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On the Properties of the Reduction-by-Composition
LMS Algorithm

Sau-Gee Chen, Yung-An Kao, and Ching-Yeu Chen

Abstract— The recently proposed low-complexity reduction-by-
composition least-mean-square (LMS) algorithm (RCLMS) costs only
half multiplications compared to that of the conventional direct-form
LMS algorithm (DLMS). This work intends to characterize its properties
and conditions for mean and mean-square convergence. Closed-form
mean-square error (MSE) as a function of the LMS step-size� and an
extra compensation step-size� are derived, which are slightly larger
than that of the DLMS algorithm. It is shown, when � is small enough
and � is properly chosen, the RCLMS algorithm has comparable
performance to that of the DLMS algorithm. Simple working rules and
ranges for � and � to make such comparability are provided. For the
algorithm to converge, a tight bound for � is also derived. The derived
properties and conditions are verified by simulations.

Index Terms—Adaptive signal processing, convergence, LMS algo-
rithm.

I. INTRODUCTION

The direct-form least-mean-square (DLMS) algorithm is the most
popular temporal-domain adaptive filtering algorithm due to its sim-
plicity and robustness. Regarding the temporal-domain approaches,
there exist many least-mean-square (LMS) variants in reducing the
coefficient update complexities such as the well-known sign-error,
sign-input, and zero-forcing algorithms.

However, few improvements were done in reducing its filtering
complexities. Recently, a so-called fast exact LMS (FELMS) algo-
rithm [4] was proposed to retain the same convergence properties as
those of DLMS, while reducing the multiplication complexities of
both filtering and updating complexities by as much as 25%, with a
small increase in the number of additions.

More recently, Chenet al. proposed a new reduction-by-
composition LMS (RCLMS) adaptive filtering algorithm [1]. The
algorithm was simulated to have comparable performance to that of
the DLMS algorithm, while costing 50% fewer multiplications at
the expense of 50% more additions than the DLMS algorithm. The
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algorithm can be combined with the FELMS algorithm in reducing
its coefficient update complexity. However, so far, the algorithm’s
properties have not been fully addressed.

Here, the properties of the convergence, both in the mean and in
the mean square, are investigated in detail, verified by simulations. It
is shown, when the common step-size� is very small and an extra
compensation step-size� is properly chosen, the RCLMS algorithm
has comparable performance to that of the DLMS algorithm. Due
to the extra step constant�; the excess mean-square error (MSE) is
shown to be slightly higher than that of the DLMS algorithm for zero-
mean input signal. The excess MSE is proportional to�. Also, it is
shown that the allowable bound for the step-size� is a function of the
step-size�. Specifically, the larger the step-size� is, the narrower
the bound is for the step-size�.

The paper is organized as follows. In Section II, the RCLMS
algorithm will be reviewed, followed by its stability analysis in the
third section. Section III covers the issues of weight convergence
in mean and mean-square senses, convergence bound for�; and
excess MSE. This section also suggests simple working rules for
RCLMS algorithm, leading to a comparable performance to the
DLMS algorithm. The derived properties, bounds as well as working
rules, are verified with the simulations in the Section IV. The final
section draws a conclusion.

II. THE RCLMS ALGORITHM

For real-number systems, given an adaptive filter with input
sequencex(n) and coefficientswk(n)’s, the RCLMS algorithm is
described below. For the filtering part

y(n) =

N�1

k=0

wk(n)x(n� k)

=

N=2�1

k=0

f[x(n� 2k) + w2k+1(n)]

� [x(n� 2k � 1) + w2k(n)]g � C(n)� P (n) (1)

where

C(n) =

N=2�1

k=0

w2k(n)w2k+1(n) (2)

P (n) =

N=2�1

k=0

x(n� 2k)x(n� 2k � 1)

=P (n� 2) + x(n)x(n� 1)� x(n�N)x(n�N � 1):

(3)

