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Line Features by Hypothesis Testing
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Abstract—To develop a reliable computer vision system, the employed algorithm
must guarantee good output quality. In this study, to ensure the quality of the pose
estimated from line features, two simple test functions based on statistical
hypothesis testing are defined. First, an error function based on the relation
between the line features and some quality thresholds is defined. By using the first
test function defined by a fower beund of the error function, poer input can be
detected before estimating the pose. After pose estimation, the second test
function can be used to decide if the estimated result is sufficiently accurate.
Experimental results show that the first test function can detect input with low
qualities or erroneous line correspontdences and that the overall proposed method
yields reliable estimated results.

Index Terms—3D-t0-2D, line features, object poses, hypothesis testing, reject
option, reliable estimated poses.
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1 INTRODUCTION

ESTIMATING the pose of an object, called the pose estimation
problem or the 2D-to-3D problem [1], [2], is an important problem
in computer vision, Related applications are broad, such as camera
calibration and rebot self-positioning. To act as an early process of
a computer vision system, the quality of the estimated poses must
be ensured for subsequent processes.

Generally, the pose of an object can be estimated from the
relation between its 3D structure and perspective projection. Points
and lines are the most popular features for their simplicity. Since
two points form a line, the method using line features may be
applied to the pose estimation problem with point features [3].
Thus, only line features are considered in this study. Methods to
estitate the cbject pose using line features can be found in [4], [5],
[3], [6], 17], [8]. No matter which method is used, it needs to know
the quality of the estimated poses,

Usually, a 1D test function is designed to test the quality of the
estimated result. Compared with other evaluation methods, such
as the bootstrap method [9] and the error propagation methed [10],
this approach is simpler. Furthermore, if a lower bound of the test
function is known, the quality of the estimated pose can be
foreseen, However, this approach maps the original parameter
space to a 1D test function and this mapping may lose valuable
information and lead to a wreng decision.

In this study, two test functions are proposed to test the
qualities of input data and estimated poses with respect to some
specified quality thresholds. They are based on an error function
defined by the relation between the line features of an cbject and
the quality thresholds. The first one is defined by a lower bound of
the error function; therefore, it can detect poor input. After
estimating the pose, the second one can be used to qualify the
estimated pose as acceptable or unacceptable. To avoid making
crisp decision, it has a reject option [11] to label as “unreliable”
those estimated poses which are hard to qualify.
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The paper is organized as follows: In Section Z, an error
function is defined and analyzed. In Section 3, a lower bound of
the error function is derived and the proposed test functions are
defined. In Section 4, the proposed method is tested by synthesized
and real images; in addition, an example of applying the test
function to the pose estimation problem with point features is
included. Concluding remarks are in the last section.

2 DeFINITION OF ERROR FUNCTION

21 Geometric Relation and Definition of Error Function
Let L;,4=1,2,---, N, be 3D model lines of an object in an object
coordinate system (OCS). The line I; going through a point p, with
direction d; can be represented by Ad; + p;, where A is a scalar. The
transformation from the OCS to a camera coordinate system (CCS)
can be described by p,. = Rp, + t, where the rotation matrix R and
the translation vector t specify the orientation and position of the
object relative to a camera with six parareters to be estimated, and
P, and p, are the coordinates of a 312 point in the OCS and CCS,
respectively, Hence, L; in the CCS, is ARd; + Rp; +t. The
perspective projection of I; is an image line I; described by
zecosl; + y,sint; +¢; =0 and 2. = f in the CCS where f is the
focal length of the camera. As shown in Fig. 1, Ly, L, and the
origin of the CCS are on a common plane m with a unit
normal vector n; = {1+ (%)2)7[005 ; sind; 3" in the CCS.
Since n; is orthogonal to the direction of the line lying on m
and since Rp; +t is a point on m, we have two constraint
equations n‘Rd; =0 and nf(Rp; 4-t) = 0, called the orientation
and position constraint equations, respectively. To measure the
congistency of these constraints, we define an etror function
F(R,t) in the sum of squares error sense as follows:

