvork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

W4A2008 - Communicatiohpril 21-22, 2008, Beijing, China. Co-Located

with the 17th International World Wide Web Conference.
Copyright 2008 ACM .$5.00.

54

T. V. Raman

Google Inc.
raman@google.com

interaction widgets.

Notification The ability to detect relevant changes to por-
tions of the user interface so that the user can be ap-
propriately notified.

Reflection i.e., the ability to discover the role and state of
an interaction widget —brings Web-2.0 applications on par
with traditional desktop applications when using a screen-
reader. Support for notification via live regions goes one step
further by enabling rich auditory user interfaces to Web ap-
plications in a form that has been traditionally difficult to
achieve —[3].

Reflection

Web applications can be augmented with reflection using
ARIA |5l 2] properties role and state. When Web applica-
tions that have been annotated with these properties are ren-
dered by a supporting browser, Ul widgets implemented via
HTML and JavaScript behave like native platform widgets
when seen by the adaptive technology. As a consequence,
interaction widgets constructed out of Web parts including
HTML, CSS and JavaScript raise the same platform-specific
accessibility events raised by native widgets.

Notification

Reflection as described above is one piece of the accessibility
puzzle, and makes leaf-level widgets such as menus and slid-
ers usable in the presence of adaptive technologies. However,
a Web application is more than the sum of the individual
widgets used to construct the user interface. To work ef-
fectively with such applications, users need to be notified
about relevant page updates, and this involves identifying
and automatically speaking portions of the Web page.

Notice that in the above, the task of identifying the rel-
evant portion to speak is as important as the speaking of
that information. To see this, consider a Web application
that displays a continuously updating time display at the
top, along with a dynamically updated set of responses that
match a user query. This application has two regions that
change —the time display, and the query responses. It is
important to distinguish these two updates from the per-
spective of adaptive technology.

Having the adaptive technology automatically speak all
page updates as they happen would result in an unusable
application. At the same time, it is important to speak the
updated results as soon as they are available while the user
is interacting with that application.

This form of timely and appropriate notification is en-
abled via live regions in ARIA [1]. Web application authors
identify those portions of the Web page that need to be
communicated to the user upon partial updates; they also
declare the priority of such updates. With the appropri-
ate live region properties in place, supporting Web browsers
can then trigger the relevant feedback through conforming
adaptive technologies during user interaction.

2. USER INTERACTION MODEL

Background

At the 2007 W4A conference, Peter Thiessen et al described
a prototype chat client that they implemented to demon-
strate ARIA live regions [6]. Drawing on that work, we
have now added ARIA support as described in that paper to
Google Talk IM, a mainstream instant-messaging client from
Google that is fully integrated with GMail. The rest of this
paper focuses on those aspects of speech-enabling Google
Talk that are new with respect to what was described last
year. In particular, subsequent sections of this paper de-
scribe how we speech-enable the integrated user experience
brought about by the coming together of instant messag-
ing and machine translation, and the resulting talking inter-
preter that materializes as a consequence.

The GMail User Interaction Model For IM

GMail uses a common contact list for mail and instant mes-
saging. The Web interface shows a dynamically updated
display of online contacts, and provides a shortcut key (q)
for launching a chat session with an online buddy.

Invoking a new chat session brings up a simple user inter-
face for a two-way text conversation. This display updates
whenever a new message is received as part of a given con-
versation. The user can have multiple parallel conversations
at any given time.

Initiating a new chat session via shortcut key q prompts
for the chat buddy using an input field with auto-completion.
The user can type a few characters and then use the up/down
arrow keys to navigate through the available completions.
The user interaction presented by these controls is speech-
enabled using W3C ARIA —but we will not cover those de-
tails here since they have already been described elsewhere
see [6].

The next section describes how we use ARIA properties
role and state along with live regions to create a seamless
user experience when using the keyboard along with spoken
output. In this case, our task was made significantly easier
by the availability of full keyboard access to the underlying
features of GMail —note that though most actions in GMail
are commonly performed via the mouse, that application
provides a wide range of shortcut keys for the power user.

3. AUDITORY USER INTERFACE

This section sketches out the auditory user interface ([4])
for the IM application by enumerating the various user ac-
tions and the desired auditory feedback —we will describe
the final implementation that achieves this in El

Notice that the asynchronous nature of instant messaging
means that we need to proactively notify the user in the
following instances:

e Incoming chat invitations.

55

[Action [Key | Effect | Feedback I
Launch q Open chat Opening chat
Buddy ... | Auto-complete | Speak completion
Confirm | RET | Create chat Chatting with buddy
Send Type message Echo message
Receive New mesage Alert user
Browse 1 Scroll Speak message

Table 1: Auditory User Interface For IM

e Arrival of new messages in an ongoing chat session.

e Subscription requests from friends wishing to subscribe
to the user’s presence.

Notice that in each of the above instances, one needs to
determine the priority of the incoming notification relative
to any other ongoing speech activity. Where appropriate,
pending notifications may need to be queued for delivery
after any on-going spoken output has completed.

4. LEVERAGING ARIA LIVE REGIONS

This section illustrates the use of ARIA live regions to
enable the automatic speaking of IM messages as they ar-
rive. The technique used to produce automatic feedback
in the other scenarios enumerated above is achieved in an
analogous manner.