N is an even number, andx(n) = 0; P (n) = 0 for n < 0. Note
thatP (n) only costs one multiplication and two additions. The time-
varying complicatedC(n) can be replaced by a simpler scalarhN(n)

as follows, which costs only one extra multiplication, as depicted in
(6). Therefore, for the filtering part

y
0(n) =

N=2�1

k=0

f[x(n� 2k) + w2k+1(n)]

� [x(n� 2k � 1) + w2k(n)]g � hN(n)� P (n)

= y(n)� [hN(n)� C(n)]: (4)

For the weight update part

wk(n+ 1) =wk(n) + �e
0(n)x(n� k);

k = 0; 1; � � � ; N � 1 (5)
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hN (n+ 1) =hN(n)� �e0(n) (6)

where the error signale0(n) is

e0(n) = d(n)� y0(n)

= d(n)� y(n) + [hN(n)� C(n)]

= e(n) + [hN(n)� C(n)] (7)

and d(n) is the desired signal.

III. STABILITY ANALYSIS OF THE ALGORITHM

To discuss the stability of an adaptive algorithm, there are two
key considerations here [2]: 1)Convergence in the mean, which
means that the expectations of the weight vectorw(n) andhN(n)
approach the optimal (Wiener) solutionsw� andh�N , respectively, as
the numbern of iterations approaches infinity and 2)Convergence
in the mean square, which means that the final (steady-state) MSE
is finite.

For convenience, some definitions and notations are defined as
follows:

w(n) = [w0(n); w1(n); � � � ; wN�2(n); wN�1(n)]
T
1�N

w
� = [w�

0 ; w
�

1 ; � � � ; w
�

N�1]
T
1�N

�w(n) =w(n)�w�

x(n) = [x(n); x(n� 1); � � � ; x(n�N + 2)x(n�N + 1)]T1�N

(8)

wherew(n) = the tap weight vector,x(n) = the tap input vector.
Here, bothx(n) andd(n) are assumed zero-mean and wide-sense

stationary. It is also emphasized that the following independence
assumption similar to those of [2] and [3] is made.

1) The input vectorsx(1); x(2); � � � ; x(n) constitute a sequence
of statistically independent vectors.

2) x(n) is statistically independent of all previous samples of the
desired response, namelyd(1); d(2); � � � ; d(n� 1).

3) d(n) is dependent on the correspondingx(n), but statistically
independent of all previous samples of the desired response.

4) x(n) andd(n) consist of mutually Gaussian-distributed random
variables for alln.

Based on the assumption, the conditions hold:E[x(n)d(k)] = 0,
E[x(n)xT (k)] = 0; k = 0; 1; � � � ; n � 1. Similarly, hN(n +
1); w(n + 1) can be easily shown to be independent of both
x(n+1) andd(n+1), butx(n); x(n� 1); � � � ;x(1); d(n); d(n�
1); � � � ; d(1); w(0) and hN(0).

1) The Convergence ofE[w(n)]: By subtractingw� from both
sides of (5), followed by taking its expectation, we have

E[�w(n+ 1)] =E[(I� �x(n)xT (n))�w(n)

+ �x(n)eopt(n) + �x(n)(hN(n)� C(n))]

= (I� �R)E[�w(n)] (9)

where eopt(n) = d(n) � x
T (n)w�; and R = E[x(n)xT (n)].

Here, the simplification is achieved by applying the independence
assumption and orthogonality principle, i.e.,E[x(n)eopt(n)] = 0.
Sincew(n) [and hence�w(n)] andhN(n) [and accordinglyhN(n)�
C(n)] are independent ofx(n) andd(n); E[x(n)(hN(n)�C(n))] =
E[x(n)]E[hN(n)�C(n)] = 0. Equation (9) is the same as that for
DLMS algorithm, so is the required constraint for step size�; i.e.,
0 < � < 2=�max; where�max is the largest eigenvalue ofR.