E(R,t) = i(ntgid):i (7“5(R§f * t)) i

=l i=1 i

where o; and of, i1=1,2,---,N, are some scalars used for

weighting the constraint equations,

2.2 Relation among Error Function and Qualities of Input
Data and Estimated Result
In general, if the errors of the estimated pose and the observed unit
normal vectors are not greater than some prespecified thresholds,
the qualities of them can be considered good. This consideration
permits the error function to have some uncertainty around zero.
In this study, three quality thresholds &, ég, and §a, are defined to
specify the allowed absolute error between the estimated and the
actual translation vectors, the allowed relative error for the
estimated rotation matrix, and that for the observed unit rormal

yc ‘(“0‘,.5:0)

Object coordinate system

.

afiera coordinate
system

Flg. 1. Geometric relation between the camera and the object.
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Fig. 2. (a) A synthesized image; (b} and {¢) are cumulative distributions for n{R*d, and n} (R*p, + t*), respectively, where the dolted curves in (b} and (c) are normal

distributions with zere means and standard deviations 0.005 and +/0.05, respectively.

vectors, respectively. Let rotation matrix R¥ and translation vector
t#, satisfying the requirement of the quality thresholds, denote an
accurate estimated pose, If the distribution of E(R# t*) is known,
the quality of a pose can be tested by checking if the value of the
error function of the pose is in the allowed range. Hence, the
distribution of E(R# t#) must be analyzed first.

In this study, the distributions of nf(R¥p; +t#) and n‘R*d;
were found approximately normally distributed by computer
simulations with the synthesized objects shown in Fig. 2a. Fig. 2b
and Fig. 2c show the distributions of 1,000 samples. Each sample
was produced from the lines fitting the edge pixels perturbed with
Gaussian noise, and R* and t#were obtained by a maximum
likelihood estimator [8] with the ground true as an initial guess.

For each i = 1,.--, N, suppose that n‘R*d; and ni{(R¥p, + t#)
are normally distributed and o; and o) denote their standard
deviations, respectively. Since there are 2N measurements and six
parameters to be estimated, 5+ F(R*, t#) denoted by E(R#t#),
can be regarded as a chi-square {(x*) with one degree uof freedom
(denoted by x*(1)) [12]. Purthermore, the clti-square goodness-of-fit
test [13], [12] can be used to check if the residues in the orientation
and position constraint equations are consistent with the
uncertainty specified by o; and o, 1 = 1,-+, N. So, a link between
the test and the quality thresholds can be built by figuring out the
relation among the thresholds, and o; and 01, i=1,---,N.

2.3 Determinationof 5, and 5, i =1, 2, -, N

In this study, the method employed to estimate object poses is
assumed unknown. However, in general, the employed method
tries to obtain a pose concentrating around the actual pose. In this
study, normal distributions are used to describe the degree of
concentration. So, the proposed test can be regarded as checking
the degree of consistency between the qualities of the input and the
estimated pose and those obtained by a “standard” method whose
input and estimated pose are distributed in a desired manner.
With some descriptions for the distributions, the upper bounds of

o? and ¢} in terms of &g, &, and San can be obtained to be
Jé2 5
%i 26 AT 13°
‘ 2
9 . 96 i3 +5in(||P-iH2+IH&XHt*Hz) &
T 2% 13 13’

where |||}, denotes the i; norm and max|[t*]|, denotes the longest
distance between the origins of the CCS and the OCS (for details,
see Appendix A},

