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Abstract--The traditional bipartite weighted matching problem is to maximize the largest possible 
sum of weights. In this paper, we define a bipartite matching problem which maximizes the largest 
possible product of weights and develop an algorithm to solve it. Although this problem corresponds 
to a non-linear program, we show this problem can be easily solved by modifying the Hungarian 
method. Finally, we present an application of this problem. 

1. I N T R O D U C T I O N  

Graph theory [1] is a useful mathematical  tool to model systems involving discrete objects. 
A matching in a graph is a set of edges, no two of which are adjacent. Given a bipartite graph, it 
is a well-known problem to find a matching that  has as many edges as possible. Many interesting 
algorithms for solving such a problem have been developed. For example, in [2], Hopcroft and 
Karp presented an efficient algorithm to solve such a problem. Even and Tarjan [3] pointed out 
tha t  such a problem can be solved by employing the max-flow algorithm [4]. 

A more generalized version of the matching problem is to consider a weighted biparti te graph 
and find a matching with the largest possible sum of weights. This generalized problem has been 
solved by the Hungarian Method [5, 6]. This problem can be formulated as a 0-1 integer linear 
program as follows. 

Let zij be a set of variables for i = 1 , . . . ,  n and j = 1 , . . . ,  n, where n is the number of nodes 
in each node set o f  the complete bipartite graph G - (U U V,E), U = { u l , u 2 , . . . , u , }  and 
V = {Vl,V2, . . . ,v ,} .  Here, zij = 1 means that  the edge (ui,vj) is included in the matching, 
whereas z 0 = 0 means that  it is not. Therefore, for a set of such values to represent a complete 
matching, we have the following constraints: 

~-~zij = 1, i =  1 , . . . , n ,  
j= l  

f l  

E zij = 1, j = 1, . . . ,n ,  
i=1 

zij = 0 or 1. 

The goal of this problem is to maximize ~ i  ~ j  wij zij, where wij is the weight of the edge (ul, vj). 
However, how to solve the matching problem with the largest possible product of weights (i.e., 

maximizing l']i ~ wljZij with the same constraints) has not been established. The solution of 
maximizing ~'~i ~..~j woziJ is not necessarily the same as that  of 1-L ~-]~j wijzlj .  An example is 
shown as follows. Consider the following weighted bipartite graph. 
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The maximum matching with the largest possible sum of weights is {(ul, vg.), (u2, vl)} with their 
sum of weights 

E E wi.i xij = 11 + 2 = 13. 
i j 

The other matching is {(Ul, vl), (u2, v2)} with their sum of weights 

E E wij xij = 6 + 6 =12. 
i j 

However, the maximum matching with the largest possible product of weights is {(Ul, 111), (U2, V2) } 
with their product of weights 

l - [  = 6 × 6 = 3 6  
i j 

The other matching is {(u2, vl), (ul, v2)} with their product of weights 

H E w i J  xij = II  × 2 = 22. 
i j 

In this paper, we will provide a solution to the matching problem with the objective function 
YIi )"~j wij zij. We call such problem as the bipartite maximum product matching problem (MP- 
M). Although the problem formulation is a non-linear program, we find the Hungarian Method 
can be modified to solve it. 

2. T H E  MODIFIED HUNGARIAN M E T H O D  FOR  MPM 

In such a weighted matching problem on a bipartite graph G = (U U V, E), we cart assume the 
underlying graph is a complete bipartite graph, Kn,n. Otherwise, without loss of generality, if 
I U I < I V ] then we can add (I V ] - I U ]) new nodes to U with edges of weight one incident 
from all nodes in V to each of them. Furthermore, if there are missing edges in G we can assign 
the weights of these edges to be zero. 

To attack this problem, it is more convenient to consider it as a minimization problem by 
simply considering the weight of (ui, vj) to be --1. That is, we want to find a matching M which 

wi5 
minimizes IL ~ j  xlj/wlj under the following constraints: 

E x i j  = 1, i =  1 , . . . , n ,  (1) 
j = l  
n 

= 1, = 1 , . . . , , ,  (2)  
i=I 

xlj = 0 or 1. (3) 

We now present an example to sketch how to find such a solution. Then we will modify the 
Hungarian algorithm presented in [7], in which it was used to find a complete matching M that 
maximizes ~,i ~-,j wijxij. For formal treatment of that algorithm, refer to [8]. 
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EXAMPLE 2.1. We begin by representing the bipartite graph in matr ix  form, [e l i ] ,  where mij = 
is the inverse of the weight of the edge (ui, vj). An example matr ix  is given below. w l j  

3 8 7  . 
1 4 6  

Following Theorem 2.1 (to be discussed later), our solution remains unchanged if we divide all 
members of some row or some column by the smallest number of the row or the the column. This 
follows since only one entry will be selected from any row or any column. Therefore, the value 
of I-[i ~'~j zij/wij for any matching M will be divided by the same amount.  

