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Thermal fluctuations and disorder effects in vortex lattices
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We calculate using loop expansion the effect of fluctuations on the structure function and magnetization of
the vortex lattice and compare it with existing Monte Carlo results. In addition to renormalization of the height
of the Bragg peaks of the structure function, there appear characteristic saddle shape “halos” around the
peaks. The effect of disorder on magnetization is also calculated. All the infrared divergencies related to soft
shear cance[.S0163-18209)11837-X

[. INTRODUCTION enhancement of the contribution of fluctuations at leading

order. It apparently leads to disastrous infrared divergencies

Decorationt neutron scattering,and scanning tunneling at higher orders rendering the perturbation theory around the

microscopy have clearly demonstrated the Abrikosov flux VOrtex state doubtful. One f[herefore tends to think that non-

line lattice in low- and highF. type-Il superconductors. perturbative effects are so important that_such aperturb_at|on
There are, however, important differences between the tw eory should be abandon&dHowever, it was shown in

| f materials. The Ginzb ter Gi ch teri ef. 13 that a closer look at the diagrams reveals that in fact
classes ot materiais. 1he LInzburg parameter 1 charactelig, g oncoynters actually only logarithmic divergencies. This

ing the importance of thermal f_Iuctuations is much larger inpakes the divergencies similar to so-called “spurious” di-
high-T; superconductors than in the low temperature onesyergencies in the theory of critical phenomena with broken
Moreover, in the presence of magnetic field the importancgontinuous symmetry and they exactly cancel at each order
of fluctuations in highf. superconductors is further en- provided we are calculating a symmetric quantity. One can
hanced. The lattice melts and becomes a vortex liquid oveeffectively use properly modified perturbation theory to
large portions of the phase diagrdmi.In “strongly fluctu-  quantitatively study various properties of the vortex liquid
ating” superconductors, even far below the melting line, cor-Phase. Magnetization calculated using this perturbative ap-
rections to various physical quantities such as magnetizatioRf0ach agrees very well with the direct Monte CafldC)

; ific h re not nedgligible. The vortex latti simulation of Ref. 11. The method was then extended be-
or specific heat are not negligible e vortex lattice be ond the lowest Landau levéLLL ) 14

comes distorted. It is qglte straightforward tq sy;tematlcql[yy In this paper we calculate the effect of fluctuations on the
account for the fluctuation effect on magnetization, SpecifiGy»hetic field distribution and structure function of the vor-
heat, or conductivity perturbatively above the mean 7f'e|dtex lattice and compare with existing MC results. Fluctua-
transition line using a Ginzburg-Landd®L) description’  tions cause the spread of the peaks in the diffraction pattern
However, in the interesting region below this line it turnedin a very specific way, while the height of the peaks is
out to be extremely difficult to develop a quantitative theory.slightly corrected. Effects of fluctuation and disorder on
A direct approach to the low temperature fluctuationsmagnetization and specific heat are computed. The paper is
physics is to start from the mean field solution and then tak@rganized as follows. In Sec. Il the model and the fluctuation
fluctuations around this inhomogeneous solution into acspectrum approximation are briefly reviewed. In Sec. Ill the
count perturbative|y_ Experimenta”y it is reasonable Since?ﬁ'CU'&tiOﬂ of the structure function is presented. Section IV
for example, specific heat at low temperatures is a smootfontains analysis of the result, comparison with MC simula-
function and the fluctuation contribution is quite small. Fortion, and some generalizations. In Sec. V the distribution of
some time this was in disagreement with theoretical expecmagnetlc fl_eld_ls calculated_,_whlle effects of We_ak disorder
tations. Eilenberger calculated the spectrum of harmonic exQn magnetization and specific heat are treated in Sec. VI. A
citations of the triangular vortex lattit@nd noted that the Summary is given in Sec. VII.
gapless mode is softer than the usual Goldstone mode ex-
pected as a result of spontaneous breaking of translational
invariance. The inverse propagator for the “phase” excita-
tions behaves ak?+ constk:+k2).? It was shown© that A. Model
the constant in front of +k2)? is directly related to the
shear moduluggg and is in agreement with numerous ex-