3 TesTiNG INPUT QUALITY AND ACCURACY OF
ESTIMATED OBJECT POSE

3.1 Lower Bound of Error Function
Writing FE(R,t) in a matrix form, we have
E(R,t) = | Ar|i+||Br + Ct||2, where

A (e dagime S

B= ® Q&,?nwu M]t

O[3 B By

N1

r = [Ri1 Ria Ria Ry RzszaRalezR;sa]t,

in which d @n = [n;d* nad’ nad! ] is the left direct product of
two 3 x 1 vectors d and n, and r is called the 9D vector associated
with R. and, thus, |r{,= /3. By some manipulation, we have
E(R,t) > r'Fr where F is positive semidefinite and equal to
A'A +B(I- CCHB with C" = (C'C)'C' and I the N x N
identity matrix. Let (R, F) = r'Fr, a1, as, - -, o be the nine unit
eigenvectors of F and 0 < A; £+ = Ay be the corresponding
eigenvalues. Thus, =(R, F) can be expressed as

9

Z/\t rt oz2
i=1

From the Rayleigh-Ritz theorem [14], we have Z(R,F) > 3, but
this bound is not tight enough.

Let M; be the matrix associated with e; and K; be the rotation
matrix closest to M;, in the [ matrix norm, We can have
K; = Udiag(1, 1, det(U;V,;)) V! and U,8;V? is the singular value
decomposition (5VD) [15] of M,, where diag{di,dy,- - dy)
represents an n x n diagonal matrix and 8; = diag(s1;, s2;, $3;)
with s1; > s2; = 53, > 0. As shown in Appendix B, a lower bound
LB, of E(R, F) not smaller than 3X; can be obtained as follows:

E(R, ¥) ()

LB, = tr(S1)*\ + min{S — tr(S1)?, w(s‘,g)?};\2

+ max{3 — tT(E"»i)2 - t’r(Sg)Q, 0}/\3.

Furthermore, in Appendix C, by using the perturbation theory of
eigenvalues and eigenvectors [11], [15], an approximate lower
bound LB, of E(R, F) can be obtained as follows:

LBy = 3\ + {6 — 2v3(8, ) de.

In this study, the larger of LB; and LB;, denoted by LE, is used as
a lower bound of E(R,t), and the number of line features is
suggested to be at least eight.
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TABLE 1
Quality Thresholds Used in this Study

soth 110, fn g{mm)  ban
1 0.005 ] 0.01
2 0.01 10 0.01
3 0.025 ZH 0.01
4 0.05 50 0.01

3.2 Definitions of Test Functions: H,,. and H,,

Let Eg,, 6 6am and i, g6, denote E and £ with ¢? and
a2i=1,---,N, determined by the way described in Section
2.3 with respect to a set of quality thresholds (dr,6:,dan),
respectively. Since LB can be obtained before pose estimation, the
function Hp,. for testing the quality of the input data is defined as
follows:

H

LB
ore ¢ Unacceptable if IN —6 > y; acceptable otherwise,

where v is a predefined threshold value. After pose estimation, the
function Hpem for testing the quality of the estimated pose is
defined as follows:

Hpog unaccepiable if E(am,gham) > v

acceptable if E‘(fﬁlfjn) < v unreliable otherwise.

With stricter quality thresholds (%,%,0) where x> 1 in the
above test, the quality of the estimated pose is accepted in a
conservative way. In general, the significance level of the x*(1)
distribution is desired to be within 0.1 to 0.025, so v can be
chosen from 3 to 5. In this study, »=3. Let r; be the rate of
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rejecting the accurate estimated pose distributed in the way
assumed in Section 2.3, The relation among #, vy, and & can be
derived to be r, > 2(2(\/v) —d)(%)), where @() denotes the
standard normal distribution (the derivation is omitted to
shorten this paper). Hence, x is suggested to be not greater
than three because v is chosen as 3 and r; is desired to be not
greater than 0.5. In this study, we set & = 3.

