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On the Properties of the Reduction-by-Composition The paper is organized as follows. In Section I, the RCLMS
LMS Algorithm algorithm will be reviewed, followed by its stability analysis in the
third section. Section Ill covers the issues of weight convergence
Sau-Gee Chen, Yung-An Kao, and Ching-Yeu Chen in mean and mean-square senses, convergence bound, fand

excess MSE. This section also suggests simple working rules for
_ _ RCLMS algorithm, leading to a comparable performance to the
Abstract— The recently proposed low-complexity reduction-by- p| MS algorithm. The derived properties, bounds as well as working

composition least-mean-square (LMS) algorithm (RCLMS) costs only . . - . ; . .
half multiplications compared to that of the conventional direct-form rules, are verified with the simulations in the Section IV. The final

LMS algorithm (DLMS). This work intends to characterize its properties ~ Section draws a conclusion.
and conditions for mean and mean-square convergence. Closed-form
mean-square error (MSE) as a function of the LMS step-sizg: and an II. THE RCLMS ALGORITHM

extra compensation step-sizex are derived, which are slightly larger _ : . " iy
than that of the DLMS algorithm. It is shown, when g is small enough For real-number systems, given an adaptive filter with input

and o is properly chosen, the RCLMS algorithm has comparable Sequencex(n) and coefficientswy(n)’s, the RCLMS algorithm is
performance to that of the DLMS algorithm. Simple working rules and  described below. For the filtering part

ranges for o and p to make such comparability are provided. For the N1
algorithm to converge, a tight bound for « is also derived. The derived ) _ 2
properties and conditions are verified by simulations. y(n) = Z wi(n)z(n — k)
Index Terms—Adaptive signal processing, convergence, LMS algo- i;: |
rithm. iy
! = Z {[x(n — 2k) + wort1(n)]
k=0
I. INTRODUCTION - [e(n =2k — 1) + wor(n)]} — C(n) — P(n) 1)
The direct-form least-mean-square (DLMS) algorithm is the mogthere
popular temporal-domain adaptive filtering algorithm due to its sim- N/2-1
plicity and robustness. Regarding the temporal-domain approacheg; (n) = Z wog (n)wagy1(n) 2
there exist many least-mean-square (LMS) variants in reducing the k=0
coefficient update complexities such as the well-known sign-error, N/2—1
sign-input, and zero-forcing algorithms. P(n) = Z z(n —2k)x(n — 2k — 1)
However, few improvements were done in reducing its filtering k=0
complexities. Recently, a so-called fast exact LMS (FELMS) algo- =P(n—-2)+z(n)x(n—1)—x(n— N)ax(n — N —1).
rithm [4] was proposed to retain the same convergence properties as ©)

those of DLMS, while reducing the multiplication complexities of

both filtering and updating complexities by as much as 25%, with’% IS an even number, and(n) = 0, P(n) = 0 for n < 0. Note
small increase in the number of additions. that P(n) only costs one multiplication and two additions. The time-

More recently, Chenet al. proposed a new reduction-by- Varying complicated’(n) can be replaced by a simpler scalar(n)
composition LMS (RCLMS) adaptive filtering algorithm [1]. The@S follows, which costs _onI)_/ one extra multiplication, as depicted in
algorithm was simulated to have comparable performance to that(B}- Therefore, for the filtering part

the DLMS algorithm, while costing 50% fewer multiplications at , N/2-1
the expense of 50% more additions than the DLMS algorithm. The  ¢'(n) = > {[#(n — 2k) + wary1(n)]
k=0
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hn(n4+1) =hn(n) — ae'(n) (6) E[hn(n)], we take the expectation of (6) as follows:
where the error signal’(n) is Elhn(n+1)] = E[hn(n)] — aE[e’ ()]
e'(n) =d(n) —y'(n) = E[hn(n)] — aE[hx(n) = C(n)].  (10)
=d(n) —y(n) + [hAn(n) — C(n)]

