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Abstract

The token ring topology is required in token passing approach used in distributed operating systems. Fault tolerance is
also required in the designs of distributed systems. Note that 1-fault-tolerant design for token rings is equivalent to design of
1-Hamiltonian graphs. This paper introduces a new family of graphs daledtmas treedenoted byCT(s). The graphCT(s)
is a 3-regular, planar, 1-Hamiltonian, and Hamiltonian-connected graph. The number of nGd¢és)iis 3- 2° — 2. Its diameter
islifs=1,3ifs=2,and 2 if s > 3.0 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction tolerant designs for specific multiprocessor architec-
tures have been proposed based on graph theoretic

There are many mutually conflicting requirements models in which the processor-to-processor intercon-

in designing the topology of computer networks. It nection structure is represented by a graph.

is almost impossible to design a network that is op- Let G = (V, E) be an undirectedraph, whereV

timal from all aspects. One has to design a suitable is thenode setand E is the edge sebf G. A path

network depending on one’s requirements. The Hamil- is a sequence of nodes such that two consecutive

tonian property is one of major requirements in de- nodes are adjacent. A path is represented(dy

signing the topology of networks. For example, as v1,v2,...,v,-1). We also write the patifvo, v1, vz,
“Token Passingapproach is used in some distrib- ..., v—1) as{vo = P1 = v, Vi+1,...,v; = P2 —
uted operating systems, interconnection networks re- vk, Vk+1, - - ., v;—1), where Py = (vo, v1,...,v;) and

quire the presence of Hamiltonian cycles in the struc- P2 = (vj, vj+1,..., ). The length of a path is the
ture to apply this approach. Fault tolerance is also de- number of nodes in this path. Mamiltonian pathis
sirable in massive parallel systems that have a rela- a path whose nodes are distinct and sparA cycle
tively high probability of failure. A number of fault- is a path of at least three nodes such that the first

node is the same as the last node. A cycle is called
7 This work was supported in part by the National Science Council a Hamiltonian cycleif it traverses every node of

of the Republic of China under Contract NSC 87-2213-E-009-100. €Xactly once. IfG has a Hamiltonian cycle5 is said
* Corresponding author. Email: Ihhsu@cc.nctu.edu.tw. to beHamiltonian
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Let G — v be a subgraph of; induced byV — v if s=1,3ifs=2,and 2 if s > 3. Thus the diameter
for v e V and G — ¢ be the subgraph witle re- is 2 times of the Moore bound.
moved fromE for e € E. We useG — {f} for any
f € V U E to denote the graph obtained by removing

f from G. Given a pathP in G, we useG — P tode- 2. Definitions and notation
note the subgraph obtained by removing all nodes of . ) . ) .
P from G, i.e., the subgraph induced By — V (P) To define Christmas tree, we first define slim tree.

We write ansth slim tree STs) asST(s) = (V, E, u, ,

r), whereV is the node setf is the edge sei; € V is

theroot node! € V is theleft noder € V is theright

node ands > 2 is an integer. Theth slim treeST(s)
is recursively defined as follows:

(1) ST(2) is the complete graplk3 with its nodes
labeled withu, I andr.

(2) Thesth slim treeST(s), with s > 3, is composed
of a root nodex and two disjoint copies ofs —
D1yth slim trees as the left subtree and right sub-
tree, denoted by T (s — 1) = (V1, E1, u1, l1, 1)
andST (s — 1) = (Vo, E2, u2, l2, r2), respectively,
where in particulam ¢ V1 U V2. To be specific,
ST(s) =(V,E,u,l,r)isgivenbyV =ViU Vo U
{u}, E=E1UE2U{(u,u1), (u,uz), (r1,12)}, I =
I1, r =ro.

For exampleST(3) andST(4) are illustrated in Fig. 1.

By definition of ST(s), the left subtreeST (s — 1)

and the right subtre8T (s — 1) are isomorphic. This

property is referred to as theymmetry propertyof

ST(s).