By dividing each row by the smallest member of tha t  row, the example matr ix thus becomes 

1 8 7 
3 3 " 

1 4 6 

Analogously, by dividing each column by the smallest member of that  column, the example matr ix 
becomes 

1 16 7 
15 6 " 

1 s 3 

Our problem now is to select n (here, 3) entries from the matrix, such that  there are no two in 
the same row or column (we call these entries independent), with as small a product  as possible. 

Since our entries are all greater than or equal to one, the smallest product  we could hope for 
is one. Therefore, if n independent entries of value one can be found, then an optimal solution 
can be obtained. Now, since all the ones are contained in the first column and the first row, such 
a solution is not present. This can be seen by crossing with a line on the first row and a line on 
the first column. Notice that  the entry in the left-upper corner is crossed twice. We now adjust 
the matr ix  by the following procedure. 

1. Let k be the smallest number that  is not included in any of our crossed rows or columns. 
In our example, k = t.~6 

15"  
2. Divide all uncrossed numbers by k. 
3. Leave entries which are crossed once unchanged. 
4. Multiply k to all numbers which are crossed twice. 

This procedure produces at least one or more one in the uncrossed position of our matrix and 
leaves all the ones unchanged, unless they are crossed twice. It is impossible for an optimal 
solution to include those entries which are crossed twice. 

By following this procedure until n independent ones are obtained, our example matr ix  becomes 

16 1" 1 

1 1" 35 

1 "  3 45 
2 16 

The optimal solution entries are all marked with an asterisk ( . ) .  Referring to the original matrix, 
]'Ii ~']~j zij/w~j -- 1 × 8 x 4 = 32. Tha t  is, YI~ )"]~j wij zij = ~ .  | 

This algorithm can now be summarized by the following steps. 

ALGORITHM 2.1. An algorithm for MPM. 

representing a weighted bipartite graph. I n p u t :  A Matrix [mij], mij = ~,~ 

O u t p u t :  A Matching with the largest possible product of weights. 
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1. (Reduce row and column.) Divide each row by the smallest number of that row. Do the 
same for each column. 

2. (Check for n independent ones.) If there are n independent ones, then we are done; stop. 
Obtain the corresponding edges as the resultant matching. 

3. (Find a minimal cover to adjust the matrix.) Otherwise, find the minimum number of lines 
that cross all ones. Let k be the smallest number of those uncrossed entries. Divide those 
uncrossed numbers by k and multiply k to those numbers that are crossed by two lines. Go 
to Step 2. 1 

Now, we show that if [m~j] is the matrix obtained from [m#] by Step 1 of Algorithm 2.1, then 
the solution matchings of [m~j] and [mij] are identical. 

THEOREM 2.1. If [m~j] is the matrix obtained from [mij] by Step 1 of  Algorithm 2.1, then the 
solution matchings of [m~j] and [mij] are identical. 

PROOF. Suppose that ai and/~j are the smallest numbers used to divide the i th row and jth 
column of [mij], respectively, for each row i and each column j. Then, 

m~j = mij 
Oti t~j  " 

Let X and X'  be the objective functions associated with the old MPM and the new MPM 
problems represented by [mlj] and [m~j], respectively; i.e., 

X ' = H E m : j z i j  and X : H E m i j x i j .  
i j i j 

Since constraints (1), (2), and (3) can be regarded as: for each permutation 

~r: {1 , . . . ,n}  --+ {1, . . . ,n},  

1, i f j = r ( i ) ,  
xij = 0, else, 

the new problem that maximizes X'  = 
equivalent to 

i = 1 , . . . , n  and j = 1 , . . . , n ,  (4) 

1-Ii ~ j  m~j xij under constraints (1), (2), and (3) is 

maximize I-Ii Y]j m~j xij under constraint (4), 

- maximize 1-L m~(0 for all possible permutations r ,  
rn~,(9 -- maximize 1-L ~ ~.<,) 

= maximize 
- 11, ~,11, ~-c,~ 

I-I, E -- maximize ~ . ,  

x = maximize ~ 

That is, X and X'  differ only by the total amount divided, which is a constant. Therefore, their 
solution matchings are identical. 1 

An efficient way for performing Step 2 in Algorithm 2.1 is necessary to pronounce whether or 
not a set S of independent ones exists, and if it does, which entries belong to it. We observe that 
any such S has the property that its ones in [m[j] can be transformed into a leading diagonal of 
ones by interchanging some rows. For example, suppose [m~j] is 

[ 1 "  2 3 ]  
4 5 1" , 
6 1" 7 

for all possible permutations It, 

for all possible permutations ~r, 

under constraint (4), 

under constraints (1), (2), and (3). 
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then, upon the interchange of rows 2 and 3 it becomes: 

1" 2 3 ] 
6 1" 7 . 
4 5 1" 

We need exactly n (in this example 3) lines to cross out all the marked ones. No smaller number 
of lines will suffice. 

Because the interchange of rows does not affect the minimum number of crossing lines, it is 
easy to see that if the minimum number of lines necessary to cross out all the ones equals n, a 
minimal S can be identified. If the minimum number of lines is strictly less than n, a minimal S 
is not yet at hand. 

