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Abstract

The token ring topology is required in token passing approach used in distributed operating systems. Fault tolerance is
also required in the designs of distributed systems. Note that 1-fault-tolerant design for token rings is equivalent to design of
1-Hamiltonian graphs. This paper introduces a new family of graphs calledChristmas tree, denoted byCT(s). The graphCT(s)
is a 3-regular, planar, 1-Hamiltonian, and Hamiltonian-connected graph. The number of nodes inCT(s) is 3·2s −2. Its diameter
is 1 if s = 1, 3 if s = 2, and 2s if s > 3.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

There are many mutually conflicting requirements
in designing the topology of computer networks. It
is almost impossible to design a network that is op-
timal from all aspects. One has to design a suitable
network depending on one’s requirements. The Hamil-
tonian property is one of major requirements in de-
signing the topology of networks. For example, as
“Token Passing” approach is used in some distrib-
uted operating systems, interconnection networks re-
quire the presence of Hamiltonian cycles in the struc-
ture to apply this approach. Fault tolerance is also de-
sirable in massive parallel systems that have a rela-
tively high probability of failure. A number of fault-
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tolerant designs for specific multiprocessor architec-
tures have been proposed based on graph theoretic
models in which the processor-to-processor intercon-
nection structure is represented by a graph.

Let G = (V ,E) be an undirectedgraph, whereV
is the node setandE is the edge setof G. A path
is a sequence of nodes such that two consecutive
nodes are adjacent. A path is represented by〈v0,

v1, v2, . . . , vt−1〉. We also write the path〈v0, v1, v2,

. . . , vt−1〉 as 〈v0→ P1→ vi, vi+1, . . . , vj → P2→
vk, vk+1, . . . , vt−1〉, whereP1 = 〈v0, v1, . . . , vi〉 and
P2 = 〈vj , vj+1, . . . , vk〉. The length of a path is the
number of nodes in this path. AHamiltonian pathis
a path whose nodes are distinct and spanV . A cycle
is a path of at least three nodes such that the first
node is the same as the last node. A cycle is called
a Hamiltonian cycleif it traverses every node ofV
exactly once. IfG has a Hamiltonian cycle,G is said
to beHamiltonian.
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Let G − v be a subgraph ofG induced byV − v
for v ∈ V and G − e be the subgraph withe re-
moved fromE for e ∈ E. We useG − {f } for any
f ∈ V ∪E to denote the graph obtained by removing
f fromG. Given a pathP in G, we useG− P to de-
note the subgraph obtained by removing all nodes of
P from G, i.e., the subgraph induced byV − V (P)
whereV (P) denotes the set of nodes inP . A graph
G is 1-Hamiltonianif G−{f } is Hamiltonian for any
f ∈ V ∪ E. We sometimes writef ∈ V ∪ E asf ∈
G for convenience. Obviously, every 1-Hamiltonian
graph is Hamiltonian and has at least 4 nodes. More-
over, the degree of every node in a 1-Hamiltonian
graph is at least 3. A 1-Hamiltonian graphG∗ is
optimal if it contains the fewest edges among all
1-Hamiltonian graphs with the same number of nodes
asG∗. The design of 1-Hamiltonian graphs is equiva-
lent to 1-fault-tolerant designs for token rings. A graph
G is Hamiltonian-connectedif every two nodes ofG
can be joined by a Hamiltonian path. A Hamiltonian-
connected graphG∗ is optimalif it contains the fewest
edges among all Hamiltonian-connected graphs with
the same number of nodes asG∗. Moon [6] proved
that every optimal Hamiltonian-connected graph with
n> 4 nodes contains exactlyd3n/2e edges.

Mukhopadhyaya and Sinha [7] proposed a fam-
ily of optimal 1-Hamiltonian graphs. The diameter of
every graph withn nodes in the family isbn/6c + 2
if n is even, andbn/8c + 3 if n is odd. Harary
and Hayes [2,3] also presented a family of optimal
1-Hamiltonian graphs ofn nodes with diameter
b(n+ 1)/4c. Wang et al. [8] proposed another family
of optimal 1-Hamiltonian graphs which have diameter
O(
√
n). These three families of optimal 1-Hamiltonian

graphs are planar. Furthermore, they can be shown to
be optimal Hamiltonian-connected.