As n approaches infinity

=e(n) + [An(n) — C(n)] (7)
Elhn(00)] = E[hn(o0)] = aE[hn(c0) — C(o0)].  (11)

and d(n) is the desired signal.
ConsequentlyE[hn (o0)] = E[C(o0)] = hi.

lIl. STABILITY ANALYSIS OF THE ALGORITHM In a more rigorous way, it can be also shown thgdt: n (o0)] =

To discuss the stability of an adaptive algorithm, there are tw%[c(oc)]' By subtracting”'(n+1) from both sides of (6), and assum-

key considerations here [2]: Konvergence in the meanwhich M9 thatC(n + 1) = C(n) for a very smallu and correspondingly

means that the expectations of the weight vestdr.) and iy (n) & slowly varyingC'(n), one has
approach the optimal (Wiener) solutions” andh 3, respectively, as hn(n4+1)=C(n+1)

the number of iterations approaches infinity and pnvergence ~ hn(n) — —ald(n) — w? / e
in the mean squarewhich means that the final (steady-state) MSE w(n) — Cn) —ald(n) — w (n)x(n) + hn () C(n(')l]'z)
is finite.

For convenience, some definitions and notations are dEﬁnedB"ﬁfdefining €ne(n) = ha(n) — C(n), the expectation of (12) can

follows: be reduced to
i) = leo(n), wrn), o, wx—a(n), wy -1 () Bltuctn + 1)] = Blésc(m)] — o Bld(n) = w (n)x(n) + &cln)]
w' = [“"37 mra Tty “”7\"*1]}?1\’ = (1 — a)E[fhc(n)] = (1 — CL)”+1 E[(hc(o)]
Ew(n) =w(n) —w" (13)
x(n)=[z(n), x(n—-1), -, a(n = N+ 2)x(n — N + 1)]FIF><N

Therefore, under the conditiofl — «| < 1, E[én.(n)] = 0, and
®) E[hn(n)] = E[C(n)] asn — oo.
3) The Convergence in the Mean Squarhe MSEJ’ (r) can be

where = the tap weight vectorx(n) = the tap input vector.
w(n) p weig x(n) p inp shown to be

Here, bothr(n) andd(n) are assumed zero-mean and wide-sen
stationary. It is also emphasized that the following independencg ;) = E[(¢’(n))?]
assumptloh similar to those of [2] and [3] is mad-e. = Ble*(n)] + E[eZ.(n)] + 2B[(d(n) - Wr(n)x(n))&m(n)]
1) The input vectorx(1), x(2), ---, x(n) constitute a sequence

of statistically independent vectors. =J(n) + Egic(n)] (14)
2) x(n_) is statistically independent of all previous samples of thgnere E[c?(n)] is equal to.J(n) of the DLMS algorithm. Equation
desired response, namely1), d(2), ---, d(n — 1). (14) is simplified by applying (7), the independence assumption, and

3) d(n) is dependent on the correspondir@), but statistically the conditionsE[x(n)] = 0 and E[d(r)] = 0.

independent of all previous samples of the desired response. T4 solve.J'(n), let us consided(n) first. J(n) has been shown
4) x(n) andd(n) consist of mutually Gaussian-distributed randonj, [2] to be J(n) = Juin + Jeu(n), where Jui = EleZ,.(n)],

variables for alln. Jea(n) = E[EL(n)x(n)xT (n)éw(n)] = t[RK(n)], K(n) =
Based on the assumption, the conditions hdifi(n)d(k)] = 0, Eléw(n)eL(n)] [2]. In computingK (n + 1), various cross terms
Ex(n)x" (k)] = 0,k = 0,1,---,n — 1. Similarly, hx(n + arise as a result of the multiplication. Many of them can be discarded,

1), w(n 4+ 1) can be easily shown to be independent of botwhich includes
x(n 4+ 1) andd(n+ 1), butx(n), x(n — 1),---,x(1), d(n), d(n —

