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Thermal fluctuations and disorder effects in vortex lattices
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We calculate using loop expansion the effect of fluctuations on the structure function and magnetization of
the vortex lattice and compare it with existing Monte Carlo results. In addition to renormalization of the height
of the Bragg peaks of the structure function, there appear characteristic saddle shape ‘‘halos’’ around the
peaks. The effect of disorder on magnetization is also calculated. All the infrared divergencies related to soft
shear cancel.@S0163-1829~99!11837-X#
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I. A
I. INTRODUCTION

Decoration,1 neutron scattering,2 and scanning tunneling
microscopy3 have clearly demonstrated the Abrikosov flu
line lattice in low- and high-Tc type-II superconductors
There are, however, important differences between the
classes of materials. The Ginzburg parameter Gi charact
ing the importance of thermal fluctuations is much larger
high-Tc superconductors than in the low temperature on
Moreover, in the presence of magnetic field the importa
of fluctuations in high-Tc superconductors is further en
hanced. The lattice melts and becomes a vortex liquid o
large portions of the phase diagram.4–6 In ‘‘strongly fluctu-
ating’’ superconductors, even far below the melting line, c
rections to various physical quantities such as magnetiza
or specific heat are not negligible. The vortex lattice b
comes distorted. It is quite straightforward to systematica
account for the fluctuation effect on magnetization, spec
heat, or conductivity perturbatively above the mean fi
transition line using a Ginzburg-Landau~GL! description.7

However, in the interesting region below this line it turn
out to be extremely difficult to develop a quantitative theo

A direct approach to the low temperature fluctuatio
physics is to start from the mean field solution and then t
fluctuations around this inhomogeneous solution into
count perturbatively. Experimentally it is reasonable sin
for example, specific heat at low temperatures is a smo
function and the fluctuation contribution is quite small. F
some time this was in disagreement with theoretical exp
tations. Eilenberger calculated the spectrum of harmonic
citations of the triangular vortex lattice8 and noted that the
gapless mode is softer than the usual Goldstone mode
pected as a result of spontaneous breaking of translati
invariance. The inverse propagator for the ‘‘phase’’ exci
tions behaves askz

21const(kx
21ky

2).2 It was shown9,10 that
the constant in front of (kx

21ky
2)2 is directly related to the

shear modulusc66 and is in agreement with numerous e
periments. An interesting question is whether the (kx

21ky
2)2

behavior disappears nonperturbatively. We point out t
Monte Carlo simulation of the structure function11 provides
direct evidence that it is not so.

The influence of this additional ‘‘softness’’ goes beyo
PRB 600163-1829/99/60~14!/10460~8!/$15.00
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enhancement of the contribution of fluctuations at lead
order. It apparently leads to disastrous infrared divergen
at higher orders rendering the perturbation theory around
vortex state doubtful. One therefore tends to think that n
perturbative effects are so important that such a perturba
theory should be abandoned.12 However, it was shown in
Ref. 13 that a closer look at the diagrams reveals that in
one encounters actually only logarithmic divergencies. T
makes the divergencies similar to so-called ‘‘spurious’’ d
vergencies in the theory of critical phenomena with brok
continuous symmetry and they exactly cancel at each o
provided we are calculating a symmetric quantity. One c
effectively use properly modified perturbation theory
quantitatively study various properties of the vortex liqu
phase. Magnetization calculated using this perturbative
proach agrees very well with the direct Monte Carlo~MC!
simulation of Ref. 11. The method was then extended
yond the lowest Landau level~LLL !.14

In this paper we calculate the effect of fluctuations on
magnetic field distribution and structure function of the vo
tex lattice and compare with existing MC results. Fluctu
tions cause the spread of the peaks in the diffraction pat
in a very specific way, while the height of the peaks
slightly corrected. Effects of fluctuation and disorder
magnetization and specific heat are computed. The pap
organized as follows. In Sec. II the model and the fluctuat
spectrum approximation are briefly reviewed. In Sec. III t
calculation of the structure function is presented. Section
contains analysis of the result, comparison with MC simu
tion, and some generalizations. In Sec. V the distribution
magnetic field is calculated, while effects of weak disord
on magnetization and specific heat are treated in Sec. V
summary is given in Sec. VII.

