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Lowest Landau level approximation in strongly type-II superconductors
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Higher than the lowest Landau level,~LLL ! contributions to magnetization and specific heat of supercon-
ductors are calculated using the Ginzburg-Landau equation approach. Corrections to the excitation spectrum
around the solution of these equations~treated perturbatively! are found. Due to symmetries of the problem
leading to numerous cancellations the range of validity of the LLL approximation in the mean field is much
wider then a naive range and extends all the way down toH5Hc2(T)/13. Moreover, the contribution of higher
Landau levels~HLL ! is significantly smaller compared to LLL than expected naively. Like the LLL part, the
lattice excitation spectrum at small quasimomenta is softer than that of the usual acoustic phonons. This
enhances the effect of fluctuations. The mean-field calculation extends to third order, while the fluctuation
contribution due to HLL is to one loop. This complements the earlier calculation of the LLL part to two-loop
order.@S0163-1829~99!03834-5#
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I. INTRODUCTION

The Ginzburg-Landau~GL! effective description of high-
Tc superconductors has been remarkably successful in
scribing various thermodynamical and transport properti1

However, when fluctuations are of importance, even this
fective description becomes very complicated. So
progress can be achieved when certain additional assu
tions are made. One often made additional assumption is
only the lowest Landau level~LLL ! significantly contributes
to physical quantities of interest.2–8 There is a debate, how
ever, on how restrictive the LLL approximation actually
Naively whenH,Hc2(T)/3 ~see the dotted line in Fig. 1!,
even within the mean-field approximation, one should c
sider higher Landau levels~HLL’s ! mixing in the Abrikosov
vortex lattice solution of the GL equations. When fluctu
tions are included one can argue using Hart
approximation9 that the LLL range of validity is even
smaller. However, direct application of the LLL scaling
magnetization and specific heat on Y-Ba-Cu-O suggest
the range of applicability is much wider—all the way dow
to 123T.10,7,11 It is not clear why HLL do not contribute.

In this paper we explicitly calculate the effects of HLL
low temperatures in the vortex solid or liquid phase and
tablish the realistic range where the LLL approximation
valid ~see the heavy dashed line in Fig. 1!. We reanalyze the
HLL corrections to mean-field equations going to higher
der than in Ref. 12 and find that the expansion converges
Hc2.H.Hc2/13. Importantly, within this radius of conver
gence the LLL contribution constitutes more than 95%. Th
we calculate the HLL fluctuation effects to one-loop ord
complementing the LLL calculation to two loops by one
us8 ~later referred to as I!.

Ginzburg parameterGi characterizing the importance o
thermal fluctuations is much larger in high-Tc superconduct-
ors then in the low-temperature ones. Moreover, in the p
PRB 600163-1829/99/60~13!/9704~10!/$15.00
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ence of the magnetic field the importance of fluctuations
high-Tc superconductors is further enhanced. Under th
circumstances corrections to various physical quantities
magnetization or specific heat are not negligible even at
temperatures. It is quite straightforward to systematically

FIG. 1. The range of the validity of the expansions inah and the
loop expansion. The region above the dotted line is the naiv
expected validity range of the LLL approximation. The regio
above the long dashed line is the actual validity range for the
pansion of the mean-field equations. The loop expansion applica
ity range lies below the dashed curves. We plot two curves w
different values of Ginzburg numberGi, Gi50.1, andGi50.01.
The validity combining the mean-field expansion and the loop
pansion lies therefore between the long dashed line and the da
curves.
9704 ©1999 The American Physical Society
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count for the fluctuations effect on magnetization, spec
heat or conductivity perturbatively above the mean-fi
transition line using the Ginzburg-Landau description13

However, in the interesting region below this line it turn
out to be extremely difficult to develop a quantitative theo

Within LLL in order to approach the region below th
mean-field transition lineT,Tmf(H), Thouless2 proposed a
perturbative approach around the homogeneous~liquid! state
was in which all the ‘‘bubble’’ diagrams are resumed. T
series provide accurate results at high temperatures, bu
the LLL dimensionless temperature aT

