
PARALLEL PATTERN LOGIC SIMULATOR WITH INERTIAL DELAY MODEL 885

Received February 21, 1998; accepted June 11, 1998.
Communicated by Youn-Long Lin.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 15, 885-897 (1999)

885

A Compiled-Code Parallel Pattern Logic Simulator
With Inertial Delay Model

KUO CHAN HUANG, CHUNG LEN LEE AND JWU E CHEN*

Department of Electronics Engineering
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

*Department of Electrical Engineering
Chung Hwa University

Hsinchu, Taiwan 300, R.O.C.

This paper presents a parallel pattern compiled code logic simulator which can handle
the transport delay as well as the inertial delay of the logic gate. It uses Potential-Change
Frame, incorporating inertial functions, to execute event-canceling operation of gates, thus
eliminating the conventional time wheel mechanism. As a result, it can adopt the parallel
pattern strategy to increase the simulation speed. Furthermore, it is a compiled code simulator,
which further improves its performance. Experimental results show that it significantly
surpasses the conventional time wheel event-driven simulator in terms of simulation speed.
In addition, it is also found that a significant percentage (27%) of hazards can be eliminated
when the effect of the inertial delay is considered in the simulation.

Keywords: logic simulator, compiled code simulation, parallel pattern, inertial delay model,
potential change frame

1. INTRODUCTION

Recently there has been considerable interest in studying use of the compilation tech-
nique to improve the performance of logic simulation [1-9]. The reason why the compila-
tion technique had not previously received much attention was that the traditional levelized
compiled code(LCC) simulator was based on the zero delay model, which is very unrealis-
tic for treating circuit delays. The above situation has changed recently as some techniques
have been proposed to generate codes for more complex timing models. For example, a
threaded code technique was proposed to incorporate the unit delay model in a Tortle_c
simulator [5], and a multi-delay parallel algorithm was developed to use the potential change
set to handle a multi-delay model [6]. All the above techniques are based on the simple
transition-independent transport delay model.

However, the transport delay model can not describe the transient behavior of the
circuit properly. A simple CMOS NAND gate shown in Fig. 1 can be used to explain this.
In Fig. 1(a), the propagation delay of the CMOS NAND gate, denoted by d, is 0.2 ns. For
the simple delay model, any transition on inputs A or B at time t will propagate to output C
at time t+0.2ns. Hence, as shown in Fig. 1(b), when input A has a rising transition at time
t1 and input B has a falling transition at time t2, output C will have a falling transition at time
t1+0.2ns and another rising transition at t2+0.2ns. However, when we use SPICE to simu-

KUO CHAN HUANG, CHUNG LEN LEE AND JWU E CHEN886

late the transient behavior of the NAND gate while applying the above input stimuli, we
find that the transitions on the input lines do not always propagate to the output line C. If
the difference between t1 and t2 is not greater than a particular value, 0.2ns, for this example,
the transitions will disappear (Fig. 1(c)). The particular value is the “inertial delay” of the
gate, denoted by dI, which is an essential characteristic of the logic gate. This is because
switching a gate requires a certain amount of energy, which is determined by the size of the
gate. Any input pulse whose duration is less than or equal to dI will be automatically
suppressed by the gate. Hence, if inertial delays of gates are neglected during the logic
simulation, some invalid results will be obtained in predicting the transient behavior of a
circuit. As a result, this may invalidate the results of analysis, for example, the number of
switchings of a circuit, which is very important in determining the power of the circuit [10],
or may invalidate the testing of delay faults.

To enable a logic simulator to handle the inertial delay, the event-driven method
incorporating a timing wheel is usually used. An event-canceling mechanism is needed to
implement the transition elimination, making the simulator very slow. This paper presents
a compiled code logic simulator which utilizes an “Inertial_Function” technique to elimi-
nate the above problem. Furthermore, the simulator incorporates the parallel pattern strat-
egy to increase the simulation speed. As a result, the simulator is 300 times faster than the
conventional simulator, which employs a timing wheel, and 8 times faster than the conven-
tional interpreter type of simulator.