1), -, (1(1), W(()) and hl\"(())- E[X(’IL)Gopt (IL)&E,(IL)(I - H’X('IL)XT("))]
1) The Convergence @&[w(n)]: By subtractingw™ from both = E[(I - px(n)x' (n))&w(n)(x" (n)eapi(n))] =0  (15)
sides of (5), followed by taking its expectation, we have E[x(n)eopt (n)(px(n)Ene (n))"]
Eltw(n +1)] = E[(I — px(n)x" (n))éw(n) = E[lleopt(n)x(n)xT(n)]?[&m(n,)] =0 (16a)
+ px(n)eopt(n) + px(n)(hy(n) — C(n))] Elpx(n)éuc(n)(x(n)eopi(n))'] = 0 (16b)
= (I— yR)E[¢w(n)] ) Efpx(n)éne(n) (I = pix(n)x" (n))éw(n))"]
= E[(I = ux(n)x" (n w (n)(ux(n)énc(n ™ ~o0.
where eopi(n) = d(n) — x" (n)w*, and R = E[x(n)x" (n)]. KT = pclm)ac” () Gon (m) (e () 17

Here, the simplification is achieved by applying the independence

assumption and orthogonality principle, i.€[x(n)eopt(n)] = 0. The reasons leading to (15) can be found in [2]. Equations (16a)

Sincew (n) [and henc&w (n)] and/.n () [and accordingly:n (n)—  and (16b) are due to the independence assumptiorEad (n)] =

C(n)] are independent of(n) andd(n), E[x(n)(hn(n)=C(n))] = E{hxn(n) — Cop — [C(n) — Cop]} = 0, while (17) is assumed

Elxz(n)]E[hn(n) — C(n)] = 0. Equation (9) is the same as that fomegligible whena and . are small enough, i.e) < o < 1/(2N)

DLMS algorithm, so is the required constraint for step sizé.e., and0 < p < 1/(2Na2). Appendix A details the derivation steps

0 < p < 2/Amax, WhereAnmax is the largest eigenvalue &. leading to the constraints. As a result (with the help of the Gaussian
2) The Convergence df[hin(n)]: First, we can easily show that moment factoring theorem [2])

the optimal MSER N (n) of An(n) is A (n) = E[C(n)] = Copt = ,

SN2t s whe. s, by setting the derivative of (n) = E[¢*(n)] K(n+1) = (I-pR)K(n)(I-pR) + p"RU[RK(n)]

with respect tohy(n) to zero. To discuss the convergence of +1”RK ()R + R oin + f”RE[E(n)].  (18)
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Furthermore, lefU(n) be defined adJ(n) = QTK(n)Q, then Moreover,g; can be eliminated by multiplying both sides of (24)
K(n) = QU(n)Q", where Q is the eigenvector matrix oR., with \; and then summing over allfrom zero toN — 1. As a result
QTRQ = A andA is a diagonal matrix consisting of the eigenvalues N1
\; of R. Consequently, one may rewrite (18) as 1 (c—1+2a) lz A7

— ¢ — (1 —

- - d =1.
: 2 , c—(l-a)? pA)? = p2A7 (29)
Un+1)= (I—pA)Un)I—pA) + p " At[AU(n)) '
+ P AU()A + p Jwin A + p*AE[¢].(n)].  (19) Under the critical condition that = 1, one can get the inequality

] ) ] (26), which is the required convergence condition in mean square
First, let us consider the convergence of the off-diagonal element

wi;(n) of U(n) wherei # j. From (19) 1 Nz_l m (26)
_ \ 2 ) 2—q 4 1—pA; )
uij(n+1) =[(1—pX)(1 = pXj) + 127X\ ]uij(n) i=0
=[(1 = pA) (1= pAy) + p*Ai)]" i (0). (20) A special case is when = 0, which reduces to DLMS algorithm

with the well-known conditiony 0" u\i/(1 — p\;) < 2. From

Equation (20) will approach to zero as— oc under the condition (26), one has the constraint (27) far

(L= p) (1= ) + 220 < 10e,0 < p < (1/Ai +1/X25)/2.