[(2Hc2
2 /GiTcT

2H2)1/3@T2Tmf(H)/p#&22 become inap-
plicable. Generally attempts to extend the theory to low
temperature by Pade´ extrapolation were not successful.4 Al-
ternatively, a more direct approach to low-temperature fl
tuations physics is to start from the mean field solution a
then take into account perturbative fluctuation around
inhomogeneous solution. Experimentally it is reasona
since, for example, specific heat at low temperatures
smooth function and the fluctuation contribution experime
tally is quite small. For some time this was in disagreem
with theoretical expectations.

Eilenberger calculated the spectrum of harmonic exc
tions of the triangular vortex lattice@see Eq.~30! below#3 and
noted that the gapless mode is softer then the usual G
stone mode expected as a result of the spontaneous bre
of translational invariance. The inverse propagator for
‘‘phase’’ excitations behaves askz

21const(kx
21ky

2)2. The in-
fluence of this unexpected additional ‘‘softness’’ apparen
goes beyond the enhancement of the contribution of fluc
tions at leading order. It leads to disastrous infrared div
gences at higher orders rendering the perturbation the
around the vortex state doubtful. One, therefore, tends
think that nonperturbative effects are so important that suc
perturbation theory should be abandoned.14 However, it was
shown in I that a closer look at the diagrams reveals tha
fact one encounters actually only logarithmic divergenc
This makes the divergences similar to so-called ‘‘spuriou
divergences in the theory of critical phenomena with brok
continuous symmetry and they exactly cancel out each ot
provided we are calculating a symmetric quantity. Quali
tively physics of a fluctuatingD53 GL model in a magnetic
field turns out to be similar to that of spin systems inD52
possessing a continuous symmetry. In particular, altho
within perturbation theory in the thermodynamic limit th
ordered phase~solid! exists only atT50, at low tempera-
tures liquid differs very little in most aspects from solid. O
can effectively use properly modified perturbation theory
quantitatively study various properties of the vortex-liqu
phase. This perturbative approach agrees very well with
direct Monte Carlo simulation of Ref. 7. The question aris
whether one can extend the well-controlled perturbative
culation beyond the LLL. Sometimes a hope is expres
that the additional softness is an accidental artifact of L
approximation. We will show that this is not so and it is
fundamental general phenomenon~see also Ref. 15!.

The paper is organized as follows. The model is descri
and a perturbative mean-field solution is developed in S
II. The expansion parameter will be the distance from
mean-field critical lineah[ 1

2 (12T/Tc2H/Hc2). The range
of validity of the expansion and of the LLL approximation
c

.
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discussed. Then in Sec. III we derive the spectrum of ex
tations to leading order and to the next to leading order
ah . The free energy to one loop is calculated in Sec.
Section V contains expressions for magnetization and s
cific heat and a discussion of the validity range of the flu
tuation contributions calculation. Finally, we summarize t
results in Sec. VI. Details of the mean-field calculation c
be found in Appendix A, while details of the HLL spectrum
calculation can be found in Appendix B.

II. MODEL AND THE PERTURBATIVE MEAN-FIELD
SOLUTION

A. Model

Our starting point is the GL free energy:

F5E d3x
\2

2mab
US ¹W 2

ie*

\c
AW DcU2

1
\2

2mc
u]zcu21aucu2

1
b8

2
ucu4. ~1!

Here AW 5(By,0) describes a nonfluctuating constant ma
netic field. For strongly type-II superconductors (k;100)
far from Hc1 ~this is the range of interest in this paper! the
magnetic field is homogeneous to a high degree due to
perposition from many vortices. For simplicity we assum
a5a(12t)Tc, t[T/Tc , although this dependence can b
easily modified to better describe the experimental cohere
length.