IIl. MODEL, MEAN FIELD SOLUTION,
AND THE PERTURBATION THEORY

Our starting point is the GL free energy:

periments. An interesting question is whether tk_é{kﬁ)z e [ o h? v EA ’ 2
behavior disappears nonperturbatively. We point out that 2m,p hc
Monte Carlo simulation of the structure functfdrprovides 42 b
direct evidence that it is not so. 2 2 _' 4
The influence of this additional “softness” goes beyond * 2mc|‘9z¢| +alyl*+ 2 [91*. @
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Here A=(By,0) describes a nonfluctuating constant mag- *
netic field. For strongly type-ll superconductorg~{100) O=gio+ D, gl'e". (8)
far from H, (this is the range of interest in this paperag- n=1

netic field is homogeneous to a high degree due to superpghese coefficients can be found in Ref. 14.
sition from many vortices. For simplicity we assunae

=a(1-1)T, t=T/T., although this dependence can be C. Fluctuation spectrum
easily modified to better describe the experimental coherence ) .
length. To find an excitation spectrum one expands a free energy

Throughout most of the paper will use the following units. functional around the solution. The fluctuating order param-

The unit of length isé= % (2mypaT.) and the unit of eter fieldy is divided into a nonfluctuatingmean field part
a
magnetic field isH.,, so that the dimensionless magnetic @nd @ small fluctuation

field is b=B/H.,. The dimensionless free energy in these )= ®(x) + v(X 9
units is (the order parameter field is rescaled &8 vx) () x(X)- ©
—(2aT./b")y?) We expand fieldy in a basis of quasimomentum eigenfunc-
tions:
1 1 1-t 1
L= 3y = 2, = 2_ 2.0 T4 o
s H e e L S s
(2) Pr— 77- "nlal= n| ¥ \/B a
The dimensionless coefficient is
Vo
. ’7T ——
2 Girt, ©) w|(|—1) Vb ok
—X
where the Ginzburg number is defined by Gi a i
=1(327e?k%ET ¥ c?h?)? and y=m,/m,, is an anisot-
ropy parameter. This coefficient determines the strength of
fluctuations, but is irrelevant as far as mean field solutions 1 k, 2 2
are concerned. 3 y\/5+ e ?I (10
The second expansion parameteisise Refs. 9 and 14 for \/6
detail9 Then we diagonalize the quadratic term to obtain the spec-
b trum. The details can be found in Ref. 14. Instead of com-
— 1-t- plex field yy we will use two “real” fields Op and A} sat-
ap . (4) k k K
2 isfying Of=0*}, AR=A*}:
B. Mean field solution 1 (e ™ 5 dieR(x) .
- | X =—f > A op+ial,
If a, is sufficiently small GL equations can be solved V2 i=0 (y2m)
perturbatively:
1 ek 2 di* op "(x)
— = 1 + —+ ... *X Oll _lArl ’
Y=b=(a) " o+ayd,+] (5) Y 0=5] 5 =2 (7)2< iALY)
It is convenient to represenb,,®,, ... in the basis of

. - R n_ n whered,=exd —i6/2] where y,=|v|exdif] whenn=0
ﬁg?;ﬁ;ggontso Ofur?iFt)er‘?Ct:%Tg_ezr( 2irs sz’erfgﬁ " <rbnT2>’ (all definitions and notations can be found in Ref.).14
P P y e Within the LLL, at orderay, the eigenstates arg,,0O,,

_ 2 ni2 _ " ot s e
=/ cend*x|¢"| (b/_27r) 1, where cel” is a primitive cell while the elgenvalue$|n two dimensions; in three dimen-
of the vortex lattice. Assuming hexagonal lattice symmetry

sions simply plusk /2) are

one explicitly has:

2 1
[ 2m < 27 €a=anea=ay _1+_ﬂk__|')’k|)a (12)
¢ \/;2“n!alz2—oc Hn(y\/E—?I> g g

_1+E +£| |)
ﬂﬁk ﬁ yk !