4 EXPERIMENTAL RESULTS

First, some terminologies are defined as follows: Classifying the
accurate estimated result to be unacceptable is called the type I
error. Classifying the inaccurate estimated result to be acceptable is
called the type Il error. The error rate and the reject rate are defined

by

errer rate =
the number of type I errors 4 the number of type II errors
the number of test samples
the number of estimated results labeled unreliable
the number of test samples '

i

roject rate =

Four sets of quality thresholds were designed in Table 1. In this
experiment, we did not use a good estimation method because this
method is similar to the “standard” method. Alternatively, the
method for obtaining pose parameters by defeating the test
functions was preferred. Here, a method estimating the pose by
minimizing Es, 4.6, (R, t) was adopted because the estimated
pose can make H,,,, commit the type II error based on the fact that
the estimated pose has the minimum of g, 4 5,.; (R, t} but does
not guarantee optimality.

41 Computer Simulation

To analyze the noise effect, n; was perturbed by adding a
noise vector pAn, where p is a scalar controlling the noise
level. The elements of An were randomly generated from
[-1,1], Eight-hundred-thousand random trials have been done
with the numbers of line features 8, 10, 12, and 14 at noise levels
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Fig. 3. Comparisons of LB and 3, versus various numbers of line features, quality thresholds, and noise levels: {a) and (b) are for the average ratio and the average
correlation coefficient, respectively, where from top to bottom are for the quality sets 1 to 4, and the numbers of line features from left to right are 8, 10, 12, and 14,

respectively.
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Fig. 4. (a) and (b} are operating characteristics curves of type | error (1) versus type |l error (g1} for Hy,.without and with a reject option, respectively;(c) is the error-reject

curve for Hy.

Experimental Results for the Symheggglﬁnfage, Cube Image and Printer Image
synthesized hnage cube image
1o crroneous l.c. one crroneous 1o,
(i) 1 2 3 4 i 2 3 4 1 2 3 4
(i) | 0.64 0.94 0.99 1.0 0103 0083 0 0 0.642 0491 0.086 0
(1) | 0.38 0.24¢ 0.2 0.1132 || 0.892 0.566  0.139  0.12 | 0.999  0.989 0904  0.859
(iv) | 0.85 0.522 0,028 0.052 0.069  0.45 0.799 0 0 0.060 0,308 0.131
(v} | 0.66 0.4 0.022  0.047 0.273  0.959 0.5 0.08 [ 0,024 0,122 0278 0.153
(vi) | 0.0027 0.006 0.026 0.08 0.093  0.01 0.63 0.03 (0 0.034 0.008 0.043
printer image
o orronoons e one crroneons .o,
(i) 1 2 3 4 1 2 3 4
(it | 0.01 0 0 0 0.838  0.989 0.583 0213
(iif) | 0.278  0.049 0.0017 0.0001 | 0.996 0.989 0.949 04
{iv) | 0.644 0.207 0.002 0 1 0.907 0.396  0.433
(v) 0.702  0.227  0.0024 0 0.044 0.0512 0.064 0.104
{vi) | 0.037 0.019 0.0017 0.0001 | 0 0.0005  0.008 0.013

The ftems (i) to (vi) represent the set of qualily thresholds, ratio of the number of poor data detected by H,,. to the number of poor daia fo the number of test samples,
rate of accurate estimated results laboled ‘unreliable”, rajact rate, and error rate, respectively.

0.001, 0.005, 0.01, 0.025, and 0.05 with respect to the four quality
sets, Comparisons of LB and 3, are given in Fig. 3, It shows that
LB is highly correlative to the minimum of Eg, s 5.9 (R,t)
(denoted by FE*) and better than 31, especially when the noise
level is higher, Hence, LB is more suitable than 3, to detect poor
inputs. Fig. 4 shows some results of Hp.y tested by the samples
with eight lines. The curves in Fig. 4 were generated by varying v
from zero to ten at an interval of 0.1. The parts of the curves
corresponding to v in the range [3, 5] are indicated by thick curves.
Fig. 4a and Fig. 4b illustrate the necessity for Hy,.. to have a reject
option and Fig. 4c shows that the reject region of H,, is proper.