Throughout most of the paper will use the following unit
The unit of length isj5A\2/(2mabaTc) and the unit of the
magnetic field isHc2, so that the dimensionless magne
field is b[B/Hc2. The dimensionless Boltzmann factor
these units is@the order parameter field is rescaled asc2

→(2aTc /b8)c2#:

F

T
5

1

vE d3x
1

2
uDcu21

1

2
u]zcu22

12t

2
ucu21

1

2
ucu4.

~2!

The dimensionless coefficient is

v5A2Gip2t, ~3!

where the Ginzburg number is defined byGi
[ 1

2 (32pe2k2jTcg
1/2/c2h2)2 and g[mc /mab is an anisot-

ropy parameter. This coefficient determines the strength
fluctuations, but is irrelevant as far as mean-field solutio
are concerned.

B. Mean-field solution by expansion inah

Now we turn to a perturbative solution of the Ginzbur
Landau equations near the mixed-state–normal-phase tr
tion line. This has been done before12 to second order, how-
ever, the range of applicability and precision of the LL
approximation at largek has not been fully explored. Thez
direction dependence of the solutions is trivial and will n
be mentioned until fluctuations will be discussed. The exp
sion parameter is
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ah[
12t2b

2
. ~4!

Rewriting the quadratic part in terms of operator~‘‘Hamil-
tonian’’! H[ 1

2 (2D22b) whose spectrum starts from zer
one obtains the following free-energy density overT

F

T
[

f

v
5

1

vE d2xS c* Hc2ahucu21
1

2
ucu4D . ~5!

The equation of motion is therefore

Hc2ahc1cucu250. ~6!

This equation is solved perturbatively inah by assuming

F5~ah!1/2@F01ahF11•••#. ~7!

It is convenient to representF0 ,F1 , . . . in the basis of
eigenfunctions ofH, Hwn5nbwn, normalized to unit
‘‘Cooper pairs density’’ ^uwnu2&[*celld

2xuwnu2b/2p51,
where ‘‘cell’’ is a primitive cell of the vortex lattice. Assum
ing hexagonal lattice symmetry one explicitly has

wn5A 2p

Ap2nn!a
(

l 52`

`

HnS yAb2
2p

a
l DexpH i Fp l ~ l 21!

2

1
2pAb

a
lxG2

1

2 S yAb2
2p

a
l D 2J , ~8!

wherea/Ab5A4p/A3b is the lattice spacing.
To order zero

HF050, ~9!

andF0 is proportional to the Abrikosov vortex lattice solu
tion w which is Eq.~6! for n50:

F05g0w.

To orderk, one expands

F i5giw1 (
n51

`

gi
nwn. ~10!

Inserting into Eq.~6!, one obtains to orderah
3 :

HF15g0w2g0ug0u2wuwu2. ~11!

Taking the inner product withw one finds that

g05
1

AbA

, ~12!

where the Abrikosov’s constant is the following avera
over the primitive cell:b5bA[^uwu4&'1.16. Inner product
with wn determinesg1

n :

g1,n52
bn

nbb3/2
, ~13!

wherebn[^uwu2wnw* &. To find g1 we need in addition also
the orderah

5/2 equation:

HF25F12~g0!2~2F1uwu21F1* w2!. ~14!
The inner product withw gives

g15
3

2 (
n51

`
~bn!2

nbb5/2
. ~15!

C. Mean-field result for free energy: Orders ah
2 and ah

3

The mean-field expression for the free energy to orderah
2

is well known. Inserting the next correction Eq.~7! into Eq.
~5! one obtains the free-energy density:

Fmf

T
5

1

v F2
ah

2

2b
2

ah
3

b3b
(
n51

`
~bn!2

n G
5

1

v F20.43ah
220.0078

ah
3

b G . ~16!

It is interesting to note thatbnÞ0 only when n56 j ,
wherej is an integer. This is due to the hexagonal symme
of the vortex lattice.12 For n56 j it decreases very fast with
j : b6520.2787,b1250.0249. Because of this the coeffi
cient of the next-to-leading order is very small~additional
factor of 6 in the denominator!. We might preliminarily con-
clude therefore that the perturbation theory inah works
much better than might be naively anticipated~see dashed
line on Fig. 1! and can be used very far from transition lin
If we demand that the correction is smaller then the m
contribution, the corresponding line on the phase diagr
will be b50.0153(12t). For example, the LLL melting
line corresponds toah;1. This overly optimistic conclusion
is, however, incorrect as the calculation of the followin
term in Appendix A shows.