We can also define the slim tre&T(s) from the
complete binary tree B(¥). An sth complete binary
tree BT(s) is a graph whose node set §§,2,...,
2 — 1} and edge set i§(i, j) | Lj/2] =i}. The slim
tree ST(s) can be constructed by adding the set of
edges

whereV (P) denotes the set of nodes i A graph
G is 1-Hamiltonianif G — { f} is Hamiltonian for any
f eV UE.We sometimes writ¢f e VUE as f €
G for convenience. Obviously, every 1-Hamiltonian
graph is Hamiltonian and has at least 4 nodes. More-
over, the degree of every node in a 1-Hamiltonian
graph is at least 3. A 1-Hamiltonian graph®* is
optimal if it contains the fewest edges among all
1-Hamiltonian graphs with the same number of nodes
asG*. The design of 1-Hamiltonian graphs is equiva-
lent to 1-fault-tolerant designs for token rings. A graph
G is Hamiltonian-connectei every two nodes ofG
can be joined by a Hamiltonian path. A Hamiltonian-
connected grapt™ is optimalif it contains the fewest
edges among all Hamiltonian-connected graphs with
the same number of nodes &3. Moon [6] proved
that every optimal Hamiltonian-connected graph with
n > 4 nodes contains exact[3n/2] edges.
Mukhopadhyaya and Sinha [7] proposed a fam-
ily of optimal 1-Hamiltonian graphs. The diameter of
every graph withn nodes in the family ign/6] + 2
if n is even, and|n/8] + 3 if n is odd. Harary
and Hayes [2,3] also presented a family of optimal
1-Hamiltonian graphs ofn nodes with diameter
L(n +1)/4]. Wang et al. [8] proposed another family
of optimal 1-Hamiltonian graphs which have diameter
O(/n). These three families of optimal 1-Hamiltonian
graphs are planar. Furthermore, they can be shown tol = {(i, i+D]271<i<2 - 2}
be optimal Hamiltonian-connected. toBT(s) for s > 2. Each edge it is called deaf edge
It is natural to ask if there are graphs having such SinceBT(s) is a spanning subgraph &fT(s), we can
good properties but with smaller diameter. This prob- apply the terms of complete binary trees to slim trees
lem is related to the famoué,d, D) problem in and defineST(s) as follows. We defineST(1) to be
which we want to construct a graph efnodes with the BT(1), whereu, [, r of ST(1) are identified with

maximum degred such that the diametdp is min- the only node oBT(1). Theleaf nodesof ST(s) are
imized. Whend and n are given, the lower bound nodes labeled, where 2-1 <i <2° — 1. For 271 ¢
on diameterD, called theMoore bound is given i <2°—2,theleaf node+ 1 is theright sibling of the
by D > log,;_1n — 2/d [1]. In this paper, we pro- leaf nodei and the nodé is theleft siblingof i + 1.
pose a family of graphs calle@hristmas treesde- The nodes labeleg, wherej < 2~1 — 1, arenon-

noted byCT(s). The grapiCT(s) is 3-regular, planar,  leaf nodeslIn particular, the node 1 is the root node of
1-Hamiltonian, and Hamiltonian-connected. The num- ST(s), node 2~ the left node, and node' 2- 1 the
ber of nodes iIrCT(s) is 3-2° — 2. The diameteris 1  right node.
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(a) ST(3).
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(b) ST(4).
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Fig. 1. The slim tre&ST(3) andST(4).
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Fig. 2. The Christmas tre€T(3).

The Christmas tree CTs) is composed of amth
slim tree

ST (s) = (V1, E1, u1,11,71)
and an(s + 1)th slim tree
ST (s +1) = (V2, E2, uz,12,r2).

To be specific, the node set 6fT(s) is V1 U V» and
the edge set oET(s) is E1 U Eo U {(u1, u2), (I1, ),
(I, r1)}. For exampleCT(3) is shown in Fig. 2. The
number of nodes aET(s) isn =28 — 14+ 25t1 — 1=
3.2% — 2. Every two nodes o€T(s) can be treated
as in an(s + 1)th slim tree, so is each edge Gf (s).
Such property is referred to as tegmmetry property
of CT(s).