II. MODEL, MEAN FIELD SOLUTION,
AND THE PERTURBATION THEORY

A. Model

Our starting point is the GL free energy:

F5E d3x
\2

2mab
US“2

ie*

\c
ADcU2

1
\2

2mc
u]zcu21aucu21

b8

2
ucu4. ~1!
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Here A5(By,0) describes a nonfluctuating constant ma
netic field. For strongly type-II superconductors (k;100)
far from Hc1 ~this is the range of interest in this paper! mag-
netic field is homogeneous to a high degree due to supe
sition from many vortices. For simplicity we assumea
5a(12t)Tc, t[T/Tc , although this dependence can
easily modified to better describe the experimental cohere
length.

Throughout most of the paper will use the following uni
The unit of length isj5A\2/(2mabaTc) and the unit of
magnetic field isHc2, so that the dimensionless magne
field is b[B/Hc2. The dimensionless free energy in the
units is „the order parameter field is rescaled asc2

→(2aTc /b8)c2
…

F

T
5

1

vE d3xF1

2
uDcu21

1

2
u]zcu22

12t

2
ucu21

1

2
ucu4G .

~2!

The dimensionless coefficient is

v5A2 Gip2t, ~3!

where the Ginzburg number is defined by
[ 1

2 (32pe2k2jTcg
1/2/c2h2)2 and g[mc /mab is an anisot-

ropy parameter. This coefficient determines the strength
fluctuations, but is irrelevant as far as mean field solutio
are concerned.

The second expansion parameter is~see Refs. 9 and 14 fo
details!

ah[
12t2b

2
. ~4!

B. Mean field solution

If ah is sufficiently small GL equations can be solve
perturbatively:

c5F5~ah!1/2@F01ahF11•••#. ~5!

It is convenient to representF0 ,F1 , . . . in the basis of
eigenfunctions of operatorH[ 1

2 (2D22b), Hwn5nbwn,
normalized to unit ‘‘Cooper pairs density’’^uwnu2&
[*celld

2xuwnu2(b/2p)51, where ‘‘cell’’ is a primitive cell
of the vortex lattice. Assuming hexagonal lattice symme
one explicitly has:

wn5A 2p

Ap2nn!a
(

l 52`

`

HnS yAb2
2p

a
l D

3expH i Fp l ~ l 21!

2
1

2pAb

a
lxG2

1

2 S yAb2
2p

a
l D 2J ,

~6!

wherea/Ab5A4p/A3b is the lattice spacing. One finds

F05
1

AbA

w. ~7!

To orderah
i , we expand
-

o-

ce

.

of
s

y

F i5giw1 (
n51

`

gi
nwn. ~8!

These coefficients can be found in Ref. 14.

C. Fluctuation spectrum

To find an excitation spectrum one expands a free ene
functional around the solution. The fluctuating order para
eter fieldc is divided into a nonfluctuating~mean field! part
and a small fluctuation

c~x!5F~x!1x~x!. ~9!

We expand fieldx in a basis of quasimomentum eigenfun
tions:

wk
n5A 2p

Ap2nn!a
(

l 52`

`

HnS yAb1
kx

Ab
2

2p

a
l D

3expH iF p l ~ l 21!

2
1

2pS Abx2
ky

Ab
D

a
l 2xkx

G
2

1

2 S yAb1
kx

Ab
2

2p

a
l D 2J . ~10!

Then we diagonalize the quadratic term to obtain the sp
trum. The details can be found in Ref. 14. Instead of co
plex field xk

n we will use two ‘‘real’’ fields Ok
n andAk

n sat-
isfying Ok

n5O2k* n , Ak
n5A2k* n :

x~x!5
1

A2
E

k

e2 ik3x3

A2p
(
n50

` dk
nwk

n~x!