D. Range of applicability of the expansion.
How precise is LLL?

Now we discuss in what region of the parameter space
expansion outlined above can be applied. First of all n
that all the contributions toF1 are proportional to 1/b. This
is a general feature: the actual expansion parameter isah /b.
One can check as to whether the expansion is conver
and, if yes, what is its radius of convergence. Looking jus
the leading correction and comparing it to the LLL one g
a very optimistic estimate. For this purpose we calcula
higher-order coefficients in Appendix A. The results for t
F2 are the following:

g2
n5

1

nb Fg1
n2

1

b (
i 50

`

g1
i ~2^n,0u i ,0&1^0,0u i ,n&!G ~17!

and

g252
3

2b
bng2

n2
1

2Ab
(

i , j 50

`

g1
i g1

j ~^0,0u i , j &12^ j ,0u i ,0&!,

~18!

where^ i 1 ,i 2u j 1 , j 2&[^w* i 1w* i 2w j 1w j 2& andgj
i when i 50 is

defined to be equal togj ,w
i5w when i 50.

We already can see thatg2
n andg2 are proportional tog1

n

and in addition there is a factor of 1/n. Since, due to hexago
nal lattice symmetry all theg1

n , nÞ6 j vanish, so dog2
n . We
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FIG. 2. The densityuc2u of the mean-field Abrikosov solution forb50.1,t50.5. ~a! is the lowest order approximation~LLL !. ~b! is the
solution with the next-order correction included, while in~c! the next-next-order correction is included.
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checked that there is no more small parameters, so we
clude that the leading-order coefficient is much larger th
the first ~factor 635), but the second is only 6 times larg
than the third.

The correction to free energy is

Fmf

T
5

1

v
•

0.056

62

ah
4

b2
. ~19!

Accidental smallness by a factor of 1/6 of the coefficients
theah /b expansion due to symmetry means that the rang
validity of this expansion is roughlyah,6b or H,Hc2/13.
Moreover, additional smallness of all the HLL correctio
compared to the LLL means that they constitute just sev
percent of the correct result inside the region of applicabil
To illustrate this point we plot in Fig. 2 the perturbative
calculated solution forb50.1,t50.5. One can see that a
though the leading LLL function has very thick vortices@Fig.
2~a!#, the first nonzero correction makes them of the orde
the coherence length@Fig. 2~b!#. Following the correction of
the order (ah /b)2 makes it practically indistinguishable from
the numerical solution. Amazingly the order parameter
tween the vortices approaches its vacuum value. Parad
cally starting from the region close toHc2 the perturbation
theory knows to correct the order parameter so that it lo
very similar to the London approximation~valid only close
to Hc1) result of well-separated vortices.

We conclude, therefore, that the expansion inah /b works
in the mean field better than one can naively expect. In
next section we investigate whether the same is true for
fluctuation contribution.

III. FLUCTUATIONS SPECTRUM

A. Fluctuations to leading order in a

To find an excitation spectrum in the harmonic appro
mation one expands the free-energy functional around
solution found in the previous section. Within the LLL a
proximation this has been done in Ref. 3. We generalize
the case of all the Landau levels when perturbations du
n-
n

of

al
.

f

-
xi-

s

e
e

-
e

o
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nonlinear term are included. The fluctuating order-parame
field c should be divided into a nonfluctuating~mean field!
part and a small fluctuation

c~x!5F~x!1x~x!. ~20!

The energy Eq.~5! is then expanded inx retaining only
quadratic terms

f 2[E d2xFx* Hx2ahuxu212uFu2uxu2

1
1

2
~F* 2x21F2x* 2!G . ~21!