The worst case i§ < p < (1/Amax + 1/ Amax 2)/2, whereAmax 2 N-1 .y

is the second largest eigenvalueRf In practice, since/trR| < 0<a<2- Z ﬁ (27)

2/(Amax + Amax 2) < (1/Amax + 1/Amax 2)/2, 0 < 5 < 2/t[R] im0

is @ more feasible bound. ‘ _ In summary, the convergence condition fois 0 < p < (1/Amax +
Next, let us discuss the convergence®itZ. (n)] and the diagonal 1/Amax 2)/2 [5] for both RCLMS and DLMS algorithms, while

elementsu;(n) of U(n), i =0, 1,---, N — 1. It was shown in [2] ¢t RcLMS algorithm should satisfy (27).

that J..(n) = >;55" Aiui(n). From (12) and the independence 4) The Steady-State MSEFhe steady-state component

assumption, we have E[g}.(o0)] can be shown to b&[¢}. (oc)] = aJ(oc)/(2 — a)by
2 letting n — oo in (21). One then can solve; (o) by plugging this
E[gh(n + 1)] fic B2 ( it (19
= E[((1 — @)éne(n) — a(d(n) — w(n) x(n)))?] specific E[¢,.(oc)] into (19) as

N—1

wi(oc) = pJ (oo 1—puX)(2 = a)l. 28
cm+ZMM4.(m (5¢) = pI(00)/[(1 = A} (2 = )] 28)

=(1-a)’E[&(n)] + o

Equation (28) can be further extended to

One may combine (19) and (21) &$n + 1) = Av(n) 4+ bJmin, N—1 N—1
where Z Aiui(oc) = Z pX T (00) /(2 — a)(1 — ;)]
. o’ =0 1=0
v(n) = [uo(n), ws(n), -+, un—1(n), El&(n)]]rinsn Jloo)
b=y, Ao oo Avens o 1 v = J(00) = i (29)
andA is an(N + 1) x (N + 1) matrix with elements Hence
(1—pXi)? +2u202, i=j=0,---,N—-1 Nod
WA, i#j,i=0 -, N—1 .](oc):-]mi,,/{l— Z ;zx\i/[(2—a)('1—u)\i)]}. (30)
- j=0,-,N—-1 =
iy = 2 . . .
A j=N,i=0,---,N-1 .
a2\, i=N.j=0,-,N-1 Finally
(1-a), i=j=N. J'(50) = J(00) + E[€2.(x<)]
Therefore,v(n + 1) = A" 'v(0) + bJuin Sp_, A =2J(c0)/(2 - )
It guarantees the convergencewdf: +1) when all the magnitudes Nl
of the eigenvalues ofA are smaller than 1. Let and g = =2in [ [(2—) = > phi [ (1—pXi)|.  (31)
[90, -+, gn] be an eigenvalue and eigenvector pair &f then =0
. N
Ag = cg or equivalently} ", ai;jgi = cgi. Consequently Note that whenv is sufficiently small, MSE of the RCLMS algorithm
No1 is equal toJ(oo) of the DLMS algqrithm [2]. On the other hand,
(1= i) 4+ 12 Ng + 120 3 Aggs + i Aigy for sufficiently smally, one hasy" ' uXi/(1 — pXi) = 0, and
=0 J' (o) = 2Jmin/(2 — ).
=c¢g,i=0,---,N—1 (22) 5) The Misadjustment.The misadjustment is defined as follows:
- M = J0(50)/ Jomi
o’ Z Njg;i +(1— a)gn = cgn. (23) oo m\,_lmm N—1
" | HAZ )/( | NAZ )
= fat+ S M 2-a=S" M} (39
Hence,g; can be solved as < ; 1= ps ; 1= pAi
il 5 where the excess MSE. () is defined as/.,. (n) = J' (1) — Jmin.
gi = <Z )‘J'gJ')“HA"(C -1+ 2O“)/ One may rewrite (32) as
7=0
[((’ —(1=—a))e—(1—pX)® — //,2/\12)], o= 2M J\Z_l HA; (33)
T1+ M 1—/1,)\,;'

i=0,---, N—1. (24)
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Note that2M /(1 + M) < 2. In practice,M is first prescribed, then 0