~A2p!2
~Ok

n1 iAk
n!, ~11!

x* ~x!5
1

A2
E

k

eik3x3

A2p
(
n50

` dk
n* wk*

n~x!

~A2p!2
~O2k

n 2 iA2k
n !,

wheredk5exp@2iuk/2# wheregk5ugkuexp@iuk# when n50
~all definitions and notations can be found in Ref. 1!.
Within the LLL, at orderah , the eigenstates areAk ,Ok ,
while the eigenvalues~in two dimensions; in three dimen
sions simply plusk3

2/2) are

eA5aheA
15ahS 211

2

b
bk2

1

b
ugku D , ~12!

eO5aheO
1 5ahS 211

2

b
bk1

1

b
ugku D ,

whereeA ,eO are dependent on two-dimensional vectork and
bk ,gk is defined by the following equations:14

bk
n5^uwu2wkWwkW

* n
&,

bk
n̄5^w* wnwkW

* wkW&,

gk
n5^~w* !2w2kWwkW

n
&,



n-
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a
n
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n
to

r
g
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re
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gk
n̄5^w* w* nwkWw2kW&, ~13!

where the bracket̂ & means averaging over the function i
side the bracket.bk5bk

n ,gk5gk
n when n50. In particular,

whenk→0,

eA'
x22

4bA
ahuku4'0.1ahuku4, ~14!

where x22[(2p/a)4( l ,ml 2m2(2) lm exp$2(2p)2/2a2( l 2

1m)2%.0.47.eO has a finite gap instead.
Higher order corrections and higher Landau level eig

states and eigenvalues can be found in Ref. 14. With s
trum of excitations and expansion of solutions of GL equ
tions inah , one can start the calculation of correlators to a
order inv.

III. STRUCTURE FUNCTION OF THE VORTEX LATTICE

In this section the structure function is calculated to or
v ~harmonic approximation! within the LLL, namely, ne-
glecting higherah corrections. We discuss these correctio
in the next section. First we calculate the density correla
defined by

S̃~z,z3!5^r~x,x3!r~x1z,x31z3!&x5^r~x!r~y!&x ,
~15!

where^ &x indicates average overx ~which means here ove
the unit cell! andr[ucu2. The correlator is calculated usin
the Wick expansion:

S̃5S̃m f1vS̃f luct . ~16!
-
c-
-
y

r

s
r

The first term is the mean field part, while the second term
the fluctuation part.

A. Mean field contribution

The mean field part is simply

S̃m f5^uF~x!u2uF~y!u2&x . ~17!

The structure function is the Fourier transformS(q,0)
5*dzeiq•zS̃ (z,z350). Within the LLL, F(x)
5(ah /bA)1/2w(x) and the mean field part of the structu
function becomes

Sm f~q,0![E dzeiq•z^uF~x!u2uF~y!u2&x

5S ah

bA
D 2 b

2pEcell
uw~x!u2e2 iq•xE

z
uw~z!u2eiq•z

5S ah

bA
D 2

4p2dn~q!expF2
q2

2bG , ~18!

where we made use of formulas and functiondn(q) defined
in the Appendix. This is just the sum ofd functions of vari-
ous heights at reciprocal lattice points.

B. Fluctuation contribution

The fluctuation part contains four terms~diagrams!
S̃1 , . . . ,S̃4. The first term is
S̃1~z,z3!5
1

4p•2pv K F~x!F~y! (
n50

` E
k,l

dk
n* dl

n* wk*
n~x!w l*

n~y!L
x

~^Ok*
nOl*

n2Ak*
nAl*

n&!eik3(y2x)31c.c. ~19!

^Ok
nOl

n& and ^Ak
nAl

n& are propagators:

^Ok
nOl

n&5
v

eO
n ~k!1

k3
2

2

d~k1 l!, ~20!