Field x can be expanded in a basis of quasimomentumkW
eigenfunctions:

wkW
n
5A 2p

Ap2nn!a
(

l 52`

`

HnS yAb1
kx

Ab
2

2p

a
l D

3expH iF p l ~ l 21!

2
1

2pS Abx2
ky

Ab
D

a
l 2xkx

G
2

1

2 S yAb1
kx

Ab
2

2p

a
l D 2J . ~22!

In addition instead of complex fieldxk
n we will use two

‘‘real’’ fields Ok
n andAk

n satisfyingOk
n5O2k* n , Ak

n5A2k* n :

x~x!5E
kW .
(
n50

`

wkW
n
~x!~Ok

n1 iAk
n!, ~23!

x* ~x!5E
kW .
(
n50

`

wkW
* n

~x!~O2k
n 2 iA2k

n !.
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In terms of these fields representing ‘‘optical’’ and ‘‘acou
tic’’ phonons Eq.~21! takes a form

f 25E
kW .
(
n51

`

~nh2ah!~Ok
nO2k

n 1Ak
nA2k

n !

2ah~OkO2k1AkA2k! ~24!

1 (
i , j 50

`

Ak
i A2k

j Kk
i , j1Ok

i A2k
j Lk

i , j

1O2k
i Ak

j Mk
i , j1Ok

i O2k
j Nk

i , j

where elements of the matrix are

Kk
i , j5 K uFu2~w

2kW
* i

w
2kW
j

1wkW
i
wkW

* j
!

2
1

2
~F* 2wkW

i
w

2kW
j

1F2w
2kW
* i

wkW
* j

!L ,

Nk
i , j5 K uFu2~w

2kW
* i

w
2kW
j

1wkW
i
wkW

* j
!

1
1

2
~F* 2wkW

i
w

2kW
j

1F2w
2kW
* i

wkW
* j

!L , ~25!

Lk
i , j5 i K uFu2~w

2kW
* i

w
2kW
j

2wkW
i
wkW

* j
!1

1

2
~F* 2wkW

i
w

2kW
j

2F2w
2kW
* i

wkW
* j

!L ,

Mk
i , j52 i K uFu2~w

2kW
* i

w
2kW
j

2wkW
i
wkW

* j
!1

1

2
~F* 2wkW

i
w

2kW
j

2F2w
2kW
* i

wkW
* j

!L .

We expandf 2 in ah . The orderah term is

E
kW .
(
i 50

`

2ah~Ok
i O2k

i 1Ak
i A2k

i !1ah(
i , j

`

@Ak
i A2k

j Kk
i , j~1!

1Ok
i A2k

j Lk
i , j~1!1O2k

i Ak
j Mk

i , j~1!1Ok
i O2k

j Nk
i , j~1!#.

~26!

We will use the degenerate perturbation theory similar to
used in quantum mechanics to calculate the correction to
eigenvalues of the matrix the LLL states (A,O states! to
orderah

2 . The matrixĤ[(M N
K L ) is analogous to the ‘‘Hamil-

tonian,’’ while (A/O) is analogous to the eigenvector. E
plicitly the matrix elements are
e
he

Kk
i , j~1!5

1

b K uwu2~w
2kW
* i

w
2kW
j

1wkW
i
wkW

* j
!

2
1

2
~w* 2wkW

i
w

2kW
j

1w2w
2kW
* i

wkW
* j

!L ,

Nk
i , j~1!5

1

b K uwu2~w
2kW
* i

w
2kW
j

1wkW
i
wkW

* j
!

1
1

2
~w* 2wkW

i
w

2kW
j

1w2w
2kW
* i

wkW
* j

!L , ~27!

Lk
i , j~1!5

1

b S uwu2~w
2kW
* i

w
2kW
j

2wkW
i
wkW

* j
!

1
1

2
~w* 2wkW

i
w

2kW
j

2w2w
2kW
* i

wkW
* j

!L ,

Mk
i , j~1!5

1

b K uwu2~w
2kW
* i

w
2kW
j

2wkW
i
wkW

* j
!