Fig. 1. (a) An example circuit of an NAND gate. (b) Waveforms of the lines obtained by using trans-
port delay. (c) Waveforms of the line obtained by using the inertial delay model in which the
input transitions on line C are suppressed.

A

B

C

PMOS W/L 10µm/2µm
NMOS W/L 8µm / 2µm
transport delay = 0.2 ns

LINE A

LINE B

LINE C

LINE A

LINE B

LINE C

t1

t2

t1 + 0.2ns

t = 0

(a)

(c)

(b)

t1

t2

t = 0

PARALLEL PATTERN LOGIC SIMULATOR WITH INERTIAL DELAY MODEL 887

2. LOGIC SIMULATION BASED ON THE INERTIAL DELAY MODEL

In the conventional timing wheel method for transport delay model, the simulation is
performed with respect to an increasing time step. That is, the events which occur at time,
for example, t=1 are evaluated, and their response events are inserted into the timing wheel.
Then, the events occurring at time t=2 are evaluated, and their corresponding response
events are inserted into the timing wheel again. Evaluation and insertion are repeated until
no event exists in the timing wheel. For this timing wheel technique to handle the inertial
delay, an event canceling step is needed. The example shown in Fig. 2 can be used to
explain this, where the d’s and dI’s represent the transport delays and inertial delays of each
gate, respectively. In the figure, the event lists of each time slot are listed in Figs. (b) and
(c), where (A, ≠) and (C, Ø) mean a rising event occurring at line A and a falling event
occurring at line C, respectively. If we do not consider the inertial delays of each gate, we
obtain the event lists shown in Fig. 2(b). However, if the inertial delays are considered, for
every evaluation of the transition event, we must check whether or not the event exists
between time t-dI and t. If such an event exists, both events needed to be canceled. In this
example, at t=6, for the rising transition event at line E, since line E has a falling transition
at t=3 and its dI is 3, both (E, Ø) and (E, ≠) need to be canceled. Consequently, (F, ≠) and
(G, Ø) need to be canceled, and events (F, Ø) and (G, ≠) do not need to be inserted. This
requires a check and cancellation procedure, which makes the computation overhead high.

Fig. 2. (a) A example circuit to show event cancellation. (b) Event list before event cancellation. (c)
Event list after event cancellation.

GFE

G2

D
G1

B

A

C

d = 3
d1 = 3

d = 2
d1 = 3

d = 1
d1 = 1

d = 1
d1 = 1

(a)

(E,),

(A,), (C,),

(F,),
(A,), (C,),

(D,),
(G,),

(E,),

(D,),

(F,),

(G,),

(b)

t = 1:

t = 3:

t = 4:

t = 5:

t = 6:

t = 7:

t = 8:

t = 1:

t = 4:

(c)

KUO CHAN HUANG, CHUNG LEN LEE AND JWU E CHEN888

We propose a method which completely eliminates the use of a timing wheel. We use
an array to record the timing information of each line of the circuit and conduct the simula-
tion in a level by level fashion. For each line, we evaluate the timing array and check for
transition elimination. For the pupose of illustration, we will consider the example circuit
shown in Fig. 2, where the timing arrays for each line are shown in Fig. 3. Fig. 3(a) shows
the timing arrays of all lines before transition elimination, and Fig. 3(b) shows the timing
arrays after transition elimination. In the array Timing_E, since d of G2 is 2, Timing_E[t],
the logic value of line E at time t, is equal to (Timing_A[0] OR Timing_D[0]) for t = 2. For
t > 2, Timing_E[t] is equal to (Timing_A[t-2] OR Timing_D[t-2]). There are two transi-
tions in Timing_E, i.e., a falling transition at t=3 and a rising transition at t = 6. Since the
time interval of these two transitions is not larger than the inertial delay dI = 3 of G2, the two
transitions are eliminated , i.e., Timing_E[3], Timing_E[4] and Timing_E[5] are set to logic 1.
The above operations can be performed using simple logic operations on a single timing
array. This saves much computation overhead as compared to the timing wheel method. In
the figure, only the underlined elements of timing arrays need to be simulated because
transitions only occur at these time steps.