^Ak
nAl

n&5
v

eA
n~k!1

k3
2

2

d~k1 l!.

To calculate structure functions we will need only thez350 correlator:

S̃1~z,0!5
1

4~2p!2 K F~x!F~y! (
n50

` E
k
~dk

n* !2wk*
n~x!w2k* n~y!L

x

FA 2

eO
n ~k!

2A 2

eA
n~k!

G1c.c. ~21!

Within the LLL approximation it simplified to

S̃1~z,0!5
1

4~2p!2

ah

bA
K w~x!w~y!E

k
~dk* !2wk* ~x!w2k* ~y!L

x

FA 2

eO~k!
2A 2

eA~k!
G1c.c. ~22!

The first fluctuation correction term to structure function can be evaluated as follows:



,
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S1~q,0!5
1

4~2p!2

ah

bA
E

k

b

2pEcell
w~x!wk* ~x!e2 iq•xE

z
w~z!w2k* ~z!eiq•z~dk* !2FA 2

eO~k!
2A 2

eA~k!
G1c.c.

5
ah

2bA
cosS kxky1k3Q

b
1ukDexpF2

q2

2bGFA 2

eO~k!
2A 2

eA~k!
G , ~23!

where formulas of the Appendix were used.Q is the integer part ofq, k is the fractional part ofq: q5k1n1d̃11n2d̃25k
1Q ~see the Appendix for the definitions ofd̃1 ,d̃2). The second fluctuation correction term is

S̃2~z,z3!5
1

4p•~2p!2v
K F~x!F* ~y! (

n50

` E
k,l

dk
n* dl

nwk*
n~x!w l

n~y!L
x

~^Ok*
nOl

n1Ak*
nAl*

n&!eik3(y2x)31c.c. ~24!

S̃2(z,z350) is equal to~in the LLL approximation!

S̃2~z,0!5
1

4~2p!2

ah

bA
K w~x!w* ~y!E

k
wk* ~x!wk~y!L

x

FA 2

eO~k!
1A 2

eA~k!
G1c.c. ~25!

and

S2~q,0!5
1

4~2p!2

ah

bA
E

k

b

2pEcell
w~x!wk* ~x!e2 iq•xE

z
w* ~z!wk~z!eiq•zFA 2

eO~k!
1A 2

eA~k!
G1c.c.

5
ah

2bA
expF2

q2

2bGFA 2

eO~k!
1A 2

eA~k!
G . ~26!

The third term is

S̃3~z,z3!5
1

4p•~2p!2v
K uF~x!u2(

n50

` E
k,l

dk
ndl

n* wk
n~y!w l*

n~y!L
x

~^Ok*
nOl*

n1Ak*
nAl*

n&!1x↔y ~27!

and within the LLL atz350 is equal to

S̃3~z,0!5
1

4~2p!2 K UF~x!U2E
k
wk~y!wk* ~y!L

x

FA 2

eO~k!
1A 2

eA~k!
G1~x↔y!. ~28!

Consequently the correction to the structure function is

S3~q,0!5
ah

4bA
E

k

b

2pEcell
uw~x!u2e2 iq•xE

z
uwk~z!u2eiq•z3FA 2

eO~k!
1A 2

eA~k!
G

1~q→2q!

5
ah

2bA
dn~q!expF2

q2

2bG E
k
cosS k3Q

b D FA 2

eO~k!
1A 2

eA~k!
G . ~29!

The final term is from the vacuum renormalization contribution. The shiftv in c(x)5vf(x)1x(x) is renormalized, that is
to one loop order,v25v0

21vv1
2, wherev0

25ah /bA . One can findv1
2 by minimizing the effective one loop free energy

LxLyLz

v F2ahv21
1

2
bv4G1

1

2
$Tr ln@2eO~k,v !1kz

2#1Tr ln@2eA~k,v !1kz
2#%, ~30!
to
where

Tr ln@2eO~k,v !1kz
2#1Tr ln@2eA~k,v !1kz

2# ~31!