« can be confined to a more conservative upper bound than (27), as -0-: by simulation, small u=0.0001,

shown below 21 s by theoretical eq. (31), small p=0.0001,
. al -0-: by simulation, large n=0.03,
2M M JN; 34 i : by theoretical cq. (31), large u=0.03
0< o - . ' S 03
<a< i 2 1= o (34) 5
Whena is sufficiently small, (32) reduces to a form similar to that of 8 _g ]
the DLMS algorithm [2]. On the other hand, whenis sufficiently
small, M = «o/(2 — «). -101 1
6) Simple Working RulesBased on the derived properties, one
can conclude the following simple working rules that result in a -2
comparable performance of RCLMS algorithm to that of the DLMS 14 |
algorithm (in terms of speed and MSE).
1) Pick i subject to the following constraint: 16
02 04 06 08 1 12 14 16 18
0< p< min{ M ! } ¢
tr[R]" t[R](1+ M) 10tR] Fig. 1. The steady-state MSEF (c0) versusa, with small ¢ = 0.0001

2M 1

. and largepx = 0.03.
= M WRIA + M) 100[R]

}. (35)
This constraint is for the stability requirement of RCLMS algorithm.
The term2/tr[R] follows directly from the well-known bound [2],
[3] for DLMS algorithm. The tern2 M /[tr[R](1 + M)] follows from
the requirement that — p; =~ 1, and for example:\; < 0.1. The

TABLE |
KEY VALUES OF THE DLMS AND RCLMS ALGORITHMS CORRESPONDING
TO0 M = 0.09: MSE’S, THE THEORETICAL BOUNDS AND
PICKED VALUES FOR & AND f

i??ﬂ;tl\on’ I)n Lur{l/,(Tg)p\“?S the third constraint pf< 1/(10tr[R]) < prescribed [upper bound|upper bound|lower boundjpicked|picked{ MSE (db) | MSE (db)
2) Pick o subject to the following constraint: M |of 9y for sof (36) for alof G6) for o) @ | | DLMS | (RCLMS)
009 | 00172 | 01070 | 00145 | 0.1 | 001 | -1589 | -15.73
PR min {2 my, - VBRI (56
N 1+ " : N

where the lower bound:tr[R]/N and one of the upper boundsin the large; case, although there is a more noticeable deviation
2—utr[R]/N follow from the obvious reason that RCLMS algorithmbetween the theoretical and simulation results (as expected) than
should be tuned to converge as fast as the DLMS algorithm. Matige smally, the theoretical curve still follows the simulation curve
precisely, the constrainfl — o] < |1 — pAmin| < 1 should be closely. The simulated convergence bounddoexceeds 1.99 (with
satisfied. Sinca:Amin < 1 according to (35), the speed constrainf, = 0.0001), which is extremely close to the theoretical upper bound
reduces tuAmin — 1 < 1 — a < 1 — pAmin < 1, which leads to 1,999 predicted by (27). On the other hand, the simulations diverged
0 < pAmin < 0 < 2 = pAmin < 2. Or, more conservatively whena > 1.8 (with g = 0.03), which is still very close to theoretical
1 - t[R] 1 tr[R] ; value ofa = 1.8174 from (27). In practice, it is suggested that (36)

N -~ = 2 = pAmin < 2. instead of (27) be used for the upper boundhof

(37) Next is the verification of the simple working rules suggested in the

The other upper bouniM /(1 + M) — p tr[R] of (36) is resulted previous section. With the same equalizer design problem as before
from (34) under the condition of a desired M smaller than thgnd a prescribed? = 0.09, Table | lists the values of theoretical
prescribed one and a small Specifically, when (35) holds, (34) upper bound and lower bound fer and . that could make up a
can be reduced to more conservative bounds gradually, as followgcLMS algorithm comparable (in speed and MSE) to that of the

0 < pAmin < <a<?2

IM DLMS algorithm. In the following simulations, assuming an in-bound
a< 1+ p- tr[R] p = 0.01, various values ofv in and out of the bound are simulated
N_1 and compared.