1
1

2
~w* 2wkW

i
w

2kW
j

2w2w
2kW
* i

wkW
* j

!L .

We will use definitions

bk
n5^uwu2wkWwkW

* n
&,

bk
n̄5^w* wnwkW

* wkW&, ~28!

gk
n5^~w* !2w2kWwkW

n
&,

gk
n̄5^w* w* nwkWw2kW&.

When an index is zero we drop it throughout the paper.
example, whenn50, we refer tobk

n as bk , and whenk
50,bk

n5bn, etc.!.
Considering to orderah above matrix elementi , j 50 of

K,L,M ,N is

K15
2

b
bk2

1

b
Regk ,

N15
2

b
bk1

1

b
Regk ~29!

L15Mk52
1

b
Im gk .

In deriving this we have used a propertybk5b2k .
We now diagonalize the matrix to find the eigenstates

LLL ~which is of orderah!. Eigenvalues are

eA5ahS 211
2

b
bk2

1

b
ugku D , ~30!
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eO5ahS 211
2

b
bk1

1

b
ugku D ,

as was found originally by Eilenberger.3 The ‘‘acoustic’’
branch is shown in Fig. 3~a!. The rotation transforming in to
these eigenstates is

Ãk5cos
uk

2
Ak1sin

uk

2
Ok , ~31!

Õk52sin
uk

2
Ak1cos

uk

2
Ok ,

where gk[ugkuexp@iuk#. A similar calculation for thenth
Landau level gives the spectrum

«A,O
n 5ahS 211

2

b
^uwu2wk*

nwk
n&7

1

b
u^~w* !2wk

nw2k
n &u D .

~32!

FIG. 3. The shear modeA spectrum.~a! is the spectrum obtained
within the LLL approximation.~b! is the correction to the spectrum
when the HLL mixing effect is considered.
B. Spectrum of fluctuations beyond leading order inah

In this subsection we calculate the correction of eigenv
ues of LLL to orderah

2 . The HamiltonianĤ in addition has

the ah part Ĥ1 given in Eq.~27! also has theah
2 part Ĥ2. As

will be explained in the next section, we will need only th
correction to the LLL to theah

2 order, not the HLL. There-

fore we will need only thei , j 50 matrix element ofĤ2:

K25 (
n51

`
1

nbb2 F 3

b
bn

2~2bk2Regk!

22bn~Reb̄k
n1Reb̄2k

n 2Reḡk
n!G ,

N25 (
n51

`
1

nbb2 F 3

b
bn

2~2bk1Regk!

22bn~Reb̄k
n1Reb̄2k

n 1Reḡk
n!G , ~33!

L21M25 (
n51

`
1

nbb2 F2
6

b
bn

2 Im gk1
4

b
bn Im ḡk

nG .
Note that we do not showL2 andM2 separately as our resu
will depend only onL21M2. According to the degenerat
perturbation theory we need to diagonalizeĤ1 which already
has been done in the previous subsection and then use
resulting statesÃk andÕk to calculate the second-order co
rection to the eigenvalue:«k

(2)5ah
2(Ediag1Eoffdiag). The diag-

onal contribution is

Ediag[^ÃkuĤ2uÃk&5S cos
uk

2 D 2

K21N2S sin
uk

2 D 2

1~L21M2!sin
uk

2
cos

uk

2
. ~34!

Substituting the matrix elements Eq.~33! we obtain

Ediag5 (
n51

bn

nbb2 H 3bn

b
~2bk2ugku!22@Rebk

n̄1Reb2k
n̄

2cosuk Regk
n̄2sinuk Imgk

n̄#J . ~35!

In the off-diagonal contribution
TABLE I. Contributions to the free energy of mixing the LLL with HLL. Given in units of1
2 sbah

3/2.