It is natural to ask if there are graphs having such
good properties but with smaller diameter. This prob-
lem is related to the famous(n, d,D) problem in
which we want to construct a graph ofn nodes with
maximum degreed such that the diameterD is min-
imized. Whend and n are given, the lower bound
on diameterD, called theMoore bound, is given
by D > logd−1n − 2/d [1]. In this paper, we pro-
pose a family of graphs calledChristmas trees, de-
noted byCT(s). The graphCT(s) is 3-regular, planar,
1-Hamiltonian, and Hamiltonian-connected.The num-
ber of nodes inCT(s) is 3 · 2s − 2. The diameter is 1

if s = 1, 3 if s = 2, and 2s if s > 3. Thus the diameter
is 2 times of the Moore bound.

2. Definitions and notation

To define Christmas tree, we first define slim tree.
We write ansth slim tree ST(s) asST(s)= (V ,E,u, l,
r), whereV is the node set,E is the edge set,u ∈ V is
theroot node, l ∈ V is theleft node, r ∈ V is theright
node, ands > 2 is an integer. Thesth slim treeST(s)
is recursively defined as follows:
(1) ST(2) is the complete graphK3 with its nodes

labeled withu, l andr.
(2) Thesth slim treeST(s), with s > 3, is composed

of a root nodeu and two disjoint copies of(s −
1)th slim trees as the left subtree and right sub-
tree, denoted bySTl (s − 1) = (V1,E1, u1, l1, r1)

andSTr (s−1)= (V2,E2, u2, l2, r2), respectively,
where in particularu /∈ V1 ∪ V2. To be specific,
ST(s)= (V ,E,u, l, r) is given byV = V1 ∪ V2 ∪
{u},E =E1∪E2∪{(u,u1), (u,u2), (r1, l2)}, l =
l1, r = r2.

For example,ST(3) andST(4) are illustrated in Fig. 1.
By definition of ST(s), the left subtreeSTl (s − 1)
and the right subtreeSTr (s − 1) are isomorphic. This
property is referred to as thesymmetry propertyof
ST(s).

We can also define the slim treeST(s) from the
complete binary tree BT(s). An sth complete binary
tree BT(s) is a graph whose node set is{1,2, . . . ,
2s − 1} and edge set is{(i, j) | bj/2c = i}. The slim
tree ST(s) can be constructed by adding the set of
edges

L= {(i, i + 1) | 2s−16 i 6 2s − 2
}

to BT(s) for s > 2. Each edge inL is called aleaf edge.
SinceBT(s) is a spanning subgraph ofST(s), we can
apply the terms of complete binary trees to slim trees
and defineST(s) as follows. We defineST(1) to be
the BT(1), whereu, l, r of ST(1) are identified with
the only node ofBT(1). The leaf nodesof ST(s) are
nodes labeledi, where 2s−16 i 6 2s − 1. For 2s−16
i 6 2s−2, the leaf nodei+1 is theright siblingof the
leaf nodei and the nodei is the left siblingof i + 1.
The nodes labeledj , wherej 6 2s−1 − 1, arenon-
leaf nodes. In particular, the node 1 is the root node of
ST(s), node 2s−1 the left node, and node 2s − 1 the
right node.
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Fig. 1. The slim treeST(3) andST(4).

Fig. 2. The Christmas treeCT(3).

The Christmas tree CT(s) is composed of ansth
slim tree

STl (s)= (V1,E1, u1, l1, r1)

and an(s + 1)th slim tree

STr (s + 1)= (V2,E2, u2, l2, r2).

To be specific, the node set ofCT(s) is V1 ∪ V2 and
the edge set ofCT(s) is E1 ∪E2 ∪ {(u1, u2), (l1, r2),

(l2, r1)}. For example,CT(3) is shown in Fig. 2. The
number of nodes ofCT(s) is n= 2s − 1+ 2s+1− 1=
3 · 2s − 2. Every two nodes ofCT(s) can be treated
as in an(s + 1)th slim tree, so is each edge ofCT(s).
Such property is referred to as thesymmetry property
of CT(s).

Let dG(x, y) denote the distance between the nodes
x and y in graphG andD(G) denote the diameter
of G. Let v be an arbitrary node inST(s). Note
that the slim treeST(s) is formed from the complete
binary treeBT(s) by adding the leaf edges. We can
distinguish two types of paths fromv to the root
u where type-1 paths use edges inBT(s) only and
type-2 paths use edges inBT(s) and at least one leaf
edge. It follows that type-2 paths have length at least
s + 1 which is larger than the length of type-1 paths.