__2M _u Z \; Fig. 2 shows the MSE’s (average of 500 runs) of DLMS algorithm

(1+ M) e and the RCLMS algorithm with. = 0.01 for variousa values. As
oM N-1 s _expected, the convergence rate of R_CLMS algorit_hmnf(# 0.001

Tr Z TN (38) is slower than that of the DLMS algorithm, becausés smaller than

- i=0 : the lower bound of (36) in Table I. However, also as expected, its

steady-state MSE is close to that of the DLMS algorithm. On the
IV. SIMULATIONS other hand, the curves af = 0.1 and the DLMS algorithm have
This section verifies the derived properties and simple workirfge same convergence speed and comparable MSE'sL6f73 and
rules by simulations. Here equalizer design is tried. The assumed5.89 dB, respectively, as shown in Fig. 2 and Table I. This is
impulse response of the channelds= [—1/2.1, 1, 1/2.1] with a because botlv and . are in the working ranges listed in Table I.

white Gaussian, zero-mean input signal of variaseel. The tap
number of the adaptive equalizer is prescribed to 4.

In cases of largerx = 1 and 1.5, they are outside the working
range. They are also outside the upper boundaofierived in

Fig. 1 shows the steady-state MSE's (average of 500 runs) ag\ppendix A for (17) to be negligible. As predicted, thesevalues

function of « considering smalj = 0.0001 and largep = 0.03.

result in larger MSE's than those of the DLMS algorithm. One can

As shown, the simulation curves are very close to the derivemtice these somewhat peculiar learning curves. They first drop to
theoretical MSE curves of (31), especially for the cases of small their minimum values like the DLMS algorithm and then continue
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2 i ' i ‘ ' ' ' the tap number is set to 12, apd= 0.025, o« = 0.1. Fig. 3 shows

of ~:DLMS 1 the MSE curves of RCLMS algorithm under various eigenvalue
spreads. As expected, a larger eigenvalue spread results in a slower
convergence and larger MSE, and vice versa. Since the curves of
DLMS virtually overlap with those of RCLMS algorithm, we do

not include them for comparison. Regarding practical application
examples of RCLMS algorithm, it has been successfully applied to
HDSL equalizer [6] and cable modem [7] designs.

db
&

V. CONCLUSION

The properties of RCLMS algorithm have been characterized in the
paper. The simulation results match the derived properties closely.
0.1 . . . . . Simple working rules and proper bounds ferand . are also given
0 500 1000 1500 2000 2500 3000 3500 4000 to facilitate the new algorithm’s practical usage. In the theoretical

lterations analysis, smally is assumed. The future work is to analyze its
Fig. 2. The MSE’s of DLMS and RCLMS algorithm for various with ~ properties under largg and «. In addition, practical applications

p = 0.01. of RCLMS algorithm deserve further investigation.
0 : T APPENDIX A
o s, s T T oo o
20 From independence assumption, (17) can be further reduced to
-30r w=3.5,
840 s T E[(I - px(n)x" (n))w(n)(px(n)énc(n))"]
50 oot - = E[(&w () (px(n)éne(n)) ]
007 — Elpx(n)x" (n)éw(n) (px(n)énc(n)) "]
-70; W=2.9, hnarlhmin=6.6262 1 = pE[(Ew(n)éne (M]E[(x" (n)]
807000 : 2000 3000 4000 5000 6000 — 1 Elgnc (n)x(n)x" (n)éw(n)x" ()]
lterations = —,U,ZE[&,C(’I'L)X(H)XT (n)ﬁw(n)xT (n)].
Fig. 3. The MSE curves of the RCLMS algorithm under different eigenvalue

spreads.
P On convergence one can reasonably assume that the weight differ-

ences from their optimal values are roughly equal to the weight

to raise to higher steady-state MSE's. For these tws®, many correction terms, l.e.,

neglected terms [especially (17)] in the derivation steps are no longer

negligible. twn) =wn) —w = wn)—wn —1)=pe'(n - Da(n —1)
The accuracy of the derived properties were confirmed by the