Letdg(x, y) denote the distance between the nodes
x andy in graphG and D(G) denote the diameter
of G. Let v be an arbitrary node irBT(s). Note
that the slim treeST(s) is formed from the complete
binary treeBT(s) by adding the leaf edges. We can
distinguish two types of paths from to the root
u where type-1 paths use edgesBii(s) only and
type-2 paths use edgesBT(s) and at least one leaf
edge. It follows that type-2 paths have length at least
s + 1 which is larger than the length of type-1 paths.

Consequently, the shortest path freno u in ST(s),
denoted byR (v, u), is of type-1 and the same as the
shortest path fromv to u in BT(s). Thus R(v, u) is
unique.

Since R(v, u) is unique, we then can define the
ancestorsof the nodev as those nodes oR(v, u).
A nodez is called acommon ancest@f two nodes;
andvsy if z is on bothR(v1, u) and R(v2, u). A node
z* is called thdowest common ancestof two nodes
v andwy if z* is a common ancestor feg andv, for
which the distancés) (u, z*) is maximum.

3. Diameter and Hamiltonian properties

In this section, we show the diameter®@T (s) and
prove thatCT(s) is optimal 1-Hamiltonian and opti-
mal Hamiltonian-connected. It can be easily verified
that D(ST(2)) = 1, D(ST(3)) = 3, D(CT(1)) = 1,
andD(CT(2)) =3.

Lemmal. D(ST(s)) =2s—2fors > 4andD(CT(s))
=2sfors > 3.

Proof. Let x andy be two arbitrary nodes iST(s).
Sincedst) (v, u) < s — 1 for every nodev in ST(s),
it follows that

dst(s)(x, y) < dst(s)(x, u) +dstis) (W, y) <25 — 2.

Therefore, we hav®(ST(s)) < 2s — 2. Next, we want
to showdst) (I, r) = 25 — 2 for s > 4 by induction.
It can be easily verified thaista)(/, r) = 6. Assume
thatdst—1)(l, r) =2(s — 1) — 2 fors > 5. Obviously,
the paths froni to r in ST(s) have two types: type-1
paths contain the roat and type-2 paths contain the
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edge(ry, I») that joinsST (s — 1) andST (s — 1). The
shortest path of type 1 has length

dsis)(l, u) + dsTs) (u, 1)

The length of the shortest path of type 2 is

dst(s_1)(1,11) +dsT(s-1)(l2,72) +1
=22 -1 -2)+1

by induction hypotheses. Therefore, the shortest path
from to r is the shortest path of type 1 and we have

dsts)(,r) =25 — 2 for s > 4. HenceD(ST(s)) =
2s — 2 fors > 4.

It can be verified thatD(CT(3)) = 6. Note that
CT(s) is composed ofST (s) = (V1, E1,u1,l1,r1)
and ST (s + 1) = (Vo, E2,u2,l2,1r2). Let x and y
be arbitrary two nodes o€T(s). Using similar ar-
guments as in findind (ST(s)), we can obtain that
D(CT(s)) < 2s. Next, we want to showDcr(s) (/2, 2)
= 2s for s > 4. We can distinguish three types of
paths fromiz to rp in CT(s) as follows: type-1 paths
contain edges irsT (s + 1) only; type-2 paths con-
tain the edge(ri, I2) but not the edgeus, uz); and
type-3 paths contairiu1, u2). The shortest path of
type 1 has length £since D(ST(s + 1)) = 2s for
s = 4. The length of the shortest path of type 2 is
2+ ds#(s)(lv r) = 2s for s > 4. The shortest path of
type 3is 2+d5‘|'f(3+1) (I2, u2) +dST’(s)(ll’ ui1)=2s+1
for s > 4. Therefore, the shortest path@T (s) from
I to rp has lengthicT) (I2, r2) = 25 for s > 4. Hence
D(CT(s)) = 2s for s > 3 and the lemma follows. O

To prove Hamiltonian properties &T(s), we first
establish the following lemmas. L8f(s) = (V, E, u,
1,r). Henceforth we usePst)(x,y) to denote a
Hamiltonian path fromx to y in ST(s). Given a fault

feVUE, we usePSfTs)(x, y) to denote a Hamil-
tonian path fromx to y in ST(s) — {f}.