Consequently, the shortest path fromv to u in ST(s),
denoted byR(v,u), is of type-1 and the same as the
shortest path fromv to u in BT(s). ThusR(v,u) is
unique.

SinceR(v,u) is unique, we then can define the
ancestorsof the nodev as those nodes onR(v,u).
A nodez is called acommon ancestorof two nodesv1

andv2 if z is on bothR(v1, u) andR(v2, u). A node
z∗ is called thelowest common ancestorof two nodes
v1 andv2 if z∗ is a common ancestor forv1 andv2 for
which the distancedST(s)(u, z

∗) is maximum.

3. Diameter and Hamiltonian properties

In this section, we show the diameter ofCT(s) and
prove thatCT(s) is optimal 1-Hamiltonian and opti-
mal Hamiltonian-connected. It can be easily verified
that D(ST(2)) = 1, D(ST(3)) = 3, D(CT(1)) = 1,
andD(CT(2))= 3.

Lemma 1. D(ST(s))= 2s−2 for s > 4 andD(CT(s))
= 2s for s > 3.

Proof. Let x andy be two arbitrary nodes inST(s).
SincedST(s)(v, u) 6 s − 1 for every nodev in ST(s),
it follows that

dST(s)(x, y)6 dST(s)(x,u)+ dST(s)(u, y)6 2s − 2.

Therefore, we haveD(ST(s))6 2s−2. Next, we want
to showdST(s)(l, r) = 2s − 2 for s > 4 by induction.
It can be easily verified thatdST(4)(l, r) = 6. Assume
thatdST(s−1)(l, r)= 2(s−1)−2 for s > 5. Obviously,
the paths froml to r in ST(s) have two types: type-1
paths contain the rootu and type-2 paths contain the
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edge(r1, l2) that joinsSTr (s− 1) andSTl(s− 1). The
shortest path of type 1 has length

dST(s)(l, u)+ dST(s)(u, r)

= (s − 1)+ (s − 1)= 2s − 2.

The length of the shortest path of type 2 is

dSTl (s−1)(l1, r1)+ dSTr (s−1)(l2, r2)+ 1

= 2
(
2(s − 1)− 2

)+ 1

by induction hypotheses. Therefore, the shortest path
from l to r is the shortest path of type 1 and we have
dST(s)(l, r) = 2s − 2 for s > 4. HenceD(ST(s)) =
2s − 2 for s > 4.

It can be verified thatD(CT(3)) = 6. Note that
CT(s) is composed ofSTl (s) = (V1,E1, u1, l1, r1)

and STr (s + 1) = (V2,E2, u2, l2, r2). Let x and y
be arbitrary two nodes ofCT(s). Using similar ar-
guments as in findingD(ST(s)), we can obtain that
D(CT(s))6 2s. Next, we want to showDCT(s)(l2, r2)

= 2s for s > 4. We can distinguish three types of
paths froml2 to r2 in CT(s) as follows: type-1 paths
contain edges inSTr (s + 1) only; type-2 paths con-
tain the edge(r1, l2) but not the edge(u1, u2); and
type-3 paths contain(u1, u2). The shortest path of
type 1 has length 2s sinceD(ST(s + 1)) = 2s for
s > 4. The length of the shortest path of type 2 is
2+ dSTl (s)(l, r) = 2s for s > 4. The shortest path of
type 3 is 2+dSTr (s+1)(l2, u2)+dSTl (s)(l1, u1)= 2s+1
for s > 4. Therefore, the shortest path inCT(s) from
l2 to r2 has lengthdCT(s)(l2, r2)= 2s for s > 4. Hence
D(CT(s))= 2s for s > 3 and the lemma follows.2

To prove Hamiltonian properties ofCT(s), we first
establish the following lemmas. LetST(s)= (V ,E,u,
l, r). Henceforth we usePST(s)(x, y) to denote a
Hamiltonian path fromx to y in ST(s). Given a fault
f ∈ V ∪ E, we usePfST(s)(x, y) to denote a Hamil-
tonian path fromx to y in ST(s)− {f }.
Lemma 2. In ST(s), there is a Hamiltonian path
PST(s)(x, y) for anyx, y ∈ {u, l, r} ands > 2.

Proof. Obviously,ST(2) has three Hamiltonian paths
as follows:

PST(2)(u, l)= 〈u, r, l〉,
PST(2)(l, r)= 〈l, u, r〉, and

PST(2)(r, u)= 〈r, l, u〉.