_ 2 - 1_
eXprl(lz 1)+27;\/6|X}—%(y\/5—%7l) } €0=aneo=1an

wheree, , e are dependent on two-dimensional vedt@and
6) By, is defined by the following equatior:

wherea/ b= 4=/ J3b is the lattice spacing. One finds n_ 2 *n
Be={lel*ere; ),
Po=—o. (7 Be={(e* "0, i),

. n_ 2 . N
To orderal,, we expand Ne=(@") 0_kpp),
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Y= (0" 0* "o ), (13) The first term is the mean field part, while the second term is
the fluctuation part.

where the bracket) means averaging over the function in-

side the bracketB,= By, vx= vk Whenn=0. In particular,

whenk—0,

A. Mean field contribution

The mean field part is simply

X22
er~ mah|k|4~o.1ah|k|4, (14)

Smf:<|q)(x)|2|q)(>’)|2>x- (17
— 4 212 Im 2 2012

Vf;ﬁ)rg}zo_??"iéz&{sa )a?ilririﬂa r;;aé ir)lstez)é[.){ (2myf2a(l The strugture function is _th_e Fourier transfor8{(q,0)

Higher order corrections and higher Landau level eigen=/Jdz€'%”S (z,23=0). ~ Within the = LLL, ®(x)
states and eigenvalues can be found in Ref. 14. With spec= (an/Ba)"?¢(x) and the mean field part of the structure
trum of excitations and expansion of solutions of GL equa-function becomes
tions ina,,, one can start the calculation of correlators to any
order inw.

Sn(0.0= [ dze (@00l @ ()2,

Ill. STRUCTURE FUNCTION OF THE VORTEX LATTICE 2

ap b . .
In this section the structure function is calculated to order =\ 5. che|||¢(x)|ze A xL|<P(Z)|2€"q ‘
o (harmonic approximationwithin the LLL, namely, ne-
glecting higheray, corrections. We discuss these corrections ap 2 5 o>
in the next section. First we calculate the density correlator = E) 4msn(a@exp — 5| (18)

defined by
~ where we made use of formulas and functiéyiq) defined
S(2,25) = (p(%,X3) p(X+ 2,3+ 25) )= (P(X) p(¥) ) in the Appendix. This is just the sum @ffunctions of vari-
ous heights at reciprocal lattice points.
where( ), indicates average over (which means here over
the unit cel) andp=||2. The correlator is calculated using B. Fluctuation contribution

the Wick expansion: ) ) )
The fluctuation part contains four term@liagrams$

S=S i+ 0Siuct. (16) S, ....S,. The first term is

<I>(><)<I>(y)nz0 kldE*dln*‘P:n(X)QDI*n(y) ((OF"OF "= AL "AF M) ek Xsrce. (19

X

~ 1
=u(2.23)= m<

(ORO") and(A{A[") are propagators:
n—~N w

3
Eg(k) + E

(AEAF)szzé(kH).

3
ea(k)+ >

To calculate structure functions we will need only the=0 correlator:

Bz0-— <c1> w3, [ @ enooety )> \/ : —\/ 2_|iee @D
1(2, _4(277)2 (x yn:0 k( k) ek (X)eZily ) oK) (k) -C.

Within the LLL approximation it simplified to
\/ 2 \/ 2
eo(k) (k)

The first fluctuation correction term to structure function can be evaluated as follows:

ap

Si(20)= 4(2m)2 Ba

+c.c. (22

<¢(X)¢(y) J'k(d:)2¢:(x)¢*k(y)>
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\/L_ 2
o) Vea®)

+C.C.