Lemma 2. In ST(s), there is a Hamiltonian path
Ps1(s)(x, y) foranyx, y € {u, [, r} ands > 2.

Proof. Obviously,ST(2) has three Hamiltonian paths
as follows:

Psto)(u,l) = (u, r,1),
Psto)(l,r)y = (L, u,r),
Psto)(ryu) = (r, 1, u).

and

Assume that this lemma is true f8(s — 1) ands >

3. LetST(s — 1) = (Va, E1,u1,11,r1) andST (s —

1) = (Vo, Ez, uz,l2,r2) be the left subtree and the
right subtree ofST(s), respectively. We can construct
the following paths:

Ps1isy (u, 1) = (u, uz — Psp(s_1)(u2,12) — lo,
r1— Pgp(_q)(r1, 1) = l1= 1),

P, r)=(l=11— Pori g1y (1, u1) — u1,
u,uz = Psys_1)(u2,r2) > ra=r),

and

Ps1is)(rou) = (r =r2 > Ps(5-1)(r2,12) — Io,
r— PST’(sfl)(rl’ u) —> uj, M>

Thus, this lemma is proved.O

Lemma 3. For any fault f € V U E, there is a
Hamiltonian pathPS{T(S)(x, y) in ST(s) —{ f} for some
x,y€fu,l,r}.

Proof. We prove this lemma by induction on Con-

siders = 2. The required Hamiltonian patlii%T(z) (x,y)
are given as follows:

PélT(z)(l»r) ={(l,r),
PéT(Z)(Mal) =(u,l),

l
P&y = (L u,r),

Plrp(rou) = (r.u),
N
Py (D) = (u.r.1),

PSS (rou) = (r. 1 u).

(Note thatPg.‘r’(%(r,u) does not exist.) Assume that
this lemma is true foBT(s — 1) ands > 3.

Consider thatf € ST'(s — 1) UST (s — 1). By the
symmetry property o8T(s), we can assume that e
ST (s — 1). By induction hypotheses?sj}(?_l)(x, y)
exists for somex, y € {u1,11,r1}. Then we can con-
structPSfm)(x, y) as follows:

f f
Pér(r)={l=l1— Pap gyl u1) = ug,
u,u2 — Psy(s_1)(u2,r2) > r2=r)
if PST’(s—l)(ll’ u1) exists,

Psz(s)(“» 1) =(u,uz > Psr(5-1)(u2,12) > Iz,

f .
rn— PST’(sfl)(rl’ h)—Il1= l)
i pf .
if Pop _q)(r1. 1) exists,



C.-N. Hung et al. / Information Processing Letters 72 (1999) 55-63 59

Pé{T(S)(r’ u) = (r =12 — Psy(s—1)(r2,[2) = I2,
ry— Pfﬂ (rl,ul)—>ul, )
|f Psﬂ(

(s—
1 (r1, u1) exists.

(u2 > va(s+1)(”2’ r2) = r2,
1 — PSTI(S)(ll, u1) — u, u2)
if P T,(Y+l)(u2,r2) exists,

p
It follows from the induction hypotheses that at least 12— Pap (41 l2r2) > 12,

one of
f

PST[(Y—J.)(ll’ ul)a
f

PSTI(.Yfl)(rl’ ll)a

f
PST[(sfl

and
(r1,u1)

exists. Therefore wheyi e ST(s — 1) UST (s — 1),
there is aPST(é)(x y) for somex, y € {u, [, r}.