2) The Convergence ofE[hN(n)]: First, we can easily show that
the optimal MSEh�N(n) of hN(n) is h�N (n) = E[C(n)] = Copt �

N=2�1
k=0 w�

2kw
�

2k+1, by setting the derivative ofJ 0(n) � E[e02(n)]
with respect tohN(n) to zero. To discuss the convergence of

E[hN(n)]; we take the expectation of (6) as follows:

E[hN(n+ 1)] =E[hN(n)]� �E[e0(n)]

=E[hN(n)]� �E[hN(n)� C(n)]: (10)

As n approaches infinity

E[hN(1)] = E[hN(1)]� �E[hN (1)� C(1)]: (11)

Consequently,E[hN(1)] = E[C(1)] � h�N .
In a more rigorous way, it can be also shown thatE[hN(1)] =

E[C(1)]. By subtractingC(n+1) from both sides of (6), and assum-
ing thatC(n+ 1) � C(n) for a very small� and correspondingly
a slowly varyingC(n), one has

hN(n+ 1)� C(n+ 1)

� hN(n)� C(n)� �[d(n)�wT (n)x(n) + hN(n)� C(n)]:

(12)

By defining �hc(n) � hN(n) � C(n), the expectation of (12) can
be reduced to

E[�hc(n+ 1)] =E[�hc(n)] � �E[d(n)�wT (n)x(n) + �hc(n)]

= (1� �)E[�hc(n)] = (1� �)n+1E[�hc(0)]:

(13)

Therefore, under the conditionj1 � �j < 1; E[�hc(n)] = 0; and
E[hN(n)] � E[C(n)] as n ! 1.

3) The Convergence in the Mean Square:The MSEJ 0(n) can be
shown to be

J 0(n) =E[(e0(n))2]

=E[e2(n)] + E[�2hc(n)] + 2E[(d(n)�wT (n)x(n))�hc(n)]

= J(n) +E[�2hc(n)] (14)

whereE[e2(n)] is equal toJ(n) of the DLMS algorithm. Equation
(14) is simplified by applying (7), the independence assumption, and
the conditionsE[x(n)] = 0 andE[d(n)] = 0.

To solveJ 0(n), let us considerJ(n) first. J(n) has been shown
in [2] to be J(n) = Jmin + Jex(n), whereJmin � E[e2opt(n)],
Jex(n) � E[�T

w
(n)x(n)xT (n)�w(n)] = tr[RK(n)], K(n) �

E[�w(n)�
T
w
(n)] [2]. In computingK(n + 1), various cross terms

arise as a result of the multiplication. Many of them can be discarded,
which includes

E[x(n)eopt(n)�
T
w
(n)(I� �x(n)xT (n))]

= E[(I� �x(n)xT (n))�w(n)(x
T (n)eopt(n))] = 0 (15)

E[x(n)eopt(n)(�x(n)�hc(n))
T ]

= E[�eopt(n)x(n)x
T (n)]E[�hc(n)] = 0 (16a)

E[�x(n)�hc(n)(x(n)eopt(n))
T ] = 0 (16b)

E[�x(n)�hc(n)((I� �x(n)xT (n))�w(n))
T ]

= E[(I� �x(n)xT (n))�w(n)(�x(n)�hc(n))
T ] � 0:

(17)

The reasons leading to (15) can be found in [2]. Equations (16a)
and (16b) are due to the independence assumption andE[�hc(n)] =
EfhN(n) � Copt � [C(n) � Copt]g = 0, while (17) is assumed
negligible when� and� are small enough, i.e.,0 < � � 1=(2N)
and 0 < � � 1=(2N�2x). Appendix A details the derivation steps
leading to the constraints. As a result (with the help of the Gaussian
moment factoring theorem [2])

K(n+ 1) = (I� �R)K(n)(I� �R) + �2R tr[RK(n)]

+�2RK(n)R+ �2RJmin + �2RE[�2hc(n)]: (18)
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Furthermore, letU(n) be defined asU(n) � QTTTK(n)Q; then
K(n) = QU(n)QTTT ; whereQ is the eigenvector matrix ofR;
QTTTRQ = � and� is a diagonal matrix consisting of the eigenvalues
�i of R. Consequently, one may rewrite (18) as

U(n+ 1) = (I� ��)U(n)(I� ��) + �2� tr[�U(n)]