During chat interaction, messages arrive in the form of
(div) elements that are added to the chat transcript area of
the Google Talk interface. Addition of these (div) nodes to
the Document Object Model (DOM) result in the automatic
updating of the visual canvas. As a result, the visual display
shows the newly arrived message.

These (div) elements contain two (span) children. The
first (span) element contains the user name; the second
(span) element holds the incoming message. Cascading Style
Sheet (CSS) properties on these individual (span) elements
are used to visually style these portions of the visual display.
We use these CSS properties to advantage when correctly
segmenting the updated content before audio formatting the
result.

As sketched out earlier, we want the incoming message
to be spoken as it arrives. This is achieved by tagging
the (span) element containing the message body with ARIA
property live=rude. Presence of this property indicates that
the contents of that element should be spoken when changed.
A value of rude indicates that such spoken feedback should
interrupt any on-going speech.

By setting the live property to rude, the AxsJAX enhance-
ment to Google Talk gives adaptive technologies a hint that
any update to this message is very high priority; —, it has
the highest priority possible. As a result, when this message
arrives, the adaptive technology will announce it immedi-
ately.

Notice that property live=rude is only set on the (span)
containing the message body and not the entire (div) ele-
ment; this is done on purpose in order to restrict automatic
reading of the incoming message to only its contents and
not its sender. This creates a much more efficient auditory
user interface as the user is not forced to listen to redundant
information —in a two-way conversation, the user already
knows the identity of the chat buddy.

me: Hello.

en2zh: R,

me: Welcome to Beijing.
en2zh: e,

me: Hope you like the wda conference.

en2zh: ZFEFRETwdasiv,

Options FPop-in

Figure 1: Chat with EN2ZH

5. A TALKING TRANSLATOR

Web-2.0 applications bring the power of hyperlinking to
software components deployed on the Web; a direct end-user
benefit is the coming together of useful services to create
solutions that are bigger than the sum of their constituent
parts.

Google offers a Web interface to our machine translation
technology; recently, we surfaced this in the form of chat
bots. As an example, one can converse with a chat buddy
of the form en2zh@bot.talk.google.com in English and get
messages automatically translated to Mandarin. In general,
translation bots for the available languages are named using
the following template:

xx2yy@bot.talk.google.com

where xx is the two-letter language code for the source lan-
guage, and yy is the two-letter language code for the target
language.

The integration of Google Talk into GMail brings this ser-
vice one step closer to the GMail user. With Google Talk en-
hanced with ARIA support via google-axsjax, chat sessions
with the translation-bot produce spoken feedback when used
in conjunction with self-voicing browsers or screenreaders
that fully implement ARIA.

An immediate consequence is that chat responses from
the various translation bots are automatically spoken.

Figure [l shows a screenshot of a sample interaction with
the English to Mandarin translation bot. Here, the user
has typed two English utterances as detailed below, each of
which has been translated to Mandarin by the translation
bot. As the visual display updates with each translated
utterance, the user hears the appropriate Chinese utterance.

Me Hello!
Bot Greets me in Mandarin.

Me Welcome to Beijing

56

Bot Responds with the Chinese translation.
Me Hope you like the W4A conference.

Bot Responds with the Chinese translation.

HTML chat responses from the translation-bot carry an ap-
propriate lang attribute that identifies the language of the
content. An immediate consequence is that one can type
in an English utterance, and listen to the resulting Chinese
translation —provided the underlying platform has Chinese
text-to-speech installed.

6. CONCLUSION

W3C ARIA is a work in progress and is defining some of
the core DOM primitives needed for enhancing the accessi-
bility of Web-2.0 applications. These primitives provide a
basic toolbox that can be thought of as the assembly lan-
guage for augmenting Web-2.0 applications. /AxsJAX!is an
Open Source framework that uses these basic primitives to
create higher-level design patterns that are better suited for
use by Web developers. This framework helps validate and
improve the ARIA design, while helping to discover effec-
tive design patterns using ARIA. As a useful side-effect, the
framework also helps us deliver immediate end-user value by
enabling us to release early-access solutions that can even-
tually become a core part of the services being enhanced.

7. REFERENCES

[1] M.D. Center. AJAX: WAI ARIA Live Regions. 2007.
[2] WAI Protocols and Formats Group. ARIA— Access To
Rich Internet Applications Overview. Technical report,
W3C, 2006. See http://www.w3.org/WAI/intro/aria.
TV Raman. Emacspeak —direct speech access.
Proceedings of the second annual ACM conference on
Assistive technologies, pages 32-36, 1996.

TV Raman. Auditory User Interfaces: Toward the
Speaking Computer. Kluwer Academic Publishers
Norwell, MA, USA, 1997.

R. Schwerdtfeger et al. Roadmap for Accessible Rich
Internet Applications (WAI-ARIA Roadmap). World
Wide Web Consortium Recommendation Working
Draft, 2006.

P. Thiessen and C. Chen. Ajax live regions: chat as a
case example. Proceedings of the 2007 international
cross-disciplinary workshop on Web accessibility
(W4A), pages 7-14, 2007.

3]

http://google-axsjax.googlecode.com
http://google-axsjax.googlecode.com
http://www.w3.org/WAI/intro/aria

	Introduction
	User Interaction Model
	Auditory User Interface
	Leveraging ARIA Live Regions
	A Talking Translator
	Conclusion
	REFERENCES -9pt