Considerthalf ¢ ST (s —1)UST (s —1),i.e.,f €
{u, (u,u1), (u,u2), (r1,12)}. Then we can construct
PS{T@)(x, y) as follows:

Psyis)(r D) =(r=r2— Psy(_1)(r2.l2) > I2.

ri— PST’(Sfl)(rl, ) —l= l>,

Pg"r'(z)l)(“’ D) = (u,uz > Psy(s—1)(u2,l2) > I2,
rn— PSTI(S_]_)(VL h)y—h= l),
=(r=ra2— Psr(s_1)(r2,l2) = I2,

r1— Pgyi_1)(r1, uz) — uz, u),

(u,uz)
PST(Y)Z (r,u)

P(rl 12)(1’ r) —

ST(s) (l=l1— Pgp(_1)(1,u1) — ua,

u,up — Psy(s_1)(U2,12) > ra =r).

Therefore, there exists a Hamiltonian pa’g}(ﬁ)(x y)
in ST(s) — { f} for somex, y € {u,l, r}.

Theorem 1. The Christmas tree CF) is optimal
1-Hamiltonian for alls > 1.

Proof. SinceCT(1) = K4, CT(1) is 1-Hamiltonian.
Now we consider the case that 2. By the symmetry
property ofCT(s), we can assume that the faylis in
the slim treeST (s + 1) Applying Lemma 3, we have
a Hamiltonian patt®, T’(erl)(x yIinST (s+1)—{f}
for somex, y € {u», I, r2}. Then we can construct a
Hamiltonian cycle inCT(s) — { f} as follows:

(lo— ng(ﬁl)(lz, uz) — u,
up— PST’(S)(ML r) = ri, b

if P uy) exists,

ST (541 (25

1= Py (1, 11) = 11, 1)
if va@+1)(12v ro) exists.

ThusCT(s) is 1-Hamiltonian. Since the degree of each
node inCT(s) is 3,CT(s) is optimal 1-Hamiltonian. O

Let {ST(s;) = (Vs,- , Es,- > Us; s ls,- , rs,-) | s1,82,...,5;
are positive integefsbe a set of disjoint slim trees.
We can construct alim forest Sksi, s2,...,s;) by
adding edgesry;, [;;,,) forall 1 <i <t — 1. For ex-
ample,SK3, 1,1, 2) is shown in Fig. 3(a). Hence-
forth we usePsg(x, y) to denote a Hamiltonian path
in SF(s1, s2,...,s;) fromx toy.

Lemma 4. There are four Hamiltonian pathBsg(u,
MSk)v PSF(“sl, rsk), PSF(lsl, M.Yk)v and PSF(Z.Y]_a rsk) in
SKGs1, 52, ..., 8K).

Proof. It follows from Lemma 2 that there is a Hamil-
tonian pathPst;) (y;, rs;) in eachST(s;). (Whens; =
1, the Hamiltonian path is simply a node.) We can de-

fine two pathsQ1 and Q> in SK(s1, s2, ..., s¢) as fol-

lows:

Q1= (lsz —> Ps(sp) (Usps T'sp) = Tspolsg = -+ —> 1 g,
lSk - PST(Sk) (lsk» Msk) - I/lsk>,

02=ls, = PsT(sp) sy, Isp) = Fsps gy = -+ > rgy 4,

lsk - PST(Sk) (lsk s rsk) - rsk>-
Thus we can construct the four Hamiltonian paths as
follows:
PSF(MSla usk) = (Msl - PST(sl) (uS]_’ rsl) —> Vs,
lsz — 01— Msk>»

PSF(MS]_a rsk) = (MS]_ - PST(S]_)(MS]_a rsl) —> Fsqs
lsz — 02— rSk)a

PSF(Z.Y]_a Msk) = (lsl - PST(sl) (lsl, rsl) —> Ty,
ZSZ g Ql - usk>,

Psi(lsy, ) = (ls; = Pstisp Usys Fsy) = T
lsz — 02— rsk>~

The lemma follows. O



60 C.-N. Hung et al. / Information Processing Letters 72 (1999) 55-63

Fig. 3. (a) The slim fores8F(3, 1, 1, 2). (b) The graptST(4) —

(ul) ‘

£ A, .\/ --H/... fu\

u

(b)

R(v,u).