Leveln 1 2 3 4 5 6 7 8

A mode 20.253 20.082 20.053 20.063 20.063 0.247 20.017 20.005
O mode 20.230 20.086 20.051 20.023 20.012 0.018 20.003 20.001
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Eoffdiag52 (
n51

^ÃkuĤ1un&^nuĤ1uÃk&
nb

52(
n

1

nb H S cos
uk

2 D 2

@ u^AkuĤ1uAk
n&u21u^AkuĤ1uOk

n&u2#1S sin
uk

2 D 2

@ u^OkuĤ1uOk
n&u2

1u^OkuĤ1uAk
n&u2#1sin

uk

2
cos

uk

2
@^AkuĤ1uAk

n&^Ak
nuĤ1uOk&1^AkuĤ1uOk

n&^Ok
nuĤ1uOk&1c.c.#J . ~36!

Details of the calculation of these matrix elements can be found in Appendix B together with definitions of quantitiesF. The
result is

Eoffdiag52
1

b (
n

1

n H 1

b2
[ uFk

n~1!u21uF2k
n ~1!u21uFk

n~2!u21uF2k
n ~2!u] 21

cosuk

b2
@ uFk

n~1!u21uF2k
n ~1!u22uFk

n~2!u2

2uF2k
n ~2!u2#1

2 sinuk

b2
Im @F2k

n ~1!F2k* n~2!2Fk*
n~1!Fk

n~2!#J . ~37!
n

15

-

c-

ta
at
.

r

A similar result forOk can be obtained by changing the sig
of cosuk and the sign of sinuk in the formula above.

It is crucial to see whether there is ak2 term in higher
orders for the acoustic branchA. We calculated numerically
the contributions to the spectrum untiln58. All the k2 con-
tributions to any of them cancel, as it was proved in Ref.
Moreover even all thek4 contributions for oddn cancel al-
though the evenn give a negative contribution to the rota
tionally symmetric combination (kx

21ky
2)2. Numerically the

coefficients are 2.231026, 5.031025, 26.331026, 4.7
31027 for n52,4,6,8 correspondingly. The resulting corre
tion to the spectrum of the acoustic branch due to then52
level is shown in Fig. 3~b!.

After we have established the spectrum of the elemen
excitations of the Abrikosov lattice, we are ready to calcul
the fluctuation contributions to various physical quantities

IV. FLUCTUATION CONTRIBUTIONS TO FREE
ENERGY, MAGNETIZATION AND SPECIFIC HEAT

Higher Landau levels contribution to free energy

The thermal fluctuation part is

2T ln@Z#[Fmf1Ffluc ;

Ffluc5
T

2 (
n50

` H Tr lnF«A
n~k!1

kz
2

2 G1Tr lnF«O
n ~k!1

kz
2

2 G J
~38!
.

ry
e

5TLx
2Lzsb(

n50

`

@^A«A
n~k!&1^A«O

n ~k!&#,

where s[1/A22p and we performed the integration ove
kz .

The LLL contribution to orderAah in two dimensions
~2D! has been calculated by Eilenberger.3 The 3D result for
the density of the free energy is8

Ffluc
(1/2)

T
5sbah

1/2@^A«A
(1)~k!&1^A«O

(1)~k!&#53.16sbah
1/2.

~39!

We calculated its higherah correction which is of orderah
3/2

using Eqs.~35! and ~37!

Ffluc
(3/2)

T
5

1

2
sbah

3/2F K «A
(2)~k!

A«A
(1)~k!

L 1K «O
(2)~k!

A«O
(1)~k!

L G
520.445sbah

3/2. ~40!

As noted below«A
(2)(k) and«A

(2)(k) given in the last section
contain contributions from mixing with all the HLL’s. Table
I details contributions to this term from levels untiln58.
The contributions are negative for allnÞ6 j where j is an
integer and positive otherwise.

The contribution of HLL is
Ffluc

T
5sb(

n51

`

@^Anb1ah«A
n~k!&1^Anb1ah«O

n ~k!&#'2sb3/2(
n51

`

An1
1

2
sb1/2ah(

n51

`
1

An
@^«A

n~k!&1^«O
n ~k!&#1O~ah

2!