Fig. 3. (a) Timing arrays before transition elimination. (b) Timing arrays after transition elimination.

Our proposed simulator is a compiled-code simulator. An Inertial_Function is used
to handle the above transition elimination, and a potential change frame (PC-Frame),
which is derived from the potential change set (PC-Set)[7], is used to save memory and
simulation time.

In order to simulate the timing information and the inertial characteristic of a digital
circuit, the following four arrays: Time_Index, Logic_Value, Inertial_Index and Fanin_Index,
denoted as GTI, GLV, GII and GFI, respectively, are defined for each logic gate G. If gate G
has N time steps at which an event could possibly occur, and if gate G has M fanin gates,
then GTI, GLV and GII are three one-dimensional arrays whose sizes are N+1, and GFI is a
two-dimensional array whose size is (N+1)¥M. The PC-Frame consists of the above four
arrays, and each corresponding element within the four respective arrays are closely related
during simulation. For example, the kth PC-Frame of a gate G contains GTI[k], GLV[k], GII

[k] and GFI[k], where the first three terms are the kth element of the Time_Index array,
Logic_Value array and Inertial_Index array, respectively, and the last term is the kth one-
dimensional sub-array of the Fanin_Index array. GTI[k] records the time at which the kth
possible transition can occur, GLV[k] stores the logic value of gate G in the interval of [GTI

[k], GTI[k+1]], and GII[k] stores the number of succeeding PC-Frames which will affect the

PARALLEL PATTERN LOGIC SIMULATOR WITH INERTIAL DELAY MODEL 889

transition of the current PC-Frame due to the inertial delay. For the Fanin_Index array GFI

[k], the one-dimensional sub-array GFI[k][j] stores the corresponding PC-Frames of the jth
fanin gate of gate G for evaluation of GLV[k], where j = 0 ~ (M-1).

Fig. 4 is an example of the PC-Frames of the output C of an AND gate with two inputs,
A and B. There are five PC-Frames on output C, which is denoted by a dashed box, i.e., 0,
1, 2, 3, 4, where the 0th frame is only for reference, and the gate may have transitions
occurring at four time steps: step 5, step 6, step 7, and step 9, as listed in CTI of the PC-
Frame. For this gate, input A has a Time-Index, ATI, of {0, 3, 4}; that is, it may have
transitions at time steps 3 and 4; and input B has a Time-Index, BTI, of {0, 2, 6}. The gate has
a transport delay of d=3 units, and an inertial delay of dI=2 units. The Time-Index, CTI, is
obtained as follows: First, ATI and BTI are combined to get CTI', which is {0, 2, 3, 4, 6}. Since
the propagation delay of the gate, d, is equal to 3, CTI is obtained by adding 3 to each of the
elements of CTI' to be {0, 5, 6, 7, 9}. The Fanin_Index Array, CFI, is obtained as follows: For
CFI[1][0], the CFI of input A at PC-Frame 1 since CTI[1]-d = 2; that is, to cause output C to
have a transition at time step 5 by means of input A, A should have a transition at time step
2. However, ATI[1] = 3, which is greater than 2; i.e., a possible transition could occur only
at time step 3; hence, only the logic value of PC-Frame 0 of input A should be used; i.e., CFI

[1][0] should be 0. For CFI[1][1], since BTI[2] = 6, which is greater than 2, and BTI[1] = 2, the
logic value of the first PC-Frame of input B should be used, i.e., CFI[1][1] = 1. In other
words, the Logic_Value CLV[1] is evaluated by the following equation:

0

CTI[0] CTI[1] CTI[2] CTI[3] CTI[4]

1 2 3 4

0

CFI[0] CFI[1] CFI[2] CFI[3] CFI[4]

CII[0] CII[1] CII[2] CII[3] CII[4]

5 6 7 9

0 0 1 2 2

0 1 1 1 2

0 2 1 1 0

PC-Frame of C

CTI

CII

CFI for A

CFI for B

A
C

B

Transport delay d= 3 units

ATI = {0, 3, 4} and BTI = {0, 2, 6}

CTI'= {0, 2, 3, 4, 6}

CTI= {0 5, 6, 7, 9}

Inertial delay d1 = 2 units

Fig. 4. An example circuit of an AND gate and the content of its PC-Frame.