To find the smallest possible number of crossing lines, [9] provides the following rules of thumb, 
which can be repeatedly applied until none of them are satisfied. 

1. If there is a row (column) with exactly one uncrossed one, then draw a vertical (horizontal) 
line through this one. 

2. If all rows or columns with ones have two or more uncrossed ones, then choose the row 
(column) with the least number of uncrossed ones and draw a vertical (horizontal) line 
through one of the uncrossed ones. 

3. Break ties arbitrarily. 

The following example illustrates these rules: 

EXAMPLE 2.2. Consider the following matrix: 

1 1 3 ]  
4 1 1 . 
6 1 1 

The  first column has exactly one uncrossed one (i.e., m11), by Rule 1, we cross out the first row 
as follows: 

[ 
Now, we must apply Rule 2. By arbitrarily 

4 1 1 . 
6 1 1 

choosing m2~ and cross out the second row, we obtain: 

i i $ 1 4 i i . 
6 1 1 

Finally, since column 3 has only one uncrossed 
third row: 

4 
6 

This requires three lines to cross out all ones. 

one (i.e., m33), we apply Rule 1 and cross out the 

i i . 
1 1 

Therefore, there is a minimal S. 

Each application of Step 3 in Algorithm 2.1 will produce at least one more one in the uncrossed 
entries in the matrix and leave all the ones unchanged, unless they are crossed by two lines. 
Therefore, Step 3 will always yield a set of n independent ones in a finite number of repetitions. 
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3. J U S T I F I C A T I O N  OF O U R  A L G O R I T H M  

We justify Algorithm 2.1 by the following theorems. 

THEOREM 3.1. I f  c, c < n, is the minimum number of lines that cover all ones, then each 
application of  Step 3 in Algorithm 2.1 will divide the product of  all entries by k " L c "  . 

PROOF. The net effect of Step 3 can be regarded as the following two steps. 

1. Divide all entries by k. 

2. Multiply k to all entries covered by a line. Do this line by line. 

That  will leave all entries which are crossed once unchanged, then multiply k to all numbers 
which are crossed twice. 

Assume the product of all entries is P,  then after Step 3 the product of all entries will be 
P / k " "  x k ~" = P / k  "2-¢". I 

Note that  k is always greater than 1. Therefore, by n > c, we have k n2-¢" > 1, which implies 
p / k  "~-~" < P. 

THEOREM 3.2. Algorithm 2.1 will term/nate in finite steps. 

PROOF. By Theorem 3.1, each application of Step 3 will reduce the product of all entries by 
k '.2-¢" > 1. If the algorithm loops forever, then the product of all entries will be reduced to zero, 
which is impossible--since all entries are kept to be greater than or equal to one after Step 1. 
Therefore, the algorithm will terminate in finite steps. | 

In fact, the algorithm can be performed in O(n a) for a complete bipartite graph with 2n 
nodes [8]. 

4. AN A P P L I C A T I O N  OF M P M  

In this section, we present an application of the MPM problem. 

EXAMPLE 4.1. Suppose we have a tennis team of three netters, named a, b, and c, and we want to 
pairwise play single games with another team of three net ters, named x, y, and z. By analyzing the 
past records of our netters and opponents, we may obtain the following probability information 
of each of our netters to beat the opponents. 

Ivs .  II • I I I 
a 0.6 0.3 0.8 

b 0.5 0.9 0.3 

c 0.2 0.7 0.8 

For example, the probability for a to beat x is 0.6. Now, suppose we want to find an arrangement 
for our netters and their corresponding opponents, such that  we have the best chance to beat all 
the opponents. 

This problem can be regarded as an MPM problem by transforming it to the complete bipartite 
graph G = ({a, b, c} U {x, y, z}, E) with the entries in the above table as the weights of the edges. 
That  is, we want to find a matching in G with the largest product of weights. 

To apply our algorithm, we regard it as a minimization problem by considering the following 
matrix: 

1 1 1 5 10 5 
0.6 O.S 0.8 3 3 4 

1 1 1 = 2 10 10 
0.5 0.9 0.3 9 3 

1 1 1 5 10 5 
0.2 0.7 0.8 7 4 

By Step 1 of Algorithm 2.1, we obtain 

[ 1 ~ 1] 
27 1 3 . 

3 1 
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By Step 2, we can find 3 independent ones as follows, which are marked by asterisks. 

. s 1 

27 1" 3 • 

3 s I* 

Therefore, the solution of this example is: 

a versus  x, 
b versus y, and 
c versus z. 

If we arrange the single games according to this solution, then the probability to beat all the 
opponents is 0.6 x 0.9 x 0.8 = 0.432. | 

5. D I S C U S S I O N  

In this paper, we define a bipartite matching problem which maximizes the largest possible 
product of weights. The solution for a bipartite matching which maximizes the sum of weights is 
not necessarily the same as that  for maximizing the product of weights. Fortunately, we show this 
problem can be easily solved by modifying the Hungarian method. Besides, we show an example, 
which is usually invoked for decision making, to illustrate an application of our problem. 
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