mentioned simulations with some small disparities (particularly for

large a) as shown in Figs. 1 and 2. One of the reasons for tho88d similarly&e(n) ~ —ae’(n — 1). Hence

deviations could be explained by the so calfting propertieq2]

as fpllows. Note that all the. previously deri\_/e_d theories are based on  _ /l?E[fhc(ﬂ)X('n)XT(77)Ew(ﬂ/)XT(Il)]

the independence assumption. However gtiéing propertyof input

data could introduce statistically dependent results [2]. It might result

in E[x(n)(hn(n) — C(n))] # 0, even whenx(n) is a zero-mean

signal. That mean&/[x(n)(hw~(n) — C(n))] would converge to a dc It is easily seen that

vector in the long run. Accordingly, each converged weight is equal

to the sum of its Wiener solution and a dc bias. The magnitude of dc , 5 T r

bias is found to directly proportion ta from the simulation results. ~ * aE{le (n - D }x(n)x” (n)x(n — 1)x" (n)]

The dc bias could be an another reason why there are peculiar MSE < P aB{x(n)x’ (n)YE{le'(n — D]*YE{x" (n)x(n)}

~ P aB{le/ (n — D)*x(n)x" (n)x(n — 1)x* (n)]}.

curves as in Fig. 2, especially wheris large and outside the working N-1
range and/or near the upper bound of stability. All the derivations are = y>oR.J'(n) Z i
under the conditions that and/ory. are small. Therefore, in cases of i=0

large « and/oryu, one may expect noticeable (but minor) deviation

between theory and the simulation results as shown in Fig. 1. Note that this is a very pessimistic bound, because we have replaced
The last example demonstrates the effects due to eigenvakfe(n)x(n — 1) by x% (n)x(n) in this inequality. For zero-mean

spreads. Here, an equalizer is designed to compensate a raised-cspg sequence, especially a white input sigral(n)x(n — 1) =

channelh(n), where h(n) = (1 4 cos(2a(n — 2)/W))/2, n = 0. Next, let us transformR and K(n) to A = QTRQ and
1, 2, 3. The input signal is white Gaussian, zero-mean with variandd(n) = QTK(n)Q, respectively. As such;®>oR.J' (n) Z;N:gl A

= 1. The parametdi¥’ controls the eigenvalue spread. In the examplés transformed top*aAJ'(n) Z;i;l Ai, which has a maximum
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element with the maximum elements of all the other matrices in (19t S: G: Chen, ¥. A. Kao, and C. Y. Chen, "A new efficient LMS adaptive
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is the most significant term; therefore, we only need to compare Prentice-Hall, 1991. _ _ _

the remaining terms. Note that we have proved that all the offl3] B. Widrow and S. D. Stearngydaptive Signal Processing.Englewood

- . L Cliffs, NJ: Prentice-Hall, 1985.
diagonal elements di(n) converge to zero [assuming a negligible [4] J. Benesty and P. Duhamel, “A fast exact least mean square adaptive

(17)]. Therefore, we can ignore all the off-diagonal elements in ~ gaigorithm,”IEEE Trans. Signal Processinggl. 40, pp. 29042920, Dec.
the following transformed matrices. Now, let us take a look at the  1992.
maximum diagonal elements of all the other terms in (19) assuminp] O- Macchi, Adaptive Processing: The Least Mean Squares Approach

; [ ; ; o ' with Applications in Transmission.New York: Wiley, 1995.
that (17) is negligible and then derive the required conditionsxfor [6] C. I. Hwang, T. C. Tang, D. W. Lin, and S. G. Chen, “An efficient

and . FSE/DFE-based HDSL equalizer with new adaptive algorithms,” in
1) pA tr[AU(>)] has a maximum element of Proc. 1994 IEEE Int. Conf. Communicationdew Orleans, LA, pp.
288-292.
[7] C. I. Hwang and D. W. Lin, “Joint low-complexity blind equalization,
u? max{A tr{AU(c0)]} carrier recovery and timing recovery with applications to cable modem

) R transmission,1EICE Trans. Communyol. E82-B, no. 1, Jan. 1999.
= i® max{Atr[RK(c0)]} = ¢ max{AJ.,(0)}