Assume that this lemma is true forST(s − 1) ands >
3. Let STl (s − 1) = (V1,E1, u1, l1, r1) and STr (s −
1) = (V2,E2, u2, l2, r2) be the left subtree and the
right subtree ofST(s), respectively. We can construct
the following paths:

PST(s)(u, l)=
〈
u,u2→ PSTr (s−1)(u2, l2)→ l2,

r1→ PSTl (s−1)(r1, l1)→ l1= l
〉
,

PST(s)(l, r)=
〈
l = l1→ PSTl (s−1)(l1, u1)→ u1,

u,u2→ PSTr (s−1)(u2, r2)→ r2= r
〉
,

and

PST(s)(r, u)=
〈
r = r2→ PSTr (s−1)(r2, l2)→ l2,

r1→ PSTl (s−1)(r1, u1)→ u1, u
〉
.

Thus, this lemma is proved.2
Lemma 3. For any fault f ∈ V ∪ E, there is a
Hamiltonian pathPfST(s)(x, y) in ST(s)−{f } for some
x, y ∈ {u, l, r}.

Proof. We prove this lemma by induction ons. Con-
siders = 2. The required Hamiltonian pathsPfST(2)(x, y)

are given as follows:

PuST(2)(l, r)= 〈l, r〉, P lST(2)(r, u)= 〈r, u〉,
P rST(2)(u, l)= 〈u, l〉, P

(u,l)
ST(2)(u, l)= 〈u, r, l〉,

P
(l,r)
ST(2)(l, r)= 〈l, u, r〉, P

(r,u)
ST(2)(r, u)= 〈r, l, u〉.

(Note thatP (u,l)ST(2)(r, u) does not exist.) Assume that
this lemma is true forST(s − 1) ands > 3.

Consider thatf ∈ STl(s − 1) ∪ STr (s − 1). By the
symmetry property ofST(s), we can assume thatf ∈
STl(s − 1). By induction hypotheses,Pf

STl (s−1)
(x, y)

exists for somex, y ∈ {u1, l1, r1}. Then we can con-
structPfST(s)(x, y) as follows:

P
f

ST(s)(l, r)=
〈
l = l1→ P

f

STl (s−1)
(l1, u1)→ u1,

u,u2→ PSTr (s−1)(u2, r2)→ r2= r
〉

if Pf
STl (s−1)

(l1, u1) exists,

P
f

ST(s)(u, l)=
〈
u,u2→ PSTr (s−1)(u2, l2)→ l2,

r1→ P
f

STl (s−1)
(r1, l1)→ l1= l

〉
if Pf

STl (s−1)
(r1, l1) exists,
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P
f

ST(s)(r, u)=
〈
r = r2→ PSTr (s−1)(r2, l2)→ l2,

r1→ P
f

STl (s−1)
(r1, u1)→ u1, u

〉
if Pf

STl (s−1)
(r1, u1) exists.

It follows from the induction hypotheses that at least
one of

P
f

STl (s−1)
(l1, u1),

P
f

STl (s−1)
(r1, l1), and

P
f

STl (s−1)
(r1, u1)

exists. Therefore, whenf ∈ STl (s − 1) ∪ STr (s − 1),
there is aPfST(s)(x, y) for somex, y ∈ {u, l, r}.

Consider thatf /∈ STl (s−1)∪STr (s−1), i.e.,f ∈
{u, (u,u1), (u,u2), (r1, l2)}. Then we can construct
P
f

ST(s)(x, y) as follows:

PuST(s)(r, l)=
〈
r = r2→ PSTr (s−1)(r2, l2)→ l2,

r1→ PSTl (s−1)(r1, l1)→ l1= l
〉
,

P
(u,u1)
ST(s) (u, l)=

〈
u,u2→ PSTr (s−1)(u2, l2)→ l2,

r1→ PSTl (s−1)(r1, l1)→ l1= l
〉
,

P
(u,u2)
ST(s) (r, u)=

〈
r = r2→ PSTr (s−1)(r2, l2)→ l2,

r1→ PSTl (s−1)(r1, u1)→ u1, u
〉
,

P
(r1,l2)
ST(s) (l, r)=

〈
l = l1→ PSTl (s−1)(l1, u1)→ u1,

u,u2→ PSTr (s−1)(u2, r2)→ r2= r
〉
.