_ 1 ﬂ i * —ig-x * i9-z/ 4*\2
$100= 103 5| x| e00et 006 et (e Ha)

_an [kkytkXxQ q? 2 2
} “‘”( ”k)exp[__ \/eo<k>_\/M'

28 b 2b

where formulas of the Appendix were use@l.is the integer part of, k is the fractional part of;: q=k+n;d;+n,d,=k
+Q (see the Appendix for the definitions df az) The second fluctuation correction term is

(23

Sy(z,25)= X)®* (y 2 f de* Pso’k‘”X)<p."(y)> (OO +AL"Ar M)k Xstce. (24

1
A7 (277)2w
S,(z,23=0) is equal to(in the LLL approximation

~ _ 1 an N N 2 2
520 10 5A<‘D(X)"’ ) fk¢k<x>¢k<y>>x Ny @5
and
—ig-x * iq-z ? 2
%(00= 4(277)2ﬂAszwfcel.¢(x)9°k(x)e o[ et \/eo<k>+\/eA(k> ree
an q 2 2
:z_ﬁAex‘{_%} \/eo<k>+\/eA<k> | (20
The third term is
Sy(z,23)= W<|®(X)l 2 f did™ op(y) ¢ (y)> (O "Of "+ AL AT ™)) +xeoy (27)
and within the LLL atz3=0 is equal to
S(20=~ < >‘ fcpk<y>gok<y>> [\/ ot \/ |y (29
Consequently the correction to the structure function is
ap b ia-x - 2 2
Ss(q,O):r[gAszfcell|¢(X)|ze ! fz|¢k(2)|2eq x \/m_’_ \/m
+(q——0q)
q? kX Q \/ 2 L\/ 2
" 28, “‘”ex‘{ 25/, 5( b /| Ve " Va® 29

The final term is from the vacuum renormalization contribution. The shift ¢(x) =v ¢(x) + x(X) is renormalized, that is,
to one loop ordery?=v3+ wv3, wherevi=a,/B,. One can find/3 by minimizing the effective one loop free energy

Lylyl, 2 E 4 } 2 2
——| —apv -+ 2'8\/ + 2{TrIn[Zeo(k,v)~|—kz]+TrIn[ZeA(k,v)+kz]}, (30
|
where and
Trin[2eo(k,v)+ K21+ Trin[2ea(k,v) + K] (3D) en(kv) = —ay+ 2v2B,—v2 . (32)
dk®
=LXLVLJ W{|n[2eo(k,v)+k§] eo(kv)=—an+2v2B+v? yl.
"

) Minimizing the effective one loop free energy with respect to
+In[2ep(k,v) + K]}, v, the straightforward calculation gives
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1/2 2
1 2B+ [ 2 o & q
2_ _ -
vi= 16W2fk ( 7 1 Vam $3(0.0)+ 84(0.0)= 5 5 dn(@ex — 55 [ f(Q)+ f].
(37)
N 2By | 2 33
B ea(k) ] IV. COMPARISON WITH MC SIMULATIONS
The last contribution to the one loop correction to the A. Shape of the peaks in the structure function
correlator is therefore Now we compare our results with numerical simulation of
a the LLL system in Ref. 11. The general shape of the struc-
h AN S :
Sy(2,24) =20 2 2 2 ture function in the vicinity of a pealksee Fig. 1b)] and the
1(2.23) (et ulva) data near the origin according to a MC simulation of the
same system within the same LLL approximation in Ref. 11
2a, b ; ; [Fig. (@] are qualitatively the same pattern. It is easier to
24n—iQ-X 24iq-z,,2
Si(9.0= Ba wa e|||¢(x)| € L"P(Z” vy compare using rescaled quasimomemta;qy/b, k—ky/b.
We get
__ 2 s (gex q° f 2B+ vid
2/3 DR~ 5p B , 5n(0) q2  ay q°
S(q,0)= ,3 b —exXg — = 2ﬁex Y
[2 (28—Ind) [ 2 o " g
“Neow ™\ 5 o ©Y X[f1(0)+ 8n(@)T2(Q) + Sn(a)F], (39)
The sum of all the four terms can be cast in the followingWherefy(q), f»(Q), andf; are defined in Eq(35), but with
form: b=1 (for example,f;=—28.5275) and the region of inte-
5 ) gration in the formula rescaled to the cell with,d, being
2 w a a9 the reciprocal lattice basis vectors
S(q,00= BA) Vi% ) (q)ex;{ 2 ﬁA ;{ b
~ 27 1 ~ 4
X[f1(a) + on(a) F2(Q) + Sn(a) 3], d,= (1,— —); d,={ 0——=]|.
a V3 a3
f1(q) = 1+co< kky kX Q n ek” / 2 Furthermore we defing(q) which is used also in Ref. 11:
b eo(k)
S(a,0) (a“)24”2 r{ s
Kk, + kX 0.00=|—=-| —expg — 5 |[s(q),
+ 1—cos(LQ+ 0k” (35) Bal b 2
b A(k) (39