= u [](OC) - mln]/\max

2) p*AU(0)A h i | t of . . .
) 1 AU(50)A has a maximum element o Comments on “Chaotic Digital Encoding: An

‘ ‘ ‘ Approach to Secure Communication”
1 max{AU(ocA)} = p® max{A u;(o0)}

= usx\imx'](‘”)/[(l — Amax) (2 — @)] W. G. Chambers
3) M 2 JminA has a maximum element qj Jmin max{\,} = Abstract—A proposal for using a chaotic system with finite wordlength
H 27 .\ as a means for encrypting data is criticized on the grounds that some
4 \HEI[]E e o] has a  maximum clement  of of the proposed schemes are readily attacked in the “chosen plaintext”
L/ hc

R o R . scenario. Moreover, the proposed schemes do not appear to have any
B Amax B [ﬁﬂc(oo)] = 1" AmaxaJ (00) /(2 — ). advantages over more conventional cryptographic methods as far as

For it <€ 1/ Amax anda < 2, (30) reduces tof(oc) & Jumin/(1—  Security is concerned.

/2 ZN ! Ai). AS\rSlﬂCh the maXImLﬁIh’\1 terms of 1-4 above reduce |ndex Terms—Chaos, cryptography, sequences.
to ,U, ]111111>\1ud‘( Zj 0 >\ /(2 - M Z N )\ ) H ]IIllllA;nax/(Z -
1NN Ay 12 Tnin Amax, and nfmm/\max/(Z — N,

respectlvely And utilizing (31)® aXmaxJ' (00) ZV L'\, can be |. INTRODUCTION
reduced t@;® nJmm/\mﬁX SNE A/ (2—p T M) Moreover, A method of using chaotic systems for secure communications
assume thap < 1/3°0 *1 A = 1/U[R] = 1/(Ng;%) (as often has been proposed recentlyfThe purpose of this note is to point

adopted in practlce) then these maximum terms are further ut that the method is simply a proposal for a cryptographic scheme
duced 1044 Jomin Amax Z,: N2 1 TinNaan /2. 12 JwinAmax,  WhOSe advantages over other cryptographic schemes are debatable.
112 T min Amax /2, and p® o ]mm max 2o AL Itis ea3|er to check Genuinely chaotic systems operate over infinitely large fields, usually
relative magnitude by d|V|d|ngL aJmm/\mx S NoU A by all the the field pf refall numbers. Fin?te digital representations turn s.uch.
other terms to obtaira, 2a Z; oF i/ Amaxs 1 ZN L)\;, and Systems into f|n_|te-state m_achlnes, whose _auto_nomous behawor is
2#2 —1)\ Furthermore, ifa < 1/2, then2a < 1 and i bou_nd_to be ultimately perl_()(_jlc. The quest.lon is then whether, in
0 < 1/ 2), then 2a 3% 71/\ SAmax < 1. In summary, if de§|gn|ng asystem.for providing d@ta security, one should start with
the conditions0 < a < 1111n{1/2 1/2N)} = 1/(2N), and @ finite representatlon of a chaotic system, or whether one shou_ld
0 < 'u << 1/ Z, 512)” = 1/20[R] = 1/(2No?) are met, then choose conventional cryptology. (A good reference for cryptographic

7 techniques is [1].)
pa NN < 1, 20 NG N < 1, and (17) is negligible.
Note that they are very conservative bounds. In our derivation, WeThe proposal specifies a list of properties of a finite-state machine

have assumed the worst cases that rarely happen. Intuitively, ‘%H'Ch are to be regarded as (lj‘e5|gnat|ng a quasichaotic system. A
convergence, the randomness of zero-m@atn) andéw (1) is very typical property is the following: “The zero input response has a broad

likely to make a much smaller (17) than the other terms in (18r)110|sellke spectrum for almost all choices of initial conditions. Under

which is confirmed by simulations. Manuscript received June 13, 1995; revised November 4, 1995. This paper

was recommended by Associate Editor R. G. Shenoy.
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