+�2�U(n)�+ �2Jmin�+ �2�E[�2hc(n)]: (19)

First, let us consider the convergence of the off-diagonal element
uij(n) of U(n) where i 6= j. From (19)

uij(n+ 1) = [(1� ��i)(1� ��j) + �2�i�j ]uij(n)

= [(1� ��i)(1� ��j) + �2�i�j ]
n+1uij(0): (20)

Equation (20) will approach to zero asn!1 under the condition
(1� ��i)(1� ��j) + �2�i�j < 1, i.e., 0 < � < (1=�i + 1=�j)=2.
The worst case is0 < � < (1=�max + 1=�max 2)=2, where�max 2

is the second largest eigenvalue ofR. In practice, since2=tr[R] <
2=(�max + �max 2) � (1=�max + 1=�max 2)=2, 0 < � < 2=tr[R]
is a more feasible bound.

Next, let us discuss the convergence ofE[�2hc(n)] and the diagonal
elementsui(n) of U(n), i = 0; 1; � � � ; N � 1. It was shown in [2]
that Jex(n) = N�1

i=0 �iui(n). From (12) and the independence
assumption, we have

E[�2hc(n+ 1)]

= E[((1� �)�hc(n)� �(d(n)�w(n)Tx(n)))2]

= (1� �)2E[�2hc(n)] + �2 Jmin +

N�1

i=0

�iui(n) : (21)

One may combine (19) and (21) asv(n + 1) = Av(n) + bJmin;
where

v(n) = [u0(n); u1(n); � � � ; uN�1(n); E[�2hc(n)]]
T
1x(N+1)

b =�2[�0; �1; � � � ; �N�1; �
2=�2]T1x(N+1)

andA is an (N + 1)� (N + 1) matrix with elements

aij =

(1� ��i)
2 + 2�2�2i ; i = j = 0; � � � ; N � 1

�2�i�j ; i 6= j; i = 0; � � � ; N � 1
j = 0; � � � ; N � 1

�2�i; j = N; i = 0; � � � ; N � 1
�2�j i = N; j = 0; � � � ; N � 1
(1� �)2; i = j = N .

Therefore,v(n + 1) = An+1v(0) + bJmin
n

k=0 A
k.

It guarantees the convergence ofv(n+1) when all the magnitudes
of the eigenvalues ofA are smaller than 1. Letc and g =
[g0; � � � ; gN ] be an eigenvalue and eigenvector pair ofA; then
Ag = cg or equivalently N

j=0 aijgi = cgi. Consequently

[(1� ��i)
2 + �2�2i ]gi + �2�i

N�1

j=0

�jgj + �2�igN

= cgi; i = 0; � � � ; N � 1 (22)

�2
N�1

j=0

�jgj + (1� �)2gN = cgN : (23)

Hence,gi can be solved as

gi =

N�1

j=0

�jgj �2�i(c� 1 + 2�)

(c� (1� �)2)(c� (1� ��i)
2
� �2�2i ) ;

i = 0; � � � ; N � 1: (24)

Moreover,gi can be eliminated by multiplying both sides of (24)
with �i and then summing over alli from zero toN � 1. As a result

�2(c� 1 + 2�)

c� (1� �)2

N�1

i=0

�2i
c� (1� ��i)2 � �2�2i

= 1: (25)

Under the critical condition thatc = 1; one can get the inequality
(26), which is the required convergence condition in mean square

1

2� �

N�1

i=0

��i
1� ��i

< 1: (26)

A special case is when� = 0; which reduces to DLMS algorithm
with the well-known condition N�1

i=0 ��i=(1 � ��i) < 2. From
(26), one has the constraint (27) for�

0 < � < 2�

N�1

i=0

��i
1� ��i

: (27)

In summary, the convergence condition for� is 0 < � < (1=�max+
1=�max 2)=2 [5] for both RCLMS and DLMS algorithms, while�
of RCLMS algorithm should satisfy (27).