CLV[1] = ALV[CFI[1][0]] & B LV[CFI[1][1]]
 = ALV[0] & BLV[1].

The Inertial_Index CII, is obtained as follows: since (CTI[3]-CTI[1]) = 2 is equal to
inertial delay dI = 2 and (CTI[4]-CTI[1]) = 4, which is greater than inertial delay dI = 2, CTI[1]
is assigned to be 2. This means that the transition on the two succeeding PC-Frames will
affect the transition on the current PC-Frame. Similarly, all other elements of CFI and CII can
be obtained in the same way, and they are listed in the figure.

KUO CHAN HUANG, CHUNG LEN LEE AND JWU E CHEN890

The general steps in computing the PC-Frame are summarized as follows: First, for a
primary input G, GTI = {0,1}, GFI = {null, null} and GII = {0,0}. Then, for a general gate G
having a transport delay d, an inertial delay dI and M fanin gates, I0, I1, ..., IM-1, its GTI is
obtained by combining the sets IjTI for every fanin gate Ij and by adding d to each element in
GTI. If the number of elements in the set GTI is N+1, then GFI, the Fanin_Index of gate G, is
a two-dimensional (N+1)¥M array, of which GFI[k][j] is an element, stores the correspond-
ing PC-Frames of the jth fanin gate Ij of gate G for evaluation of GLV[k]. The Fanin_Index
array of first PC-Frame is an array containing 0, i.e., GFI[0][j] = 0 for each j, since the 0th
PC-Frame is the reference of time for every applied stimulus. Other GFI[k][j]s are obtained
using the following procedure (in C language):

for (p =0; IjTI[p] £ GTI[k]-d ; p++);
GFI[k][j] = p - 1.

The evaluation formula for Logic_Value GLV[k] derived from GFI[k] is as follows:

GLV[k] = FG(I0 LV[GFI[k][0]],..., I j LV[GFI[k][j]],..., I (M-1)LV[GFI[k][M-1]]),

where FG is the logic function of gate G.

Inertial_Index, GII[k], the number of succeeding PC-Frames which influence the
Logic_Value of the current PC-Frame, is computed from Time_Index and dI as follows:

1. Begin with n = k + 1,
2. If (GTI[n] - GTI[k]) is greater than dI, then assign GII[k] = n - k -1 and stop.
3. If n is equal to N, the number of elements of GTI, then assign GII[k] = n - k and stop.
4. Assign n = n + 1, and go back to step 2.

As mentioned previously, Inertial_Function is used to check the existence of other
transitions. If a gate G with an inertial delay dI to have a transition at time t, then the
transition may be influenced by other transitions at this gate in the interval [t - dI, t + dI].
Hence, Inertial_Function checks the existence of other transitions in the interval of [t - dI,
t + dI]. Since this checking is performed from time t = 0, the transitions in the interval of
[t - dI, t] for each gate has been checked during checking its preceding PC-Frames; hence it
only needs to check for transitions for the interval [t, t + dI].

For each gate, the Logic_Value of each PC-Frame is first evaluated by means of logic
simulation, taking into account its transport delay. For each GLV[k], if it is not equal to GLV

[k-1], i.e., there is a transition at time GTI[k], then the transition elimination procedure is
executed. Then, the logic value of the succeeding PC-Frame of GII[k] is checked. If it is not
equal to GLV[k], then GLV[k] must be inverted to eliminate the transition at time GTI[k] since
there is another transition in the interval [GTI[k], GTI[k] + dI]. For each PC-Frame, simula-
tion codes are added to execute the above procedure.