Babw(ay) 32

\/ 5 +\/ 5 S(A)=dn(a)+ =
eo(k) Ve

X[f1(a) + () 2(Q) + Sn(a)f3].

For reciprocal lattice vectors close to origin the values of
f,(Q) are found in Table I.
In Ref. 11, the material parameters describe YBAOQ:
=93 K, dH,(T)/dT=—1.8x10* Oe/K, y=5, andk=52.
At T=82.8 K, H=50 kOe. This leads to the following di-
Although all of the four termsS,, S,, S;, andS, are . mensionless parameters 62.04x10°°, »=0.056, aj,
divergent as any of the peaks is approaclked,, the sums  =0.039 904. However, as discussed in Ref. 14 effective ex-
S1,S; and S, S, are not. We start with the first two: pansion  parameters  are a,/6b=0.22268 and
bw(ay) ~¥42\27=2.36x10"2, both less than 1a,/6b is
(q), (36) the parameter for the expansion of the classical solution. The
factor 6 comes from the fact that due to hexagonal, only 6th,
12th, etc. Landau levels appear in perturbation expansion.
bw(ay) ~¥¥2\2m is the parameter for the fluctuatigtoop)
expansion and is much less than 1 here. It justifies the quan-
tum correction of the formula using perturbation expansion.
The numerical factor in front of the fluctuation correction in
this case is

kX
fo(Q)= fk[—1+cos( bQ

- fk[ V2e5(k)+ y2ex(k)]=—28.527b.

C. Cancelation of the infrared divergency

o aj q?
S1(a,0)+5,(a.0= 5 .29 " 2 f1

where fi(q) defined in Eqg. (35 contains a function
(/o) (keky+kX Q)+ 6. Whenk—0 it can be shown that
kyky /b+ 0k 0(k??); thus (1b)(kk yHkXQ)+ b—
k><Q and 1-cosk,+kxQ/b+ 49,()—>(k><Q)2 Hence it
will cancel the 1k? singularity coming from/l/eAI(k Thus
f1(q) approaches constconst (k X Q)?/k? whenQ# 0, and
approaches constconst k® whenQ=0. b _ap
Similarly the sum 0f5,(q,0) andS;(q,0) is not divergent, l:w

, _ =3.093210" 3. (40)
although separately they are. Their sum is 8



THERMAL FLUCTUATIONS AND DISORDER EFFECS. .. 10 465

(a)

iy
=

CHEE
N =N
Wl

FIG. 1. (a) Structure factor from the MC simulation of Ref. 11.
The peaks at reciprocal lattice points are removbey Fluctuation
correction to structure factor of the Abrikosov vortex lattice, Eq.
(41). The peaks at reciprocal lattice points are removed.

In a finite size samplej,(q) is equal tol_,(Ly/(27r)2 whenq

lies on the reciprocal latticen,d;+m,d,; otherwise it is
zero. Becausé,L, =Ny 27 (N, is the number of vortices
of order 100 only in the MC simulation it is equal to
N,/2m. The normalized structure functios,(0)=1, as it

was used in Ref. lis

1
Sn(a)=A(q)+ m[czfl(Q)JrClA(CI)fz(Q)]

and
21
02: Cl_ =1.9435< 1074,
N

1+c,f3=0.91315. (42)