4) The Steady-State MSE:The steady-state component
E[�2hc(1)] can be shown to beE[�2hc(1)] = �J(1)=(2 � �)by
letting n ! 1 in (21). One then can solveui(1) by plugging this
specificE[�2hc(1)] into (19) as

ui(1) = �J(1)=[(1� ��i)(2� �)]: (28)

Equation (28) can be further extended to

N�1

i=0

�iui(1) =

N�1

i=0

��iJ(1)=[(2� �)(1� ��i)]

=Jex(1)

=J(1)� Jmin: (29)

Hence

J(1) = Jmin 1�

N�1

i=0

��i [(2� �)(1� ��i)] : (30)

Finally

J 0(1) =J(1) + E[�2hc(1)]

= 2J(1)=(2� �)

= 2Jmin (2� �)�

N�1

i=0

��i (1� ��i) : (31)

Note that when� is sufficiently small, MSE of the RCLMS algorithm
is equal toJ(1) of the DLMS algorithm [2]. On the other hand,
for sufficiently small�; one has N�1

i=0 ��i=(1 � ��i) � 0, and
J 0(1) � 2Jmin=(2 � �).

5) The Misadjustment:The misadjustment is defined as follows:

M � J 0ex(1)=Jmin

= �+

N�1

i=0

��i
1� ��i

2� ��

N�1

i=0

��i
1� ��i

(32)

where the excess MSEJ 0ex(n) is defined asJ 0ex(n) � J 0(n)�Jmin.
One may rewrite (32) as

� =
2M

1 +M
�

N�1

i=0

��i
1� ��i

: (33)
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Note that2M=(1 +M) < 2. In practice,M is first prescribed, then
� can be confined to a more conservative upper bound than (27), as
shown below

0 < � <
2M

1 +M
�

N�1

i=0

��i
1� ��i

: (34)

When� is sufficiently small, (32) reduces to a form similar to that of
the DLMS algorithm [2]. On the other hand, when� is sufficiently
small, M � �=(2 � �).

6) Simple Working Rules:Based on the derived properties, one
can conclude the following simple working rules that result in a
comparable performance of RCLMS algorithm to that of the DLMS
algorithm (in terms of speed and MSE).

1) Pick � subject to the following constraint:

0 < � < min
2

tr[R]
;

2M

tr[R](1 +M)
;

1

10tr[R]

= min
2M

tr[R](1 +M)
;

1

10tr[R]
: (35)

This constraint is for the stability requirement of RCLMS algorithm.
The term2=tr[R] follows directly from the well-known bound [2],
[3] for DLMS algorithm. The term2M=[tr[R](1+M)] follows from
the requirement that1� ��i � 1; and for example��i < 0:1. The
condition, in turn, implies the third constraint of� < 1=(10tr[R]) <
1=(10�max) � 1=(10�i).

2) Pick � subject to the following constraint:

� � tr[R]

N
< � < min

2M

(1 +M)
�� � tr[R]; 2�

� � tr[R]

N
(36)

where the lower bound�tr[R]=N and one of the upper bounds
2��tr[R]=N follow from the obvious reason that RCLMS algorithm
should be tuned to converge as fast as the DLMS algorithm. More
precisely, the constraintj1 � �j < j1 � ��minj < 1 should be
satisfied. Since��min < 1 according to (35), the speed constraint
reduces to��min � 1 < 1 � � < 1 � ��min < 1, which leads to
0 < ��min < � < 2� ��min < 2. Or, more conservatively

0 < ��min <
� � tr[R]

N
< � < 2�

� � tr[R]

N
< 2� ��min < 2:

(37)
The other upper bound2M=(1+M)�� tr[R] of (36) is resulted

from (34) under the condition of a desired M smaller than the
prescribed one and a small�. Specifically, when (35) holds, (34)
can be reduced to more conservative bounds gradually, as follows:

� <
2M

(1 +M)
� � � tr[R]

=
2M

(1 +M)
� �

N�1

i=0

�i

<
2M

1 +M
�

N�1

i=0

��i
1� ��i

: (38)

IV. SIMULATIONS

This section verifies the derived properties and simple working
rules by simulations. Here equalizer design is tried. The assumed
impulse response of the channel isccc = [�1=2:1; 1; 1=2:1] with a
white Gaussian, zero-mean input signal of variance= 1. The tap
number of the adaptive equalizer is prescribed to 4.