In the above, since the codes of the transition elimination procedure for PC-Frames
with the same Inertial_Index are similar, we employ the subroutine call method to reduce
the code size. Before generating the compiled codes to perform the logic simulation, we
create a set of subroutines to eliminate transitions for the Inertial_Index ranging from 1 to

PARALLEL PATTERN LOGIC SIMULATOR WITH INERTIAL DELAY MODEL 891

the maximum number of gates in the circuits. For example, a C-language subroutine for
computing inertial for Inertial_Index equal to n is shown in Fig. 5. This reduces the size of
the code and the compilation time because only the set of inertial subroutines is added and
compiled. In our simulator, the generated mulation codes are assembly codes. The simula-
tion codes for the example circuit shown in Fig. 4 are shown in Fig. 6, where the Logic_Value
of each PC-Frame is first evaluated and then transition elimination for each PC-Frame is
executed according to the associated Inertial_Index. In this example, the maximum value
of Inertial_Index is 2; hence, subroutines Inertial_1 and Inertial_2 are generated.

In this simulator, since all operations in the final compiled codes are logical opera-
tions and comparisons, which are bit-wise instructions, the parallel pattern strategy is in-
corporated into the logic simulation to increase the simulation speed. The number of pat-
tern pairs which can be simulated simultaneously depends on the word length of the machine.

3. EXPERIMENTAL RESULTS

This proposed parallel pattern compiled code simulator was written in C language
and run on a SUN SPARCClassic workstation with 96MB memory. In order to evaluate
this simulator, we also implemented two other simulators, which were a conventional event-
driven time wheel timing simulator and a software interpreted type of timing simulator.
Also, to compare the simulation times for different timing models, the above three simula-
tors were also implemented using only the transport delay model; i.e., the inertial delay for

Fig. 5. The C language code for the Inertial_n subroutine.

int Inertial_n (target)
int *target;
{

int mask, mask1, mask2;
mask1 = (*(target+1))|(*(target+2))|.....|(*(target+n));
mask2 = (*(target+1)) & (*(target +2)) &.....& (*(target +n));
mask = (mask1 & (*(target-1)))|(~((*(target-1))|mask2));
return ((mask & (*(target-1)))|(~(mask) & (*(target))));

}

Fig. 6. The C language simulation code for the example AND gate shown in Fig. 4.

C
LV

[0] = A
LV

[0] & B
LV

[0];
C

LV
[1] = A

LV
[0] & B

LV
[1];

C
LV

[2] = A
LV

[1] & B
LV

[1];
C

LV
[3] = A

LV
[2] & B

LV
[1];

C
LV

[4] = A
LV

[2] & B
LV

[2];
if (C

LV
[1] ! = C

LV
[0])

C
LV

[1] = Inertial_2 (& (C
LV

[1]));
if (C

LV
[2] !=C

LV
[1])

C
LV

[2] = Inertial_1 (& (C
LV

[2]));
if (C

LV
[3] ! = C

LV
[2])

C
LV

[3] = Inertial_1 (&(C
LV

[3]));

KUO CHAN HUANG, CHUNG LEN LEE AND JWU E CHEN892

every gate was zero. All the experiments were done on ISCAS benchmark circuits[11,12],
where for the ISCAS89 sequential benchmark circuits, only the combinational parts of the
circuits were simulated. Each circuit was simulated with 5120 random pattern pairs, and
the transport delay of each gate was assumed to be equal to the number of fanin gates.

