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Time-Dependent Ginzburg-Landau Equation for
dx2_y2-wave Superconductors: Hall Effect in the

Low Field Regime
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The Hall effect is studied by using a phenomenological time-dependent
Ginzburg-Landau equation with mixing of s-and d-wave components in
d x 2_ y 2 -wave superconductors within a low field regime. An equation of mo-
tion for a single vortex is derived and the Hall angle is obtained under an
external driving current along the crystal axis. We find that not only the
imaginary parts of s- and d-wave relaxation time but also the mixed gradient
terms may change the sign of the Hall effect.

PACS numbers: 74.20.De, 74.60.-W, 74.72.-h

1. INTRODUCTION

Anomalous Hall effect in low magnetic fields and at temperatures close
to but below the superconducting transition temperature has been ob-
served in most high-Tc superconductors (HTSC) and some conventional
superconductors.1 It seems that this effect is rather general and just needs
an explanation in terms of general properties of the vortex dynamics of the
mixed state not specific for s-wave or d-wave superconductors. The vortex
structure of dx2_y2-wave superconductors has been verified to be completely
different from that of s-wave superconductors. To find the general proper-
ties of the vortex dynamics of the mixed state in superconductors is a diffi-
cult problem. An approach based on the time dependent Ginzburg-Landau
(TDGL) equation has been shown to be good for describing the Hall effect
in the superconducting state.2,3 In the recent experimental results for the
Hall anomaly in the superconducting state of HTSC from the underdoped
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to the overdoped regime, Nagaoka et al.4 argue that the TDGL equation
based on the s-wave weak coupling theory fails to predict the Hall sign to be
universal and determined by the doping level. Thus, the dynamics of d-wave
vortices with a TDGL equation is necessarily studied. Alvarez, Dominguez
and Balseiro5 recently did this approach and numerical simulations under
an external driving current oriented with an angle R with respect to the
b-axis for very high Ginzburg-Landau parameter K are presented to have an
intrinsic Hall effect depending on sm(4R). Zhu, Kim, Ting and Hu6 derived
microscopically a set of coupled TDGL equations for superconductors with
mixed d- and s-wave order parameters based on the approach of Gor'kov and
Eliashberg7 But their TDGL equations are hard to solve and very compli-
cated. Here, we use the approach of Dorsey2 and Kopnin et al.3 to derive the
Hall angle from the TDGL equations for superconductors with mixed s- and
d-wave order parameter in low magnetic field. The equation of motion for
single vortex and the Hall angle will be presented in the subsequent section.
The discussion and conclusion will be described in the final.

2. VORTEX MOTION AND THE HALL ANGLE

The phenomenological TDGL equations in the dimensionless form for
dx2_y2 wave superconductors may be written as (H = c — 1 used)

where P = — (i/k)V — A is defined in the ab plane. A is the vector potential.
s and d are the order parameters of s-wave and d-wave, respectively. Param-
eters as and ad depend on temperature; B1, B2,B3 are positive, Ri = h2 /2mi
with i = s,d, m and m* is effective mass. The dimensionless coefficients Fd

and Fs, describing complex relaxation time, are defined to be Fd = Nd1 +iNd2,
Fs = Ns1 + iNS2 respectively. The imaginary part of the relaxation time can
give rise to the particle-hole asymmetry, vortex traction, and nonvanishing
Hall current2,3 in s-wave superconductivity. Here, we limit our consideration
in the low field limit h < HC2. Except the coupled set of TDGL equations,
the Amper's law V x (V x A) - 4p(J n + Js) is required. The continuity
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equation V • (Jn + Js) = 0 should also be used. The supercurrent Js is

while the normal current density Jn is given by

where O = 2eO and R(n) is the normal-state conductivity tensor.
Now, the complex order parameters s and d may be expressed in terms of

an amplitude and a phase, d ( r , t) = f ( r , t)eiTd(r,t) and s(r, t) = g ( r , t )e i T s ( r1 t ) .
These complex order parameters are substituted into eqs.(l)-(4), then we
separate the real and imaginary parts from the TDGL equations. To solve
these nonlinear equations, the method developed by Gorkov and Kopnin8

in their study of flux flow is used. Three essential steps are made in the
calculation. First, the vortices translate uniformly are assumed. All quanti-
ties Y(x, t) such as the order parameter; vector potential, chemical potential,
characterizing the vortex system are functions of r — VLt, where VL is the
vortex velocity. Next, Y(r, t) may be expanded in first order of VL

where Y(1) is small relative to VL- Then Y may be expanded in powers of VL-
The terms of O(l) and O(VL) correspond to the equilibrium GL equations
and a set of inhomogeneous linear differential equations, respectively. The
final step is to get the equation of motion for the vortices, which is equivalent
to get the solvability condition. Here we are interested in a very large K limit.

In order to evaluate the solvability condition, we choose the z direction
of the coordinate system to be along the uniform magnetic field. The applied
transport current Jt is in the x direction (i.e. direction of the a crystal axes).
The vortex moves at an angle TH with respect to the —y direction and
the origin of cylindrical coordinates (r, T, z) at the center of a vortex. The
displacement vector L makes an angle (p with respect to the x-axis. In order to
investigate how the mixed gradient terms affect the sign of the Hall effect, the
region close to vortex core is focused. Because the far away from the vortex
core, |s| << |d|, so that mixed gradient terms may be neglected. The vortex-
vortex interaction can also be neglected as r > Ld, where Ld is the magnetic
penetration depth of the d-wave superconductivity. The integration regions
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in the solvability condition are set the cut-off at Ld. Finally, we obtain the
equation of motion for the vortex

where the parameters a1 and a2 are given by

where

Here h0 is magnetic field at the center of vortex core, the scalar potentials
Pd1, Pd2, Ps1 and pS2 satisfy a set of homogeneous equation for O (VL) related
to r —> 0. The coefficient c1 is the coefficient of the amplitude of d-wave
order parameter near the center of the vortex core when the system is in the
equilibrium.

3. DISCUSSION AND CONCLUSION

For convenience of the discussion of the Hall angle we present eq. (7)
as A2 = 20 + Oi'n where

Parameter A20 is independent of the imaginary parts of the relaxation time.
If a2/ < 0 and \a^i > a^o, then the Hall angle changes sign.
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If 7 R= 0,Nd2=Ns2 = NS2 = 0, then a 1 = b 1 = 0, a2I = 0 and tanTH = a20/a1 .
This shows no sign change of the Hall angle. Now let us look at the situation
Rm = 0, i.e. no mixed gradient terms, Nd2 = 0, NS2 = 0 then c2 = 0, b1 =
b2 = 0, 01 = Nd2C1K2/6(Rd/Rs), a2 = -Nd1C1K

2/6(rd/rs), A0 = 36(rd / rs ) .
Therefore

This is the same form as Dorsey2 got in his s-wave superconductor. For
7m rm= 0, the expression of tan OH is very complicated, but the mixed gradient
terms plays some role to change sign of Hall angle, except the imaginary parts
of relaxation time.

In conclusion, the imaginary part of relaxation time of s-wave and d-
wave order parameter plays the key role in the anomalous Hall effect. Also,
the mixed gradient term plays some role in the sign change of the Hall angle.
If no mixed gradient term, then the expression of Hall angle is reduced to
the form as that of s-wave superconductor. For further physical content, a
microscopic model of the mechanism of HTSC is needed to formulate TDGL
equations.
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