The correction to the height of the peak @f c;A(qg)/[1
+¢4f3]f2(Q), is quite small. We find the height of the peaks
away from the origin found in the MC simulatibnare typi-
cally smaller than ours, while around the peaks they are
larger than analytical. It may be due to the finite size effect
or finite samplings of the MC calculation. In the MC calcu-
lation part of the peak might “belong” to a neighboring
pixel. We plot the correction to the nonpeak region in Fig.
1(b) and find that the theoretical prediction has roughly the
same characteristic saddle shape “halos” around the peaks
as in Ref. 11, Fig. (B), in which all the peaks were removed
(so it is different from Fig. 2a) in Ref. 11 in which only the
central peak was removgd

We can extend our formula to higher orders which will
include also the HLLghigher Landau leve)s To next order
of a,, we should include®; in ®, ®=(a,)¥d,
+a,®,], consider eg(k),ea(k) to next order aﬁ, and
€5(k), €x(k) to orderay, . It is straightforward to do it.

B. Nonperturbative evidence ofey(k)—|k|*
for asymptotic small k, ,k,

Conversely, the MC simulation result provides the non-
perturbative evidenceex(k)— |k|* for asymptotic small
ky,ky . In Eq.(36), if ex(k)— |k|?, we will get a contribution
from the most singular term constonst (kX Q)?/k. This
term will become constant whda— 0, and we will not get
the same characteristic saddle shape *“halos” around the
peaks as in Ref. 11. Se;(k)—|k|* for k—0 is crucial for
such characteristic shape. Thus the MC simulation result pro-
vides a nonperturbative evidence thef(k)—|k|* for k
—0.

V. FLUCTUATION OF MAGNETIC FIELD

Another quantity which can be measured is the magnetic
field distribution. In addition to the constant magnetic field
background there are d/magnetization corrections due to
field produced by supercurrent. To leading ordegjnit is
given bym(x)={p(x))/« (for example, see Ref. 15 p(x))
can be calculated using the following equation:

(p(X))={|P(X)+ x(x)[2) =] D (x) |2+ (P* (X) x(X))
H(D(X) x* (X)) +{x(X)x* (X))

_ ah 2 *
—B—|¢(X)| +{(x(X) x* (x)). (43
A

TABLE I. Values of f,(Q) with smalln; n,.

nyn;

0,1

1.2 0,2 2,2 1,3

f2(Q)

—7.35

—10.05 —10.242 —10.242 —11.75
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Using Eq.(20) and Eg.(11), and considering onlx;=0,
one obtains

w 1 1

2
16’7T3Jk|gok(X)| kg + k2

o)+ k)

X(X)x* (x))=

(O]

= fkm(xnz: \/%+ \/%

However, as pointed out in Sec. lll the coefficientin
P(X)=Vvp(x)+ x(x) is renormalized to one loop order?
=v2+ wv3, with v4 given in EqQ.(33). Thus we need to add
a term,wvZ[ ¢(x)1?, to Eq.(43).

2 flecor
16721 ¥

\/L+ \/L
eo®) " N el

_M¢WWJHZA+WA
1672 Jk B

2,8k_|7k|) 2
+( 2 | Ne®

lts Fourier transformp(q)= fdze'9% p(z,0)) can be easily
calculated:

a
@up»=§HﬂmF+
A

X

2
V eo(k)

. (44)

9° igq, wio

— 2 _ 2 I _
P(Q)_47T 5n(Q)eXF{ 4b+ 2b + 2 (nl nl)
an w j[( F{ikxq (23k+|7’k| )
X{—+ ex -
|ﬁA 1672« b B
2 ikxq
X \/—eo(k)+ ex) —p
28— v ) 2
- . 45
( 5 I Ve 45
Performing integrals and rescaling the quasimomenta agai
one obtains
5n(0) 9 iy i
25N 4 y, ™ 2
p(q)=4m b exp{ I + 5 + 5 (nT—ny)
&y wba*:m[ 28.5275+ f,(Q)] .  (46)
X{—=— —28. .
Ba 1672 2

The functionf,(Q) appeared in Eq.36).