Therefore, there exists a Hamiltonian pathPfST(s)(x, y)

in ST(s)− {f } for somex, y ∈ {u, l, r}. 2
Theorem 1. The Christmas tree CT(s) is optimal
1-Hamiltonian for alls > 1.

Proof. SinceCT(1) ∼= K4, CT(1) is 1-Hamiltonian.
Now we consider the case thats > 2. By the symmetry
property ofCT(s), we can assume that the faultf is in
the slim treeSTr (s + 1). Applying Lemma 3, we have
a Hamiltonian pathPfSTr (s+1)(x, y) in STr (s+1)−{f }
for somex, y ∈ {u2, l2, r2}. Then we can construct a
Hamiltonian cycle inCT(s)− {f } as follows:〈
l2→ P

f

STr (s+1)(l2, u2)→ u2,

u1→ PSTl (s)(u1, r1)→ r1, l2
〉

if PfSTr (s+1)(l2, u2) exists,

〈
u2→ P

f

STr (s+1)(u2, r2)→ r2,

l1→ PSTl (s)(l1, u1)→ u1, u2
〉

if PfSTr (s+1)(u2, r2) exists,〈
l2→ P

f

STr (s+1)(l2, r2)→ r2,

l1→ PSTl (s)(l1, r1)→ r1, l2
〉

if PfSTr (s+1)(l2, r2) exists.

ThusCT(s) is 1-Hamiltonian. Since the degree of each
node inCT(s) is 3,CT(s) is optimal 1-Hamiltonian. 2

Let {ST(si ) = (Vsi ,Esi , usi , lsi , rsi ) | s1, s2, . . . , st
are positive integers} be a set of disjoint slim trees.
We can construct aslim forest SF(s1, s2, . . . , st ) by
adding edges(rsi , lsi+1) for all 16 i 6 t − 1. For ex-
ample, SF(3,1,1,2) is shown in Fig. 3(a). Hence-
forth we usePSF(x, y) to denote a Hamiltonian path
in SF(s1, s2, . . . , sk) from x to y.

Lemma 4. There are four Hamiltonian pathsPSF(us1,

usk ), PSF(us1, rsk ), PSF(ls1, usk ), and PSF(ls1, rsk ) in
SF(s1, s2, . . . , sk).

Proof. It follows from Lemma 2 that there is a Hamil-
tonian pathPST(si)(lsi , rsi ) in eachST(si ). (Whensi =
1, the Hamiltonian path is simply a node.) We can de-
fine two pathsQ1 andQ2 in SF(s1, s2, . . . , sk) as fol-
lows:

Q1=
〈
ls2→ PST(s2)(ls2, rs2)→ rs2, ls3→·· ·→ rsk−1,

lsk → PST(sk)(lsk , usk )→ usk
〉
,

Q2=
〈
ls2→ PST(s2)(ls2, rs2)→ rs2, ls3→·· ·→ rsk−1,

lsk → PST(sk)(lsk , rsk )→ rsk
〉
.

Thus we can construct the four Hamiltonian paths as
follows:

PSF(us1, usk )=
〈
us1→ PST(s1)(us1, rs1)→ rs1,

ls2→Q1→ usk
〉
,

PSF(us1, rsk )=
〈
us1→ PST(s1)(us1, rs1)→ rs1,

ls2→Q2→ rsk
〉
,

PSF(ls1, usk )=
〈
ls1→ PST(s1)(ls1, rs1)→ rs1,

ls2→Q1→ usk
〉
,

PSF(ls1, rsk )=
〈
ls1→ PST(s1)(ls1, rs1)→ rs1,

ls2→Q2→ rsk
〉
.

The lemma follows. 2
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Fig. 3. (a) The slim forestSF(3,1,1,2). (b) The graphST(4)−R(v,u).

Fig. 4.PST(5)(v, l) for a nodev of the left subtree.

Lemma 5. Let v be an arbitrary node in the left
subtree of ST(s)= (V ,E,u, l, r)with v 6= l ands > 2.
Then there is a Hamiltonian pathPST(s)(v, l) in ST(s)
for all s > 2.