5LxLyLzE dk3

~2p!3
$ ln@2eO~k,v !1kz

2#

1 ln@2eA~k,v !1kz
2#%,
and

eA~k,v !52ah12v2bk2v2ugku, ~32!

eO~k,v !52ah12v2bk1v2ugku.

Minimizing the effective one loop free energy with respect
v, the straightforward calculation gives
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v1
252

1

16p2Ek
F S 2bk1ugku

b DA 2

eO~k!

1S 2bk2ugku
b DA 2

eA~k!
G . ~33!

The last contribution to the one loop correction to t
correlator is therefore

S4~z,z3!52
ah

bA
^uw~x!u2uw~y!u2&x~v1!2,

S4~q,0!5
2ah

bA

b

2pEcell
uw~x!u2e2 iq•xE

z
uw~z!u2eiq•zv1

2

52
ah

2bA
dn~q!expF2

q2

2bG E
k
F S 2bk1ugku

b D
3A 2

eO~k!
1S 2bk2ugku

b DA 2

eA~k!
G . ~34!

The sum of all the four terms can be cast in the followi
form:

S~q,0!5S ah

bA
D 2

4p2dn~q!expF2
q2

2bG1
v

2

ah
1/2

bA
expF2

q2

2bG
3@ f 1~q!1dn~q! f 2~Q!1dn~q! f 3#,

f 1~q!5F11cosS kxky1k3Q

b
1ukD GA 2

eO
1 ~k!

1F12cosS kxky1k3Q

b
1ukD GA 2

eA
1~k!

, ~35!

f 2~Q!5E
k
F211cosS k3Q

b D GFA 2

eO
1 ~k!

1A 2

eA
1~k!

G ,

f 352E
k
@A2eO

1 ~k!1A2eA
1~k!#5228.5275b.

C. Cancelation of the infrared divergency

Although all of the four termsS1 , S2 , S3, and S4 are
divergent as any of the peaks is approached,k→0, the sums
S1 ,S2 andS3 ,S4 are not. We start with the first two:

S1~q,0!1S2~q,0!5
v

2

ah

bA
expF2

q2

2bG f 1~q!, ~36!

where f 1(q) defined in Eq. ~35! contains a function
(1/b)(kxky1k3Q…1uk . When k→0 it can be shown tha
kxky /b1uk5O(k2•2); thus (1/b)(kxky1k3Q…1uk→
k3Q, and 12cos(kxky1k3Q/b1uk)→(k3Q)2. Hence it
will cancel the 1/k2 singularity coming fromA1/eA

1(k). Thus
f 1(q) approaches const1const•(k3Q)2/k2 whenQÞ0, and
approaches const1const•k6 whenQ50.

Similarly the sum ofS4(q,0) andS3(q,0) is not divergent,
although separately they are. Their sum is
S3~q,0!1S4~q,0!5
v

2

ah
1/2

bA
dn~q!expF2

q2

2bG@ f 2~Q!1 f 3#.

~37!

IV. COMPARISON WITH MC SIMULATIONS

A. Shape of the peaks in the structure function

Now we compare our results with numerical simulation
the LLL system in Ref. 11. The general shape of the str
ture function in the vicinity of a peak@see Fig. 1~b!# and the
data near the origin according to a MC simulation of t
same system within the same LLL approximation in Ref.
@Fig. 1~a!# are qualitatively the same pattern. It is easier
compare using rescaled quasimomenta,q→qAb, k→kAb.
We get

S~q,0!5S ah

bA
D 2

4p2
dn~q!

b
expF2

q2

2 G1
v

2

ah
1/2

bA
expF2

q2

2 G
3@ f 1~q!1dn~q! f 2~Q!1dn~q! f 3#, ~38!

wheref 1(q), f 2(Q), and f 3 are defined in Eq.~35!, but with
b51 ~for example,f 35228.5275) and the region of inte
gration in the formula rescaled to the cell withd̃1 ,d̃2 being
the reciprocal lattice basis vectors

d̃15
2p

a S 1,2
1

A3
D ; d̃25S 0,

4p

aA3
D .