The results are shown in Table 1, where column T.W. represents the CPU time in
seconds for the timing wheel simulator, Int. stands for the interpreted simulator and C.C.
stands for the compiled code simulator, respectively. The columns T.W./C.C. and Int./C.C.
are the ratios for the above times, respectively. Table 1(a) shows the results for the trans-
port delay model simulation. In the table, it is seen that the compiled-code simulator needed
far fewer simulation runs for all the circuits than did the other two simulators. On average,
the compiled code simulator ran 359 times faster than the timing wheel simulator and 12
times faster than the interpreted type simulator. Table 1(b) shows the results for the inertial
delay model simulation, where the inertial delay of each gate was assumed to be equal to
the transport delay of the gate. Similar results are seen in this table; i.e., the compiled code
simulator ran much faster than the other two simulators. On average, it ran 339 times faster
than the timing wheel simulator and 8 times faster than the interpreted type of simulator.
Also, it should be mentioned that a 96 M machine could handle the largest circuit among
the benchmark circuits.

Table 1(a). The simulation times for these types of simulators for the transport delay
model with 5120 random pattern pairs.

CPU Time Speed Up
T.W. Interp. C.C. T.W./C.C. Int./C.C.

c432 20.33 1.98 0.15 135.56 13.22

c499 22.15 1.83 0.13 166.13 13.75

c880 31.48 4.98 0.38 82.13 13.00

c1355 66.95 9.10 0.77 87.33 11.87

c1908 139.37 11.08 1.08 128.65 10.23

c2670 178.10 11.80 0.90 197.89 13.11

c3540 248.97 21.42 2.07 120.47 10.36

c5315 515.52 28.62 2.22 232.56 12.91

c6288 16795.10 112.63 13.97 1202.51 8.06

c7552 1163.85 40.68 3.52 330.95 11.57

s35932c 14236.00 199.23 12.37 1151.16 16.11

s38417c 9532.07 182.45 18.27 521.83 9.99

s38584c 4281.23 192.17 13.63 314.03 14.10

 Average 359.32 12.18

PARALLEL PATTERN LOGIC SIMULATOR WITH INERTIAL DELAY MODEL 893

It is well known that for a compiled code simulator, the preprocessing time for a
circuit is an important factor related to performance. Tables 2 lists the preprocessing times
for the compiled code simulator and the interpreted type of simulator. Table 2(a) shows the
results for the transport delay model, and Table 2(b) the results for the inertial delay model.
Preprocessing of the compiled code simulator consists of two procedures: one is simulation
code generation, and the other is simulation code compilation. From both tables, it is seen
that the preprocessing time for the compiled code simulator was much larger than the simu-
lation time for each circuit for simulation of 5120 pairs of patterns. However, if the number
of simulated patterns is increased to, for example, five million, which is a number very
commonly encountered in simulation of practical circuits, this time will become less
significant. Also, comparing Table 2(a) and Table 2(b), we find that the preprocessing time
needed if the inertial delay is considered is about 40% more than that if the inertial delay is
not considered. In the tables, the last column, C.P.No., is the Critical Pattern Number,
which was calculated using the following equation:

Critical Pattern Number
T T T

T T
P CG P CC P SI

S SI S CC

 =
+ -

-
(())

()
* ,, , ,

, ,

5120

where TP,CG, TP,CC and TS,CC are the code generation time, code compilation time and simu-
lation time for the compiled code simulator for each circuit, respectively, and TP,SI and TS,SI

are the preprocessing time and simulation time for the interpreted simulator, respectively.

Table 1(b). The simulation times for these types of simulators for the inertial delay
model with 5120 random pattern pairs.

CPU Time Speed Up

T.W. Interp. C.C. T.W./C.C. Int./C.C.

c432 29.17 2.25 0.25 116.67 9.00

c499 44.82 2.02 0.17 268.90 12.10

 c880 66.53 5.87 0.65 102.36 9.03

c1355 78.13 10.95 1.47 53.27 7.47

c1908 222.93 13.85 2.10 106.16 6.60

c2670 235.75 13.33 1.52 155.44 8.79

c3540 346.88 26.77 4.20 82.59 6.37

c5315 853.77 33.67 4.13 206.56 8.15

c6288 568.10 149.45 29.05 19.56 5.14

c7552 1870.20 48.68 6.62 282.65 7.36

s35932c 30483.83 218.35 18.77 1624.36 11.63

s38417c 21517.40 218.30 31.58 681.29 6.91

s38584c 15885.80 218.65 22.37 710.24 9.78

Average 339.23 8.33

KUO CHAN HUANG, CHUNG LEN LEE AND JWU E CHEN894

Table 2(a). The preprocessing times for the interpreted type of simulator and the par-
allel pattern compilation type of simulator for the transport delay model.