,\P(lu)

A Al

r
F("

Fig. 4. P55 (v, 1) for a nodev of the left subtree.

Lemmab. Let v be an arbitrary node in the left
subtree of STs) = (V, E, u,l,r) withv 41 ands > 2.
Then there is a Hamiltonian patRst) (v, I) in ST(s)
forall s > 2.

Proof. First, consider that is a non-leaf node. It
is known thatBT(s) — R(v,u) is a set of disjoint
complete binary trees. Sinaeis a non-leaf node, all
of the leaf edges are contained $T(s) — R(v, u).
Therefore,ST(s) — R(v,u) is just BT(s) — R(v, u)
plus all of the leaf edges ir8T(s), which consti-

tutes a set of slim trees and the leaf edges between.

slim trees. ThereforeST(s) — R(v, u) forms a slim
forest SK(s1, s2, ..., sxr1) for 1 < 51,52, ..., 51401 <

s — 1, wherek is the length of R(v,u). (An ex-

ample of ST(4) — R(v,u) which yields a slim for-
estSKH3, 1, 1, 2) is illustrated in Fig. 3(b).) Applying
Lemma 4, we can define

Ps1i5)(v, 1) = <v — R(v,u) —> u,
Usp g = PSF(MAYk+17 lsl) - lsl = l>

(An example ofPsTs5) (v, 1) is illustrated in Fig. 4(a) in
which Psg(ug, 4, Is,) is represented by dotted lines.)

Next, consider thab is a leaf node. Since # [,
v has a left siblingv’. Let z* be the lowest com-
mon ancestor of! andv. Clearly,v* andv is con-
nected by an edge, denoted ty v'). Sincez* is the
lowest common ancestor af and v, z* is a non-
leaf node. ThusST(s) — R(z*, u) forms a slim forest
SH(s1, 52, ..., Sk+1) for somesy, s2, ..., sg+1, Where
k is the length ofR(z*, u). Let T1 denote the slim tree
rooted atz*. Sincez* is the lowest common ancestor
of v! andv, the node)' must be in the left subtree @}
andv in the right subtree of;. Thereforep andv! are
in dlﬁerent slim trees 08T(s) — R(z*, u) and the edge
(v,v!) is an edge between different slim trees of the
slim forest. Removingv, v') disconnects the slim for-
est. Consequently, the grapfi(s) — R(z*, u) — (v, v")
forms two disjoint slim forest$H(s1, s2, ..., s;) and
SKsj+1, 842, - .., Sk+1). Applying Lemma 4, we can
define

PST(S)(Ua l) = (U = lSjJr]_ - PSF(lSjJr]_» Msk+1) > Ugpy1s
u— R(u,z") — %,
us; = Psr(us;, lsy) — sy = l>,
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where Psg(l Us,,,) and Psr(us;, ls;) are Hamil-

Sj+1 ’

61

disjoint pathsPy = (v1, ..., x1) and P, = (v2, ..., x2)

tonian paths with the specified source and destination such thatV (P1) U V(P2) = V andxy, x2 € {u, [, r}.

in SF(sj4+1, 842, ..., Sk+1) andSHGs1, s2, ..., 5;), re-
spectively. (An example aPsts) (v, ) is illustrated in
Fig. 4(b), in whichST(5) — R(z*, u) — (v, v') forms
the slim forestsSH3, 2) andSH?2, 4), and the corre-

Proof. We prove this lemma by induction on The
lemma is obviously true fox = 2. Assume that this
lemma is true foST(s — 1) ands > 3. We distinguish

sponding Hamiltonian paths are represented by dashedhe following two cases.

lines and dotted lines, respectively.)
Hence this lemma is proved.co

It follows from the symmetry property & T(s) and
Lemma 5 that there is a Hamiltonian patr) (v, r)
for any nodev with v # r in the right subtree dbT(s).