Furthermore we defines(q) which is used also in Ref. 11:

S~q,0!5S ah

bA
D 2 4p2

b
expF2

q2

2 Gs~q!,

~39!

s~q![dn~q!1
bAbv~ah!23/2

8p2

3@ f 1~q!1dn~q! f 2~Q!1dn~q! f 3#.

For reciprocal lattice vectors close to origin the values
f 2(Q) are found in Table I.

In Ref. 11, the material parameters describe YBCO:Tc
593 K, dHc2(T)/dT521.83104 Oe/K, g55, andk552.
At T582.8 K, H550 kOe. This leads to the following di
mensionless parameters Gi52.0431025, v50.056, ah
50.039 904. However, as discussed in Ref. 14 effective
pansion parameters are ah/6b50. 222 68 and
bv(ah)23/2/2A2p52.3631022, both less than 1.ah/6b is
the parameter for the expansion of the classical solution.
factor 6 comes from the fact that due to hexagonal, only 6
12th, etc. Landau levels appear in perturbation expans
bv(ah)23/2/2A2p is the parameter for the fluctuation~loop!
expansion and is much less than 1 here. It justifies the qu
tum correction of the formula using perturbation expansi
The numerical factor in front of the fluctuation correction
this case is

c15
bAbv~ah!23/2

8p2
53.093231023. ~40!
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In a finite size sample,dn(q) is equal toLxLy /(2p)2 whenq
lies on the reciprocal latticem1d̃11m2d̃2; otherwise it is
zero. BecauseLxLy5Nf2p (Nf is the number of vortices
of order 100 only in the MC simulation!, it is equal to
Nf/2p. The normalized structure functionsn(0)51, as it
was used in Ref. 11! is

sn~q!5D~q!1
1

~11c1f 3!
@c2f 1~q!1c1D~q! f 2~Q!#

~41!

FIG. 1. ~a! Structure factor from the MC simulation of Ref. 11
The peaks at reciprocal lattice points are removed.~b! Fluctuation
correction to structure factor of the Abrikosov vortex lattice, E
~41!. The peaks at reciprocal lattice points are removed.
and

c25c1

2p

Nf
51.943531024,

11c1f 350.91315. ~42!

The correction to the height of the peak atQ, c1D(q)/@1
1c1f 3# f 2(Q), is quite small. We find the height of the pea
away from the origin found in the MC simulation11 are typi-
cally smaller than ours, while around the peaks they
larger than analytical. It may be due to the finite size eff
or finite samplings of the MC calculation. In the MC calc
lation part of the peak might ‘‘belong’’ to a neighborin
pixel. We plot the correction to the nonpeak region in F
1~b! and find that the theoretical prediction has roughly t
same characteristic saddle shape ‘‘halos’’ around the pe
as in Ref. 11, Fig. 1~a!, in which all the peaks were remove
~so it is different from Fig. 2~a! in Ref. 11 in which only the
central peak was removed!.

We can extend our formula to higher orders which w
include also the HLLs~higher Landau levels!. To next order
of ah , we should includeF1 in F, F5(ah)1/2@F0

1ahF1#, consider eO(k),eA(k) to next order ah
2 , and

eO
n (k),eA

n(k) to orderah . It is straightforward to do it.

B. Nonperturbative evidence ofeA
1
„k…˜zkz4

for asymptotic small kx ,ky

Conversely, the MC simulation result provides the no
perturbative evidenceeA

1(k)→uku4 for asymptotic small
kx ,ky . In Eq.~36!, if eA

1(k)→uku2, we will get a contribution
from the most singular term const1const•(k3Q)2/k. This
term will become constant whenk→0, and we will not get
the same characteristic saddle shape ‘‘halos’’ around
peaks as in Ref. 11. SoeA

1(k)→uku4 for k→0 is crucial for
such characteristic shape. Thus the MC simulation result p
vides a nonperturbative evidence thateA

1(k)→uku4 for k
→0.