Proof. First, consider thatv is a non-leaf node. It
is known thatBT(s) − R(v,u) is a set of disjoint
complete binary trees. Sincev is a non-leaf node, all
of the leaf edges are contained inST(s) − R(v,u).
Therefore,ST(s) − R(v,u) is just BT(s) − R(v,u)
plus all of the leaf edges inST(s), which consti-
tutes a set of slim trees and the leaf edges between
slim trees. Therefore,ST(s) − R(v,u) forms a slim
forest SF(s1, s2, . . . , sk+1) for 16 s1, s2, . . . , sk+1 6
s − 1, where k is the length ofR(v,u). (An ex-
ample of ST(4) − R(v,u) which yields a slim for-
estSF(3,1,1,2) is illustrated in Fig. 3(b).) Applying
Lemma 4, we can define

PST(s)(v, l)=
〈
v→ R(v,u)→ u,

usk+1→ PSF(usk+1, ls1)→ ls1 = l
〉
.

(An example ofPST(5)(v, l) is illustrated in Fig. 4(a) in
whichPSF(usk+1, ls1) is represented by dotted lines.)

Next, consider thatv is a leaf node. Sincev 6= l,
v has a left siblingvl . Let z∗ be the lowest com-
mon ancestor ofvl and v. Clearly, vl and v is con-
nected by an edge, denoted by(v, vl). Sincez∗ is the
lowest common ancestor ofvl and v, z∗ is a non-
leaf node. ThusST(s)− R(z∗, u) forms a slim forest
SF(s1, s2, . . . , sk+1) for somes1, s2, . . . , sk+1, where
k is the length ofR(z∗, u). Let T1 denote the slim tree
rooted atz∗. Sincez∗ is the lowest common ancestor
of vl andv, the nodevl must be in the left subtree ofT1

andv in the right subtree ofT1. Therefore,v andvl are
in different slim trees ofST(s)−R(z∗, u) and the edge
(v, vl) is an edge between different slim trees of the
slim forest. Removing(v, vl) disconnects the slim for-
est. Consequently, the graphST(s)−R(z∗, u)−(v, vl)
forms two disjoint slim forestsSF(s1, s2, . . . , sj ) and
SF(sj+1, sj+2, . . . , sk+1). Applying Lemma 4, we can
define

PST(s)(v, l)=
〈
v = lsj+1→ PSF(lsj+1, usk+1)→ usk+1,

u→ R(u, z∗)→ z∗,
usj → PSF(usj , ls1)→ ls1 = l

〉
,
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wherePSF(lsj+1, usk+1) andPSF(usj , ls1) are Hamil-
tonian paths with the specified source and destination
in SF(sj+1, sj+2, . . . , sk+1) andSF(s1, s2, . . . , sj ), re-
spectively. (An example ofPST(5)(v, l) is illustrated in
Fig. 4(b), in whichST(5)− R(z∗, u)− (v, vl) forms
the slim forestsSF(3,2) andSF(2,4), and the corre-
sponding Hamiltonian paths are represented by dashed
lines and dotted lines, respectively.)

Hence this lemma is proved.2
It follows from the symmetry property ofST(s) and

Lemma 5 that there is a Hamiltonian pathPST(s)(v, r)

for any nodev with v 6= r in the right subtree ofST(s).

Lemma 6. Letv be any node of ST(s)= (V ,E,u, l, r)
with s > 2. Then there are two Hamiltonian paths
PST(s)(v, xi) in ST(s), wherexi ∈ {u, l, r} for i = 1,2
andx1 6= x2.

Proof. We prove this lemma by induction ons. Since
ST(2) ∼= K3, the lemma is obviously true fors = 2.
Assume that this lemma is true fors − 1 and s >
3. Let v be any node ofST(s). When v ∈ {u, l, r},
the lemma is proved following from Lemma 2. Now,
we considerv /∈ {u, l, r}. By the symmetry property
of ST(s), we can assume thatv ∈ V (STl (s − 1)).
Applying Lemma 5, we can construct a Hamiltonian
path PST(s)(v, l). Now, we need to construct the
second Hamiltonian pathPST(s)(v, x) for x = u or r.
By induction hypotheses, there are two Hamiltonian
pathsPSTl (s−1)(v, y1) andPSTl (s−1)(v, y2) in STl (s −
1) for somey1, y2 ∈ {u1, l1, r1}. Obviously, one ofyi ,
sayy1, isu1 or r1. We definePST(s)(v, x) for x ∈ {r, u}
as follows:

PST(s)(v, r)=
〈
v→ PSTl (s−1)(v, u1)→ u1,

u,u2→ PSTr (s−1)(u2, r2)→ r2= r
〉

if y1= u1, and

PST(s)(v, u)=
〈
v→ PSTl (s−1)(v, r1)→ r1,

l2→ PSTr (s−1)(l2, u2)→ u2, u
〉

if y1= r1.
Thus we obtain two Hamiltonian paths fromv to

xi ∈ {u, l, r} for i = 1,2 andx1 6= x2, and the lemma
follows. 2
Lemma 7. For any two different nodesv1 and v2 in
ST(s)= (V ,E,u, l, r) with s > 2, there are two node-

disjoint pathsP1= 〈v1, . . . , x1〉 andP2= 〈v2, . . . , x2〉
such thatV (P1)∪ V (P2)= V andx1, x2 ∈ {u, l, r}.