Lemma 6. Letv be anynode of S§) = (V, E, u,l,r)
with s > 2. Then there are two Hamiltonian paths
Ps1(s)(v, x;) in ST(s), wherex; € {u,l,r}fori =1,2
andxi # x2.

Proof. We prove this lemma by induction on Since
ST(2) = K3, the lemma is obviously true for = 2.
Assume that this lemma is true for— 1 ands >

3. Let v be any node ofST(s). Whenv € {u,l,r},
the lemma is proved following from Lemma 2. Now,
we considen ¢ {u,l,r}. By the symmetry property
of ST(s), we can assume that € V(ST (s — 1)).
Applying Lemma 5, we can construct a Hamiltonian
path Pst)(v,/). Now, we need to construct the
second Hamiltonian patRst) (v, x) for x =u orr.

By induction hypotheses, there are two Hamiltonian
pathsPgy ,_1,(v, y1) and Pgy (v, y2) in ST (s —

1) for somey, y2 € {u1, l1, r1}. Obviously, one ofy;,
sayy1, isuy orri. We definePsy) (v, x) forx € {r, u}

as follows:

Pstis(v,r) = (v —> Pori 1y (v, u1) — u1,
u,up = Psp(s_1)(U2,12) > ra=r)
if y1=ui, and
Pss)(v,u) = (v = Pgyis_1)(v, 1) = 11,
Iz = Psy(s—1)(l2, u2) = u2, u)
if y1=r1.
Thus we obtain two Hamiltonian paths fromto
xi € {u,l,r}fori =1,2 andx; # x2, and the lemma
follows. O

Lemma 7. For any two different nodes; and vy in
ST(s) = (V, E,u,l,r)withs > 2, there are two node-

Casel. u € {v1, v2}. Without loss of generality,
we can assume that = u and v, € V(ST (s — 1)).
Applying Lemma 6, we know that there are two
Hamiltonian pathsPgy,_1(v2, x;) in ST(s — 1)
with x; € {u1,l1,r1} andi = 1,2. If 11 € {x1, x2},
thenPy = (v1 = u,up - Psy(s—1)(u2,1r2) > r2=r)
and P2 = (v2 > Pgy(_q)(v2,11) — l1 =1) are the
desired paths, as illustrated in Fig. 5(a). Otherwise,
r1 € {x1,x2}; then Py = (v1 = u) and P> = (v) —
Pgyi(_1)(v2,11) = 11,12 = Psy(s_1)(l2,72) > r2 =
r) are the desired paths.

Case2.u ¢ {v1, v2}. We first consider that; andvs
are in the same subtree 8fl(s). With the symmetry
property of ST(s), we can assume that;, v> are
in the left subtreeST (s — 1) = (V4, E1, u1,l1, r1).
By induction hypotheses, there are two node-disjoint
paths P{ = (v1,...,y1) and P, = (v2,..., y2) with
V(P]) U V(Py) = Vi for someyi, y2 € {u1,l1,71}.
When y1, y2 € {u1,l1}, we can assume without loss
of generality thaty; = u3 and yo =[;. Then Py =
(v1 = P{ = u1,u,uz = Psr(s_1)(u2,r2) = r2 =
r) and P, = P, are the desired paths, as illustrated
in Fig. 5(b). Wheny1, y2 € {u1,r1}, we can assume
without loss of generality thayy = u1 and y2 =
r1. ThenPy = (v1 — P{ — u1,u) and P, = (v2 —

P2/ — r1,l2 - Psy_p(2,r2) — r2 =r) are the
desired paths. Whem, y2 € {l1,r1}, we can assume
without loss of generality thatyy = /1 and y, =
ri. ThenPy = Pl and P = (v — P, — r1,l2 —
Pst (5—1)(l2, u2) — u2, u) are the desired paths.

Next, we consider thab1 and vy are in differ-
ent subtrees o8T(s). Without loss of generality, we
can assume that; is in ST(s — 1) and v is in
ST (s —1). Applying Lemma 6, we can obtain Hamil-
tonian pathsPSﬂ(Sfl)(vl, yi) and Psy (s_1)(v2, w;)
for y; € {u1, 11, r1} andw; € {uz,lo, r2} withi =1, 2.
We distinguish all of the possible conditions in the fol-
lowing subcases.