Fig. 1 shows the steady-state MSE’s (average of 500 runs) as a
function of � considering small� = 0:0001 and large� = 0:03.
As shown, the simulation curves are very close to the derived
theoretical MSE curves of (31), especially for the cases of small�.

Fig. 1. The steady-state MSE’sJ 0(1) versus�, with small � = 0:0001
and large� = 0:03.

TABLE I
KEY VALUES OF THE DLMS AND RCLMS ALGORITHMS CORRESPONDING

TO M = 0:09: MSE’S, THE THEORETICAL BOUNDS AND

PICKED VALUES FOR � AND �

In the large� case, although there is a more noticeable deviation
between the theoretical and simulation results (as expected) than
the small�; the theoretical curve still follows the simulation curve
closely. The simulated convergence bound for� exceeds 1.99 (with
� = 0:0001), which is extremely close to the theoretical upper bound
1.999 predicted by (27). On the other hand, the simulations diverged
when� � 1:8 (with � = 0:03), which is still very close to theoretical
value of� = 1:8174 from (27). In practice, it is suggested that (36)
instead of (27) be used for the upper bound of�.

Next is the verification of the simple working rules suggested in the
previous section. With the same equalizer design problem as before
and a prescribedM = 0:09; Table I lists the values of theoretical
upper bound and lower bound for� and � that could make up a
RCLMS algorithm comparable (in speed and MSE) to that of the
DLMS algorithm. In the following simulations, assuming an in-bound
� = 0:01; various values of� in and out of the bound are simulated
and compared.

Fig. 2 shows the MSE’s (average of 500 runs) of DLMS algorithm
and the RCLMS algorithm with� = 0:01 for various� values. As
expected, the convergence rate of RCLMS algorithm for� = 0:001

is slower than that of the DLMS algorithm, because� is smaller than
the lower bound of (36) in Table I. However, also as expected, its
steady-state MSE is close to that of the DLMS algorithm. On the
other hand, the curves of� = 0:1 and the DLMS algorithm have
the same convergence speed and comparable MSE’s of�15.73 and
�15.89 dB, respectively, as shown in Fig. 2 and Table I. This is
because both� and � are in the working ranges listed in Table I.
In cases of larger� = 1 and 1:5, they are outside the working
range. They are also outside the upper bound of� derived in
Appendix A for (17) to be negligible. As predicted, these� values
result in larger MSE’s than those of the DLMS algorithm. One can
notice these somewhat peculiar learning curves. They first drop to
their minimum values like the DLMS algorithm and then continue
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Fig. 2. The MSE’s of DLMS and RCLMS algorithm for various� with
� = 0:01.

Fig. 3. The MSE curves of the RCLMS algorithm under different eigenvalue
spreads.

to raise to higher steady-state MSE’s. For these two�’s, many
neglected terms [especially (17)] in the derivation steps are no longer
negligible.

The accuracy of the derived properties were confirmed by the
mentioned simulations with some small disparities (particularly for
large �) as shown in Figs. 1 and 2. One of the reasons for those
deviations could be explained by the so calledshifting properties[2]
as follows. Note that all the previously derived theories are based on
the independence assumption. However, theshifting propertyof input
data could introduce statistically dependent results [2]. It might result
in E[x(n)(hN (n) � C(n))] 6= 0; even whenx(n) is a zero-mean
signal. That meansE[x(n)(hN(n)�C(n))] would converge to a dc
vector in the long run. Accordingly, each converged weight is equal
to the sum of its Wiener solution and a dc bias. The magnitude of dc
bias is found to directly proportion to� from the simulation results.
The dc bias could be an another reason why there are peculiar MSE
curves as in Fig. 2, especially when� is large and outside the working
range and/or near the upper bound of stability. All the derivations are
under the conditions that� and/or� are small. Therefore, in cases of
large� and/or�; one may expect noticeable (but minor) deviation
between theory and the simulation results as shown in Fig. 1.