Proof. We prove this lemma by induction ons. The
lemma is obviously true fors = 2. Assume that this
lemma is true forST(s − 1) ands > 3. We distinguish
the following two cases.

Case1. u ∈ {v1, v2}. Without loss of generality,
we can assume thatv1 = u and v2 ∈ V (STl(s − 1)).
Applying Lemma 6, we know that there are two
Hamiltonian pathsPSTl (s−1)(v2, xi) in STl(s − 1)
with xi ∈ {u1, l1, r1} and i = 1,2. If l1 ∈ {x1, x2},
thenP1 = 〈v1 = u,u2→ PSTr (s−1)(u2, r2)→ r2 = r〉
and P2 = 〈v2→ PSTl (s−1)(v2, l1)→ l1 = l〉 are the
desired paths, as illustrated in Fig. 5(a). Otherwise,
r1 ∈ {x1, x2}; then P1 = 〈v1 = u〉 and P2 = 〈v2 →
PSTl (s−1)(v2, r1)→ r1, l2→ PSTr (s−1)(l2, r2)→ r2 =
r〉 are the desired paths.

Case2.u /∈ {v1, v2}. We first consider thatv1 andv2
are in the same subtree ofST(s). With the symmetry
property of ST(s), we can assume thatv1, v2 are
in the left subtreeSTl (s − 1) = (V1,E1, u1, l1, r1).
By induction hypotheses, there are two node-disjoint
pathsP ′1 = 〈v1, . . . , y1〉 and P ′2 = 〈v2, . . . , y2〉 with
V (P ′1) ∪ V (P ′2) = V1 for somey1, y2 ∈ {u1, l1, r1}.
When y1, y2 ∈ {u1, l1}, we can assume without loss
of generality thaty1 = u1 and y2 = l1. ThenP1 =
〈v1 → P ′1 → u1, u,u2 → PSTr (s−1)(u2, r2) → r2 =
r〉 andP2 = P ′2 are the desired paths, as illustrated
in Fig. 5(b). Wheny1, y2 ∈ {u1, r1}, we can assume
without loss of generality thaty1 = u1 and y2 =
r1. ThenP1 = 〈v1→ P ′1→ u1, u〉 andP2 = 〈v2→
P ′2 → r1, l2 → PSTr (s−1)(l2, r2) → r2 = r〉 are the
desired paths. Wheny1, y2 ∈ {l1, r1}, we can assume
without loss of generality thaty1 = l1 and y2 =
r1. ThenP1 = P ′1 and P2 = 〈v2→ P ′2→ r1, l2→
PSTr (s−1)(l2, u2)→ u2, u〉 are the desired paths.

Next, we consider thatv1 and v2 are in differ-
ent subtrees ofST(s). Without loss of generality, we
can assume thatv1 is in STl (s − 1) and v2 is in
STr (s−1). Applying Lemma 6, we can obtain Hamil-
tonian pathsPSTl (s−1)(v1, yi) and PSTr (s−1)(v2,wi)

for yi ∈ {u1, l1, r1} andwi ∈ {u2, l2, r2} with i = 1,2.
We distinguish all of the possible conditions in the fol-
lowing subcases.

Case2.1. u1 ∈ {y1, y2} and r2 ∈ {w1,w2}. P1 =
〈v1 → PSTl (s−1)(v1, u1)→ u1, u〉 and P2 = 〈v2 →
PSTr (s−1)(v2, r2)→ r2= r〉 are the desired paths.
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Fig. 5. Two node-disjoint paths ofST(5).

Case2.2. l1 ∈ {y1, y2} andu2 ∈ {w1,w2}. We con-
struct the two pathsP1 = 〈v1→ PSTl (s−1)(v1, l1)→
l1= l〉 andP2= 〈v2→ PSTr (s−1)(v2, u2)→ u2, u〉.