4.2 Tests with Synthesized Image

Ten-thousand test samples were generated from the synthesized
objects shown in Fig. 2a and a quarter of them were designed to
contain an erroneous line correspondence (lc.). Each sample
contained 27 image lines obtained by fitting edge pixels corrupted
by Gaussian noise with standard deviations 1, 2, or 3. Table 2
shows that the error rates are low and more than a haif of poor
inputs were detected. As shown in Fig. 6, most of the estimated
poses have qualities within the reject regions specified by the
quality sets 1 and 2, so the reject rates with respect to the two sets
are high.
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Fig. 5. Real images: (a} Is an image of a cube; () is an image of a printer; and {b} and () are the results after performing straight line detection for (a) and (c),

raspectivaly.

4.3 Tests with Real Images

Fig. 5a shows an image of a cube. The pose of the cube estimated
by Lee and Haralick’s method [8] with well-detected lines was
regarded as the ground true. In this experiment, to produce
test samples with various qualities, some of the lines were not
well-detected, as shown in Fig. 5b. The relative errors of the
unit normal vectors formed by these lines were about 0.5 percent
to 8 percent. Ten-thousand test samples were generated, each of
which contained eight lines randomly chosen from these lines. As
shown in Fig. 6, most of the estimated poses have relative
orientation errors about 0.5 percent to 2 percent and absolute
translation errors about 5 mm to 8 mm, and are close to the reject
regions specified by the quality sets 2 and 3. Hence, as shown in
Table 2, the reject rates with respect to the two sets are high. This
indicates that the reject region of Hy,, is proper. Besides, the othexr
10,000 test samples, each of which contained an erroneous lc.,
were produced. About half of poor inputs with respect to the
quality sets 1 and 2 and 10 percent of poor inputs with respect to
the quality set 3 were detected. This experiment was also done for
the printer image. Since the differences among the line features of
the printer image are more significant than those of the cube
image, the experimental result for the printer image is better than
that for the cube image.

4.4 An Example of the Test Function for 2D/3D Feature
Point Correspondences (p.c.s)

Experiments of using Hp. to test if there exist erroneous p.c.s
between the 3D model points and the image points have been
conducted for the synthesized image and the printer image. The
corners of the 3D objects in the two images were the model points.
For each test sample, the image lines and the corresponding model
lines were formed by connecting every pair of the visible corners

na

(@)

abwlie tonglation error

relaliva romian emor

relativa rotntion ermor

and the corresponding pair of the model points, The quality
thresholds were specified by the quality set 4. For each of the two
images, 150 test samples with erroneous p.c.’s were produced in
addition to 50 normal test samples with visible corners corrupted
by Gaussian noise with a standard derivation of 2. Fig, 7 shows the
value 25 of every test sample where the herizontal line is the
threshold of H.. It reveals that the test samples with erroneous

p.c.s can be detected.

In summary, the experimental results show that Hy, can detect
poor inputs, and the reject region of H,,, is proper because the
quality of the rejected estimated pose is close to the specified
quality thresholds.

5 CONCLUSIONS

In this paper, a method has been proposed to test the quality of
estimated poses with respect to the quality thresholds which can
be specified straightforwardly by users for their applications. Two
test functions, e and Hy, have been defined. Hy. can be used
to detect poor inputs. So, we can abandon poor inputs to avoid
unnecessary computation or use some methods to deal with them,
After pose estimation, Hp can be used to qualify estimated
results as acceptable, unacceptable, or unreliable. The unreliable
estimated result can be either used with less confidence or
reevaluated by other methods, The test functions are more suitable
for pose estimation methods having the properties that the
resultant residues in the orientation and position constraints are
approximately normally distributed and that the estimated poses
concentrate around the actual pose. Since the two test functions are
simple, they can be easily embedded in an existing algorithm.