VI. DISORDER EFFECT ON MAGNETIZATION
AND SPECIFIC HEAT

DINGPING LI AND BARUCH ROSENSTEIN

PRB 60

Afzf d3xa(x)| ¥]2. (47)

Loosely speaking it represents a local variation of tempera-
ture. For pointlike defects one can assume that the correla-
tion of a(x) is ((a(x) a(y)))=Wds(x—y),{{a(x)))=0. Be-

fore the disorder average we calculate the free energy
—TInZ with

1
z:jpﬁpwa—z%th—Jd%mmwﬂ]

(48)
If Wis very small, we can calculaieby perturbation theory
in W. To the second ordet is given as

Z:ZO

1
1- [ atx)(o00)

: (49)

1
+Z§LL@umw»mmmw

whereZ, is the free energy without disorder and it had been
obtained in Ref. 14. Thus the free energy with disorder is

F=-TInZ=Fo+AF

(x) T
= F0+foaT<P(X)>— EJ'XLKP(X);)(V))

—(p(x¥)){p(y))]a(x)a(y), (50)

where Fy=—TIn Z, Averaging free energy over disorder
one obtains

TW
F=H—Z;LKMHMM%%MMXMMH

TWV _
=Fo— —— 0Syct(0). (51)

2w
From Eq. (35, one finds that Sy,c(0)=
—0.186 196%%/B,). Hence the energy density difference
due to disorder isF=AF/V=—0.0931TWa /).
Since w=\2 Gi7’t, F=cal'b with c=
—0.093T W/\/2 Gim?B,. The disorder effect on magneti-

n, - -
zation and specific heat are

Ao PAf
m=-p -

12

—C a.h

(52

respectively.

VII. CONCLUSIONS

To conclude, we have calculated the effect of fluctuations
on the structure function of the vortex lattice and compared it

One can introduce weak disorder by adding a quadratito existing MC results. In addition to renormalization of the

term in Eq.(2),°

height of the Bragg peaks, there appear characteristic saddle
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shape “halos” around the peaks as found in Ref. 11. The b _
MC simulation result provides the nonperturbative evidence %J ”dX<P(X)<P’k‘(X)6XIi—|X'CI]
ce

ea(k)—|k|* for asymptotic smalk. The calculated fluctua- ,

tion contribution to the magnetic field can be more easily i q° igydy ik,gy
i } : =AqeXg - (Nf—ny)— —— -
observed in low temperature strongly type-1l superconduct a.k > M= N~ 720~ 5 b
ors. Finally, the predicted dependence of magnetization and
specific heat on disorder via fluctuations also can be experi- (A1)
mentally studied. The Kronecker delta is defined by

Correlations in flux lattices can be experimentally mea- . _ _
sured using neutron scattering as well as some other more A = A(d—K)= 1, if g=k+nyd;+nyd; 2
exotic methods such as muon spin relaxation, electron to- ak=A(A=K)= 0, otherwise, (A2)
mography, scanning SQUID microscopy, &té®!7 |t _
would be interesting to detect the effect of fluctuations givenVhere integersi, = (1/2m)d, - (q—k) and
in the present paper directly from experiments by subtracting n,=(1/2m)d,- (q—k).
the “background” of the well-known mean field correlator. o _ _ _
The calculations show that infrared divergencies naively exHered;,d, are the reciprocal lattice basis vectors
pected in all of the physical quantities calculated above due 27\b /b
to “supersoft” shear modes in the largelimit cancel. This alz m _ i . ~2: 0477 (A3)
strengthens the view that the loop expansion is a reliable a "3/ ‘a3 )’
theoretical tool to study the fluctuations effects in vortex .
lattice below the melting point. which are_dual tod,=(a/\b,0), d>= (a/2\b,a/3/2\b),
anda= \/47r/\/§. Integrating over the sample arda one
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jAdx<p<x><p:<x>exq—ix.q]

5 .
i ik
X ex;{ 49y + qu}, (A4)
APPENDIX A 4b  2b b

In this appendix, we present some basic formulas used iy]vherie 5“(q: K) is defined asén(q—k)=2m, m,o(q—k
the calculations. The basic matrix element is —myd;—m,d,).
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