Compile Code
Interp. Generate Compile C.P. No.

c432 0.12 0.37 7.70 22202

c499 0.12 0.33 7.20 22337

c880 0.22 0.87 10.00 11854

c1355 0.32 1.75 14.40 9728

c1908 0.47 2.78 18.80 10812

c2670 0.67 2.25 16.00 8259

c3540 0.85 5.40 30.10 9168

c5315 1.22 5.82 32.00 7098

c6288 1.50 31.77 163.60 10060

c7552 1.83 9.63 48.10 7701

s35932c 8.72 35.78 153.70 4953

s38417c 11.20 51.12 226.20 8299

s38584c 10.00 40.50 174.40 5876

Table 2(b). The preprocessing times for the interpreted type of simulator and the par-
allel pattern compilation type of simulator for the inertial delay model.

Compile Code
Interp. Generate Compile C.P. No.

c432 0.12 0.4 10.1 26667

c499 0.12 0.4 8.1 23109

c880 0.22 1.2 13.3 14002

c1355 0.32 2.4 21.0 12445

c1908 0.47 3.7 28.8 13951

c2670 0.67 2.8 21.3 10139

c3540 0.85 7.0 47.6 12184

c5315 1.22 7.3 48.5 9460

c6288 1.50 45.2 278.2 13689

c7552 1.83 11.9 72.5 10053

s35932c 8.72 40.8 205.9 6104

s38417c 11.20 62.8 331.3 10501

s38584c 10.00 46.9 238.9 7195

PARALLEL PATTERN LOGIC SIMULATOR WITH INERTIAL DELAY MODEL 895

The meaning of the C.P.No. is that when the number of simulated patterns is larger than C.
P.No., the total CPU time of the compiled code simulator is less than that of the interpreted
simulator. It is seen that C.P.No. decreases with the size of the circuit. This means that the
compiled code simulator is the better choice when a large circuit is to be simulated.

In Table 3, the average numbers of transitions per 32 random pattern pairs for simu-
lating each circuit using only the transport delay model and using the inertial delay model
are listed. It is seen that a significant percentage, i.e., 27%, of the transitions are eliminated
if simulation is performed using the inertial delay model.

4. CONCLUSIONS

In this paper, we have proposed a parallel pattern compiled code logic simulator for
the inertial delay model. The simulator uses the PC-Frame, incorporating an Inertial Func-
tion calculation technique, to eliminate the use of a time wheel, which is usually used in the
conventional timing logic simulator. Also, for this reason, the parallel pattern strategy can
be used, which further enhances the simulation speed. Experimental results on the ISCAS
benchmarks show that this simulator enjoys significant speed improvement over the timing
wheel event-driven simulator and the interpreted type of simulator. In addition, it has been
found that significant percentage (27%) of transient transitions were eliminated when the
inertial delay model is used, as compared to use of only the transport delay model, to simu-
late the timing waveform of the logic circuit.

Table 3. The average numbers of transitions per 32 random pattern pairs under consider-
ation the transport delay model and under consideration of the inertial delay model.

No. of Transitions per 32 patterns

Transport Inertial elimination(%)

c432 4225 3214 24

c499 4166 3972 5

c880 7757 6889 11

c1355 14916 9186 38

c1908 30594 20885 32

c2670 36705 22914 38

c3540 63523 40237 37

c5315 92463 60453 35

c6288 1043320 715324 31

c7552 152779 101907 33

s35932c 576185 405250 30

s38417c 465550 371836 20

s38584c 318939 279309 12

Average 27

KUO CHAN HUANG, CHUNG LEN LEE AND JWU E CHEN896

REFERENCES

1. R. E. Bryant, D. Beatty, K. Brace, K. Cho and T. Sheffler, “COSMOS: A compiled
simulator for MOS circuits,” in Proceedings of 24th Design Automation Conference,
1987, pp. 9-16.