001" 30

‘ y alwolite mvslation smor
relative roastion somer

(e

Fig. 6. Population of the estimated pasas for the synthesized image and the real images:(a), (b), and {c) are for the synthesized image, the cube image, and the printer
image, respectively, where 87, 80, and 99 percent of estimated poses are shown for the three images, respectively, and the rest are ouiside the region displayed.
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Fig. 7. Plots of the experimental results for testing if the test sample contalns erreneous p.c.'s:(a) is for the synthesizad image, and (b) is for the printer mags, whera the
four quarters of the test samples from left to right are the normal test samples, and the test samples with one, two, and threa erroneous p.c.'s.

APPENDIX A
Determination of Standard Deviations o; and
o, =1,2..,N

Let n; be described by its noise-free version n} plus a noise vector
An;, R* and t* be the ground true rotation matrix and translation
veetor, respectively, and AR = R* —R* and At = t# — t*. For
simplicity, we assume AR, At, and An;, i=1,2,.---,N, are
uncorrelated and have zerc means, Since the distribution of At is
desired to be homogeneous in all directions, the elements of At are
assumed to be independently and identically distributed (i.i.d.)
random variables {r.v.s) with a normal density N(0,0?}. The same
is for Amg, i= 1,2,---, N, with N(O,aﬂn). So, the variance of
nR*d; is
of = Hl(n{RFd)]
= E[(n"'ARd;)?] + E[(An‘R*d,)*] + E[(An‘ARd,)Y].  (2)
By ignoring the right most term of (2), the least significant term,
and using the fact that the spectral matrix norm is induced by the i;
vector norm [14], we have
of < Els1(AR)’] + & (Cov(An)},

where 5,() denotes the largest singular value of a matrix.

Representing R¥ by R* multiplied by a rotation matrix R, we
get AR = R* (R’ — Ly.3). Suppose that R¥ is close to R*. Thus,
expressing R’ by a Taylor’s series up to the first-order term [15],
we can obtain AR = R"L, where L is an antisymmetric matrix in
terms of I, Iz, and I3, which are assumed i.id. r.v. s from N(0,03).
Hence, 3 ”’mﬁ has the x*(3) distribution [16]. Since J__,,,__J, is desired to
be not greater than ég, Pr (A—R”i > 4}) must be small Ata 995
percent confidence interval for Lré we can obtain o, < 33‘ Since
s(AR)’ =
E[s;(AR)?] = 30‘R < 26 Using a similar techmque we can obtain

13 . Upper

-—I-‘ (the proof is 51mple and thus omitted), we have

51(Cov{An)) < 13 Accordingly, we have o} 5
bounds for oP,i =12 ...
method.

N, can be determmed by a similar

APPENDIX B
Derivations of .5,

From the SVD of K;, we have the followmg three results for K;: 1)
K - (MH2 (1 — v3s1)" + (1 — v352,)% + (det(U; V) —

383, ) , 20 ey = s1; 4 52 + det{U,Vy)s3;, and 3) rlo; < Koy
where k; and r are the 9D vectors associated with K; and an
arbitrary rotation matrix R, respectively. Let K, be the rotation
matrix closest to —M; in the I; matrix norm and ki be the
associated 9D vector, The SVD of K; can be expressed as U;SBV'I-"
where det(U;V}) = —det(U;V,). The other three results for K, can
also be expressed by substmltmg K, ki, M;, «r;, and det(U;V;) in
the above three with Ki,kl, -M;, —a;, and det(U;V;), respec-

tively. Since det(U;V,) is equal to 1 or —1, we have

min {

- \/g(_Mf)\|z} =6 2/3u(S),  (3)
max{ (e, (K (—a)} = (8, @
o <kjou, and r(-a) <kf(-e). That is, we have

(rfa)® = (¥'(—a))® < #r(8,)%. In addition, |R|}=3 and
tr(S8;) > 1,i=1, -,9. Hence, LB can be obtained.