Case2.1. u1 € {y1, y2} andrz € {w1, wp}. P =
(v1 — Psﬁ(sfl)(vl’”l) — u1,u) and P> = (vo —
P51 (5—1)(v2, r2) — r2 =r) are the desired paths.
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Fig. 5. Two node-disjoint paths &T(5).

Case2.2.11 € {y1, y2} anduz € {w1, w2}. We con-
struct the two path®; = (v — PST[(S—:L)(vl’ ) —
l1=1)andPo = (vo — Ps(s—1)(v2, u2) — uz, u).

Case2.3.r1 € {y1, y2} andlz € {w1, w2}. Consider
that vz is a non-leaf node. It follows from the proof
in Lemma 5 thatST (s — 1) — R(v2,u») forms a
slim forestSH(s1, s2, ..., sx+1) Wherek is the length
of R(vz,uz). Applying Lemma 4, we can obtain
that P, = (v1 — PST’(s—l)(vl’ ry) = ri,l =1y —
Psp(lsy, Tsppq) —> Ty =12 =17) and P, = (v —
R(v2, u2) — uz, u) are the desired paths, as illustrated
in Fig. 5(c).

Next, consider thai, is a leaf node. Sincé €
{w1, wp}, it follows that vy # Io. Let v* be the left
sibling of vz and (v2, v) be the edge linkinguz
and v/, Let z* be the lowest common ancestor of
vz and v'. The graphST (s — 1) — R(z*, up) —
(v2, v') forms two slim forestSSF(sy, so, . . .,8;) and
SHs 41,842, ..., 5k+1) where k is the length of
R(z*, u2). Applying Lemma 4, we obtain two desired
paths Py = (v1 — Pgyi_q)(v1. 1) = ri,l2 =1y —
PSF(lsyusj-) - MS]-»Z* — R(z*,u2) — up,u) and
Py =(v2 =1y, = Psills; 1, Fs1) = Py =12 =
r), where Psg(ly,, us;) and Psg(ls;,,,7s,,) are two
Hamiltonian paths irSF(s1, 52, ...,s;) andSH(s; 41,

Sjt+2, ..., 8k+1), respectively, asillustrated in Fig. 5(d).
Thus, this lemma is proved.

Theorem 2. The Christmas tree CF) is optimal
Hamiltonian-connected.

Proof. Since CT(1) = K4, CT(1) is Hamiltonian-
connected. Now we consider the case that 2. By
the symmetry property o€T(s), we can assume that
any two nodes ofCT(s) are in the(s + 1)th slim
tree ST (s + 1). It follows from Lemma 7 that for
any two different node®s, v2 in ST (s + 1), there
exist two node-disjoint path®; = (v1,...,x1) and
P> = (x2,...,v2) such thatV(Py) U V(P>) =V, and
x1, x2 € {uz, 12, r2}. When{x1, x2} = {u2, 2}, we can
assume without loss of generality = u» andx, =
I>. Then (vi — P1 — up,u; — PS-|4(S)(ul,r1) —
r1,lp = P, — vp) is a Hamiltonian path. When
{x1, x2} = {l2,r2}, we can assume without loss of
generality thatx; = /> and x = rp. Then (v —
Pi—l,rn— PST’(S)(rl’ 1) = l1,r0o— Py — v2) is

a Hamiltonian path. Whefx1, x2} = {r2, u2}, we can
assume without loss of generality thet = r» and
x2=u».Then(vy — Py — ra,l1 — PST](S)(ZJ_, ui) —>
ui, u2 — P> — vp) is a Hamiltonian path. Thus,
CT(s) is Hamiltonian-connected.
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Since the number of edges G (s) is 3n/2, CT(s) Acknowledgments

is optimal Hamiltonian-connected following from the
Moon’s result [6]. This theorem follows. O The authors are very grateful to the anonymous
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