V. FLUCTUATION OF MAGNETIC FIELD

Another quantity which can be measured is the magn
field distribution. In addition to the constant magnetic fie
background there are 1/k magnetization corrections due t
field produced by supercurrent. To leading order inah it is
given bym(x)}^r(x)&/k ~for example, see Ref. 15!. ^r(x)&
can be calculated using the following equation:

^r~x!&5^uF~x!1x~x!u2&5uF~x!u21^F* ~x!x~x!&

1^F~x!x* ~x!&1^x~x!x* ~x!&

5
ah

bA
uf~x!u21^x~x!x* ~x!&. ~43!

.

TABLE I. Values of f 2(Q) with small n1,n2.

n1,n2 0,1 1,0 1,1 1,2 0,2 2,2 1,3

f 2(Q) 27.35 27.35 27.35 210.05 210.242 210.242 211.75
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Using Eq. ~20! and Eq.~11!, and considering onlyx350,
one obtains

^x~x!x* ~x!&5
v

16p3Ek
uwk~x!u2F 1

eO~k!1
k3

2

2

1
1

eA~k!1
k3

2

2
G

5
v

16p2Ek
uwk~x!u2FA 2

eO~k!
1A 2

eA~k!
G .

However, as pointed out in Sec. III the coefficientn in
c(x)5vf(x)1x(x) is renormalized to one loop order,v2

5vo
21vv1

2 , with v1 given in Eq.~33!. Thus we need to add
a term,vv1

2@f(x)#2, to Eq. ~43!.

^r~x,0!&5
ah

bA
uf~x!u21

v

16p2Ek
uwk~x!u2

3FA 2

eO~k!
1A 2

eA~k!
G

2
vuf~x!u2

16p2 E
k
F S 2bk1ugku

b DA 2

eO~k!

1S 2bk2ugku
b DA 2

eA~k!
G . ~44!

Its Fourier transformr(q)[*dzeiq•z^r(z,0)& can be easily
calculated:

r~q!54p2dn~q!expF2
q2

4b
1

iqxqy

2b
1

p i

2
~n1

22n1!G
3H ah

bA
1

v

16p2Ek
F S expS ik3q

b D2S 2bk1ugku
b D D

3A 2

eO~k!
1S expS ik3q

b D
2S 2bk2ugku

b D DA 2

eA~k!
G J . ~45!

Performing integrals and rescaling the quasimomenta ag
one obtains

r~q!54p2
dn~q!

b
expF2

q2

4
1

iqxqy

2
1

p i

2
~n1

22n1!G
3H ah

bA
1

vbah
21/2

16p2
[ 228.52751 f 2(Q)] J . ~46!

The functionf 2(Q… appeared in Eq.~36!.

VI. DISORDER EFFECT ON MAGNETIZATION
AND SPECIFIC HEAT

One can introduce weak disorder by adding a quadr
term in Eq.~2!,6
in,

ic

D f [E d3xa~x!ucu2. ~47!

Loosely speaking it represents a local variation of tempe
ture. For pointlike defects one can assume that the corr
tion of a(x) is ^^a(x)a(y)&&5Wd(x2y),^^a(x)&&50. Be-
fore the disorder average we calculate the free ener
2T ln Z with

Z5E Dc* Dc expH 2
1

v
F f @c* ,c#2E d3xa~x!ucu2G J .

~48!

If W is very small, we can calculateZ by perturbation theory
in W. To the second orderZ is given as

Z5Z0F12
1

vEx
a~x!^r~x!&

1
1

2v2Ex
E

y
^r~x!r~y!&a~x!a~y!G , ~49!

whereZ0 is the free energy without disorder and it had be
obtained in Ref. 14. Thus the free energy with disorder i

F52T ln Z5F01DF

5F01TE
x

a~x!

v
^r~x!&2

T

2v2Ex
E

y
@^r~x!r~y!&

2^r~x!&^r~y!&#a~x!a~y!, ~50!

where F052T ln Z0. Averaging free energy over disorde
one obtains

F5F02
TW

2v2Ex
@^r~x!r~x!&2^r~x!&^r~x!&#

5F02
TWV

2v2
vS̃f luct~0!. ~51!