Case2.3.r1 ∈ {y1, y2} andl2 ∈ {w1,w2}. Consider
that v2 is a non-leaf node. It follows from the proof
in Lemma 5 thatSTr (s − 1) − R(v2, u2) forms a
slim forestSF(s1, s2, . . . , sk+1) wherek is the length
of R(v2, u2). Applying Lemma 4, we can obtain
that P1 = 〈v1 → PSTl (s−1)(v1, r1)→ r1, l2 = ls1 →
PSF(ls1, rsk+1) → rsk+1 = r2 = r〉 and P2 = 〈v2 →
R(v2, u2)→ u2, u〉 are the desired paths, as illustrated
in Fig. 5(c).

Next, consider thatv2 is a leaf node. Sincel2 ∈
{w1,w2}, it follows that v2 6= l2. Let vl be the left
sibling of v2 and (v2, v

l) be the edge linkingv2

and vl . Let z∗ be the lowest common ancestor of
v2 and vl . The graphSTr (s − 1) − R(z∗, u2) −
(v2, v

l) forms two slim forestsSF(s1, s2, . . . , sj ) and
SF(sj+1, sj+2, . . . , sk+1) where k is the length of
R(z∗, u2). Applying Lemma 4, we obtain two desired
pathsP1 = 〈v1→ PSTl (s−1)(v1, r1)→ r1, l2 = ls1 →
PSF(ls1, usj ) → usj , z

∗ → R(z∗, u2) → u2, u〉 and
P2 = 〈v2 = lsj+1 → PSF(lsj+1, rsk+1)→ rsk+1 = r2 =
r〉, wherePSF(ls1, usj ) and PSF(lsj+1, rsk+1) are two
Hamiltonian paths inSF(s1, s2, . . . , sj ) andSF(sj+1,

sj+2, . . . , sk+1), respectively, as illustrated in Fig. 5(d).
Thus, this lemma is proved.2
Theorem 2. The Christmas tree CT(s) is optimal
Hamiltonian-connected.

Proof. Since CT(1) ∼= K4, CT(1) is Hamiltonian-
connected. Now we consider the case thats > 2. By
the symmetry property ofCT(s), we can assume that
any two nodes ofCT(s) are in the(s + 1)th slim
tree STr (s + 1). It follows from Lemma 7 that for
any two different nodesv1, v2 in STr (s + 1), there
exist two node-disjoint pathsP1 = 〈v1, . . . , x1〉 and
P2 = 〈x2, . . . , v2〉 such thatV (P1) ∪ V (P2)= V2 and
x1, x2 ∈ {u2, l2, r2}. When{x1, x2} = {u2, l2}, we can
assume without loss of generalityx1 = u2 andx2 =
l2. Then 〈v1 → P1 → u2, u1 → PSTl (s)(u1, r1) →
r1, l2 → P2 → v2〉 is a Hamiltonian path. When
{x1, x2} = {l2, r2}, we can assume without loss of
generality thatx1 = l2 and x2 = r2. Then 〈v1 →
P1→ l2, r1→ PSTl (s)(r1, l1)→ l1, r2→ P2→ v2〉 is
a Hamiltonian path. When{x1, x2} = {r2, u2}, we can
assume without loss of generality thatx1 = r2 and
x2= u2. Then〈v1→ P1→ r2, l1→ PSTl (s)(l1, u1)→
u1, u2 → P2 → v2〉 is a Hamiltonian path. Thus,
CT(s) is Hamiltonian-connected.
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Since the number of edges ofCT(s) is 3n/2, CT(s)
is optimal Hamiltonian-connected following from the
Moon’s result [6]. This theorem follows.2

4. Concluding remarks

In this paper, we propose a new family of inter-
connection networks called Christmas tree, denoted by
CT(s). We prove thatCT(s) is optimal 1-Hamiltonian
and Hamiltonian-connected. Obviously,CT(s) is a
planar graph. We also prove that the diameter ofCT(s)
is 2s, that is, 2 times of Moore bound.

We also note that the Christmas tree is constructed
from the complete binary tree. The complete bi-
nary tree is one of the most important architec-
tures for interconnection networks [4]. Another im-
portant architecture calledfat tree which is used in
CM5 machine [5] can be constructed from a slim
treeST(s) = (V ,E,u, l, r) by adding an edge(l, r).
Since the Christmas tree has a number of nice prop-
erties and a very similar topology as the complete bi-
nary tree and the fat tree, we believe that the Christ-
mas tree is another candidate for interconnection net-
works.
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