2. Z. Barzilai, J. L. Carter, B. K. Rosen and J. D. Rutledge, “HSS - A high-speed simulator,”
IEEE Transaction on Computer Aided Design of Integrated Circuits and Systems, Vol. 6,
No. 7, 1987, pp. 601-617.

3. Z. Wang and P. M. Maurer, “LECSIM: A levelized event driven compiled logic simulator,” in
Proceedings of 27th Design Automation Conference, 1990, pp. 491-496.

4. M. Chiang and R. Palkovic, “LCC simulators speed development of synchronous hard-
ware” in Proceedings of IEEE International Conference on Computer Design, 1986,
pp. 87-91.

5. D. M. Lewis, “A hierarchical compiled code event-driven logic simulator,” IEEE Trans-
action on Computer Aided Design of Integrated Circuits and Systems, Vol. 10, No. 6,
1991, pp. 726-737.

6. Y. S. Lee and P. M. Maurer, “Parallel multi-delay simulation,” in Proceedings of Inter-
national Conference on Computer-Aided Design, 1993, pp. 759-762.

7. P. M. Maurer, “Two new techniques for unit-delay compiled simulation,” IEEE Trans-
action on Computer Aided Design of Integrated Circuits and Systems, Vol. 11, No. 9,
1992, pp. 1120-1130.

8. Y. S. Lee and P. M. Maurer, “Bit-parallel multidelay simulation,” IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, Vol. 15, No. 12,1996,
pp. 1547-1554.

9. P. M. Maurer, “The inversion algorithm for digital simulation,” IEEE Tranactions on
Computer Aided Design of Integrated Circuits and Systems, Vol. 16, No. 7, 1997, pp.
762-769.

10. F. N. Najm, “A survey of power estimation techniques in VLSI circuits,” IEEE Trans-
actions on VLSI Systems, Vol. 2, No. 4, 1994, pp. 446-455.

11. F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circuits
and a target simulator in Fortran,” in Proceedings of International Symposium on Cir-
cuits and Systems, 1985, pp. 695-698.

12. F. Brglez, D. Bryan and K. Kozminski, “Combinational profiles of sequential bench-
mark circuits,” in Proceedings of International Symposium on Circuits and Systems,
1989, pp. 1929-1934.

Kuo Chan Huang () was born in Tainan, Taiwan, in
1968. He received the B.S. degree in electronics engineering from
National Chiao Tung University, Taiwan, R.O.C., in 1990. He is a
Ph.D. student in the Institute of Electronics, National Chiao Tung
University, Taiwan. He engages in research on VLSI testing and
design for testability.

PARALLEL PATTERN LOGIC SIMULATOR WITH INERTIAL DELAY MODEL 897

Chung Len Lee () obtained his B.S. from National
Taiwan University in 1968 and M.S. and Ph.D. degrees from
Carnegie Mellon University in 1971 and 1975, respectively, all in
Electrical Engineering. He has been with the Department of Elec-
tronics Engineering, National Chiao Tung University, since 1975,
engaging in teaching and research in the fields of semiconductor
devices, integrated circuits, VLSI, computer aided design and testing.
He has supervised over 100 M.S. and Ph.D. students who com-
pleted their theses and has published over 200 papers in the above
areas. He has been involved in various technical activities in the
above areas in Taiwan as well as in Asia. He is on the editorial
board of JETTA.

Jwu E Chen () received the B.S., M.S., and Ph.D.
degrees in electronics engineering from National Chiao Tung
University, Taiwan, R.O.C. He has been an Associate Professor in
the Department of Electrical Engineering, Chung Hwa University,
Taiwan, since 1990. His research interests include multiple-valued
logic, VLSI Testing, synthesis for testability, reliable computing,
yield analysis, and test management. He is a member of IEEE, the
Computer Society, AAAS, and NYAS.