From Eq. ~35!, one finds that S̃f luct(0)5
20.186 19(ah

1/2b/bA). Hence the energy density differenc
due to disorder isF5DF/V520.0931(TWah

1/2b/vbA).
Since v5A2 Gip2t, F5cah

1/2b with c5

20.0931TcW/A2 Gip2bA . The disorder effect on magnet
zation and specific heat are

Dm52
]D f

]b
52cS ah

1/22
b

4
ah

21/2D ,

~52!

Dc52t
]2

]t2
D f 5

c

16
tbah

23/2,

respectively.

VII. CONCLUSIONS

To conclude, we have calculated the effect of fluctuatio
on the structure function of the vortex lattice and compare
to existing MC results. In addition to renormalization of th
height of the Bragg peaks, there appear characteristic sa
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shape ‘‘halos’’ around the peaks as found in Ref. 11. T
MC simulation result provides the nonperturbative eviden
eA

1(k)→uku4 for asymptotic smallk. The calculated fluctua
tion contribution to the magnetic field can be more eas
observed in low temperature strongly type-II supercondu
ors. Finally, the predicted dependence of magnetization
specific heat on disorder via fluctuations also can be exp
mentally studied.

Correlations in flux lattices can be experimentally me
sured using neutron scattering as well as some other m
exotic methods such as muon spin relaxation, electron
mography, scanning SQUID microscopy, etc.1–3,16,17 It
would be interesting to detect the effect of fluctuations giv
in the present paper directly from experiments by subtrac
the ‘‘background’’ of the well-known mean field correlato
The calculations show that infrared divergencies naively
pected in all of the physical quantities calculated above
to ‘‘supersoft’’ shear modes in the largek limit cancel. This
strengthens the view that the loop expansion is a relia
theoretical tool to study the fluctuations effects in vort
lattice below the melting point.

ACKNOWLEDGMENTS

We are grateful to our colleagues A. Knigavko, B. Bak
and V. Yang. One of us~B.R.! is especially grateful to R
Sasik and D. Stroud for providing raw numerical data wh
was essential for the present comparison with the MC d
The work is part of the NCTS topical program on vortices
high Tc and was supported by NSC of Taiwan.

APPENDIX A

In this appendix, we present some basic formulas use
the calculations. The basic matrix element is
.

,

e
e

y
t-
nd
ri-

-
re

o-

n
g

x-
e

le
x

,

h
ta.

in

b

2pEcell
dxw~x!wk* ~x!exp@2 ix•q#

5Dq,kexpFp i

2
~n1

22n1!2
q2

4b
2

iqxqy

2b
1

ikxqy

b G .
~A1!

The Kronecker delta is defined by

Dq,k5D~q2k!5H 1, if q5k1n1d̃11n2d̃2

0, otherwise,
~A2!

where integersn15(1/2p)d1•(q2k) and

n25~1/2p!d2•~q2k!.

Here d̃1 ,d̃2 are the reciprocal lattice basis vectors

d̃15
2pAb

a S 1,2
1

A3
D ; d̃25S 0,

4pAb

aA3
D , ~A3!

which are dual tod15(a/Ab,0), d25(a/2Ab,aA3/2Ab),

and a5A4p/A3. Integrating over the sample areaA, one
obtains

E
A
dxw~x!wk* ~x!exp@2 ix•q#

54p2dn~q2k!expFp i

2
~n1

22n1!G
3expF2

q2

4b
2

iqxqy

2b
1

ikxqy

b G , ~A4!

where dn(q2k) is defined asdn(q2k)5(m1,m2
d(q2k

2m1d̃12m2d̃2).
s.
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