APPENDIX C
Derivations of LB,

Suppose that R¥ and t# minimize E(R, F}. Let F# be the noise-
free F with the pose parameters R* and t*. Let o be the unit
eigenvector of F¥ and Xf be the corresponding eigenvalue, for
i=1,2,---,9, respectively. Thus, the 9D vector of R¥ is either
v3al or —v3ef. By regarding F as a perturbed F#, from the
perturbation theory of eigenvalues and eigenvectors [11], [15], the
first-order approximations of the eigenvectors of F in terms of the
eigenvectors and eigenvalues of F* are given as follows:

o {a?Fa’
a;Ea?nL.Z.(W ﬂzf,i:1,2,"'79~ (5)

Thus, from (1} and (5), and the fact that F is symmetric, Z(R# F)
can be expressed as

#’Fa ?
S(R¥,F) = 30'Fal =3\ +3 52 N ()‘ {\jﬁ) . (6)
=

Regarding +3M; or —v3M, as the perturbed R¥, from (6} and (7),
we have
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= |lperturbed version of R¥ - R# Hi

2
3 i af*FafE
SN =N (N

From Ay > -+ > Ay, and (6) and (7), we have the following result
from which .73 can be obtained:

L {af'Fal :
E(RF F) >80 3% ﬂ = 85 4 (6 — 2v/36r(8, 1) .

i=2 1 T N

> 6 — 2v/31(S,).
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Tracking Human Motion
in Structured Environments
Using a Distributed-Camera System

Q. Cai and J.K. Aggarwal, Fellow, IEEE

Abstract—This paper presents a comprehensive framework for tracking coarse
human models from sequances of synchronized monocular grayscale images in
multiple camera coordinates. It demonstrates the feasibility of an end-te-end
person tracking system using a unique combination of motion analysis on 3D
geometry in different camera coordinates and other existing technigues in motion
detection, segmentation, and pattern recognition. The system starts with tracking
from a single camera view. When the system predicts that the active camera will
ne longer have a good view of the subject of interest, tracking will be switched to
another camera which provides a better view and requires the least switching to
continue tracking. The nonrigidity of the human body is addressed by matching
points of the middle line of the human image, spatially and temporally, using
Bayesian classification schemes. Multivariate normal distributions are employed to
model class-conditional densities of the features for tracking, such as location,
intensity, and geometric features. Limited degrees of oeclusion are tolerated within
the system. Experimental rasults using a prototype system are presented and the
performance of the algorithm is evaluated to demonstrate its feasibility for reat time
applications.

tndex Terms—Tracking, human modeling, motion estimation, multiple
perspectives, Bayesian classification, end-to-end vision systems.

+

1 INTRODUCTION

TRACKING human motion is of interest in numerous applications
such as surveillance, analysis of athletic performance, and
content-based management of digital image databases. Recently,
growing interest has concenirated upon tracking humans using
distributed monocular camera systems to extend the limited
viewing angle of a single fixed camera [1], [2], [3]. In such a
setup, the cameras are arranged to cover a monitored arca with
overlapping visien fields to ensure a smooth switching among
cameras during tracking. We present a comprehensive frame-
work for automatically tracking coarse human models across
multiple camera coordinates and demonstrate the feasibility of
an end-to-end person tracking system using a unique combina-
tion of motion analysis on 3D geometry in different camera
coordinates with existing techniques in motion detection,
segmentation, and pattern recognition. The nonrigidity of the
human body is addressed by matching points of the middle
line of the human image, spatially and temporally, using
Bayesian classification schemes. The key to successful tracking
in the proposed work relies on our unique method of 3D
motion prediction and estimation from different perspectives.
Experimental studies using a three-camera prolotype system
show ifs efficiency in computation and potential for real time
applications.

The earliest work in this area is, perhaps, by Sato et al. [1]. They
considered the moving human image as a combination of various
blobs. All distributed cameras were calibrated in the world
coordinate system, which corresponds to a CAD model of the
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