The last example demonstrates the effects due to eigenvalue
spreads. Here, an equalizer is designed to compensate a raised-cosine
channelh(n); where h(n) = (1 + cos(2�(n � 2)=W ))=2; n =

1; 2; 3. The input signal is white Gaussian, zero-mean with variance
= 1. The parameterW controls the eigenvalue spread. In the example,

the tap number is set to 12, and� = 0:025; � = 0:1. Fig. 3 shows
the MSE curves of RCLMS algorithm under various eigenvalue
spreads. As expected, a larger eigenvalue spread results in a slower
convergence and larger MSE, and vice versa. Since the curves of
DLMS virtually overlap with those of RCLMS algorithm, we do
not include them for comparison. Regarding practical application
examples of RCLMS algorithm, it has been successfully applied to
HDSL equalizer [6] and cable modem [7] designs.

V. CONCLUSION

The properties of RCLMS algorithm have been characterized in the
paper. The simulation results match the derived properties closely.
Simple working rules and proper bounds for� and� are also given
to facilitate the new algorithm’s practical usage. In the theoretical
analysis, small� is assumed. The future work is to analyze its
properties under large� and �. In addition, practical applications
of RCLMS algorithm deserve further investigation.

APPENDIX A
DERIVATION OF THE CONDITIONS 0 < � � 1=(2N) AND

0 < � � 1=(2N�2x) FOR (17) TO BE NEGLIGIBLE

From independence assumption, (17) can be further reduced to

E[(I� �x(n)xT (n))�w(n)(�x(n)�hc(n))
T ]

= E[(�w(n)(�x(n)�hc(n))
T ]

�E[�x(n)xT (n)�w(n)(�x(n)�hc(n))
T ]

= �E[(�w(n)�hc(n)]E[(xT (n)]

� �2E[�hc(n)x(n)x
T (n)�w(n)x

T (n)]

= ��2E[�hc(n)x(n)x
T (n)�w(n)x

T (n)]:

On convergence one can reasonably assume that the weight differ-
ences from their optimal values are roughly equal to the weight
correction terms, i.e.,

�w(n) = w(n)�w� � w(n)�w(n� 1) = �e0(n� 1)x(n� 1)

and similarly�hc(n) � ��e0(n � 1). Hence

� �2E[�hc(n)x(n)x
T (n)�w(n)x

T (n)]

� �3�Ef[e0(n� 1)]2x(n)xT (n)x(n� 1)xT (n)]g:

It is easily seen that

�3�Ef[e0(n� 1)]2gx(n)xT (n)x(n� 1)xT (n)]

� �3�Efx(n)xT (n)gEf[e0(n� 1)]2gEfxT (n)x(n)g

= �3�RJ 0(n)

N�1

i=0

�i:

Note that this is a very pessimistic bound, because we have replaced
xT (n)x(n � 1) by xT (n)x(n) in this inequality. For zero-mean
input sequence, especially a white input signalxT (n)x(n � 1) �
0. Next, let us transformR and K(n) to � = QTRQ and
U(n) = QTK(n)Q; respectively. As such,�3�RJ 0(n) N�1

i=0
�i

is transformed to�3��J 0(n) N�1

i=0
�i; which has a maximum
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element of�3��maxJ
0(n) N�1

i=0
�i. To decide the constraints for

� and� for (17) to be negligible, we can then compare the maximum
element with the maximum elements of all the other matrices in (19)
including (I � ��)U(n)(I � ��), �2�tr[�U(1)]; �2�U(1)�,
�2Jmin�; and�2�E[�2hc(1)]. Obviously,(I� ��)U(n)(I� ��)
is the most significant term; therefore, we only need to compare
the remaining terms. Note that we have proved that all the off-
diagonal elements ofU(n) converge to zero [assuming a negligible
(17)]. Therefore, we can ignore all the off-diagonal elements in
the following transformed matrices. Now, let us take a look at the
maximum diagonal elements of all the other terms in (19) assuming
that (17) is negligible and then derive the required conditions for�
and �:

1) �2� tr[�U(1)] has a maximum element of

�2 maxf� tr[�U(1)]g

= �2 maxf� tr[RK(1)]g = �2 maxf�Jex(1)g

= �2[J(1)� Jmin]�max:

2) �2�U(1)� has a maximum element of

�2 maxf�U(1�)g = �2 maxf�2iui(1)g

= �3�2maxJ(1)=[(1� ��max)(2� �)]

3) �2Jmin� has a maximum element of�2Jmin maxf�ig =
�2Jmin�max:

4) �2�E[�2hc(1)] has a maximum element of
�2�maxE[�2hc(1)] = �2�max�J(1)=(2� �).

For�� 1=�max and�� 2; (30) reduces toJ(1) � Jmin=(1�
�=2 N�1

i=0
�i). As such, the maximum terms of 1–4 above reduce

to �3Jmin�max

N�1

i=0
�i=(2 � � N�1

i=0
�i); �

3Jmin�
2

max=(2 �

� N�1

i=0
�i); �

2Jmin�max; and�2�Jmin�max=(2 � � N�1

i=0
�i);

respectively. And utilizing (31),�3��maxJ
0(1) N�1

i=0
�i can be

reduced to2�3�Jmin�max

N�1

i=0
�i=(2��

N�1

i=0
�i). Moreover,

assume that� � 1= N�1

i=0
�i = 1=tr[R] = 1=(N�2x) (as often

adopted in practice), then these maximum terms are further re-
duced to�3Jmin�max

N�1

i=0
�i=2; �

3Jmin�
2

max=2; �
2Jmin�max;

�2�Jmin�max=2; and�3�Jmin�max

N�1

i=0
�i. It is easier to check

relative magnitude by dividing�3�Jmin�max

N�1

i=0
�i by all the

other terms to obtain2�; 2� N�1

i=0
�i=�max; ��

N�1

i=0
�i; and

2� N�1

i=0
�i. Furthermore, if� � 1=2; then 2� � 1 and if

� � 1=(2N); then 2� N�1

i=0
�i=�max � 1. In summary, if

the conditions0 < � � minf1=2; 1=(2N)g = 1=(2N); and
0 < � � 1= N�1

i=0
2�i = 1=2 tr[R] = 1=(2N�2x) are met, then

�� N�1

i=0
�i � 1; 2� N�1

i=0
�i � 1; and (17) is negligible.

Note that they are very conservative bounds. In our derivation, we
have assumed the worst cases that rarely happen. Intuitively, on
convergence, the randomness of zero-mean�hc(n) and�w(n) is very
likely to make a much smaller (17) than the other terms in (18),
which is confirmed by simulations.
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Comments on “Chaotic Digital Encoding: An
Approach to Secure Communication”

W. G. Chambers

Abstract—A proposal for using a chaotic system with finite wordlength
as a means for encrypting data is criticized on the grounds that some
of the proposed schemes are readily attacked in the “chosen plaintext”
scenario. Moreover, the proposed schemes do not appear to have any
advantages over more conventional cryptographic methods as far as
security is concerned.

Index Terms—Chaos, cryptography, sequences.

I. INTRODUCTION

A method of using chaotic systems for secure communications
has been proposed recently.1 The purpose of this note is to point
out that the method is simply a proposal for a cryptographic scheme
whose advantages over other cryptographic schemes are debatable.
Genuinely chaotic systems operate over infinitely large fields, usually
the field of real numbers. Finite digital representations turn such
systems into finite-state machines, whose autonomous behavior is
bound to be ultimately periodic. The question is then whether, in
designing a system for providing data security, one should start with
a finite representation of a chaotic system, or whether one should
choose conventional cryptology. (A good reference for cryptographic
techniques is [1].)

The proposal1 specifies a list of properties of a finite-state machine
which are to be regarded as designating a quasichaotic system. A
typical property is the following: “The zero input response has a broad
noiselike spectrum for almost all choices of initial conditions. Under
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