5
1

T
~Ffluc

(0)1Ffluc
(1) !. ~41!
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The first divergent~as powers 3/2 and 1/2 in the ultraviole!
term renormalizes energy. However, it has a finite magne
field-dependent part which should be calculated by subtr
ing theb50 value of the free energy. The proper regulariz
tion is made by restricting the number of Landau levels a
then showing that after regularization the answer does
depend on it. The calculation is the same as the one don
the normal phase~obviously uv divergences are insensitiv
to the phase in which they are calculated!, see for details and
discussion, Ref. 16. The result is

Ffluc
(0)

T
50.526sb3/2. ~42!

This exhibits the diamagnetic nature of the bosonic field17

The second term is proportional to(1/An and also diverges
but only as power 1/2 in the ultraviolet and renormalizesah .
To see this we calculate the sum

^«A
n~k!1«O

n ~k!&k5221
4

b
^^uwu2wk*

nwk
n&x&k5221

4

b
.

~43!

The last equality follows from the curious property
wk*

n(x)wk
n(x) that it depends only onxib2« i j kj . We see

that apart from the renormalizations there is a finite corr
tion:

Ffluc
(1)

T
51.459S 211

2

b Dsb1/2ah . ~44!

The following one is of the orderah
2 and will not be calcu-

lated here.

V. RESULTS FOR MAGNETIZATION AND SPECIFIC
HEAT: RANGE OF APPLICABILITY OF THE

LOOP EXPANSION AND GL APPROACH

Here we discuss the nature and range of applicability
the expansions we used for fluctuating superconductors~for
c-
t-
-
d
ot
in

-

f

which Gi is not negligibly small!. There are two small pa
rameters used. The first one isah /b which controls the ex-
pansion of the mean-field solution and, therefore, the H
corrections were already discussed in Sec. III. The sec
small parameter controls the fluctuations. We assumed
mean field is the leading order and then expanded the st
tical sum around it. Summarizing all the corrections the fr
energy density is

F
T

5v21ah
2Fc2

(21)1c3
(21) ah

b
1c4

(21)S ah

b D 2G ~45!

1sbah
1/2Fc0

(0)S ah

b D 21/2

1c1/2
(0)1c1

(0)S ah

b D 1/2

1c3/2
(0) ah

b G1vs2b2ah
21@c21

(1)#,

where the coefficients~upper index is the power ofv and the
lower index is the power ofah) are

c2
(21)520.434, c3

(21)520.0078, c0
(0)50.526,

~46!

c1/2
(0)5316, c1

(0)51.06, c3/2
(0)520.445, c21

(1)50.118,

and v is defined in Eq.~3!. The last term is the two-loop
contribution calculated in I. One clearly see thatvbah

23/2

always appears together with an important ‘‘loop factor’’s
5 1/23/2p .0.11. The expansion parameter therefore is

svbah
23/25pA2Gi

tb

~12t2b!3/2
5

1

A2puaTu3/2
.

In the last equationaT is the often used dimensionless LL
temperature introduced by Thouless.2 For Gi50.01 the con-
dition svah

23/2,1 is represented by the area above the d
ted line in Fig. 1.

Correspondingly the scaled magnetization ism
52]F/]b:
m

T
5v21S c2

(21)ah1
3

2
c3

(21)b21ah
212c4

(21)b22ah
3D1sS c3

(21)v21b22ah
32

3

2
c0

(0)b1/22c1/2
(0)ah

1/21
1

4
c1/2

(0)bah
21/2

2
1

2
c1

(0)b21/2ah1
1

2
c1

(0)b1/21
3

4
c3/2

(0)ah
1/2D2vs2S 2bah

211
1

2
b2ah

22D @c21
(1)#, ~47!

while the scaled specific heat isc52t(]2/]t2)F:

c

t
5tTcv

21S 2
1

2
c2

(21)v2123c3
(21)b21ah29c4

(21)b22ah
2D1sTcS 1

2
c1/2

(0)bah
21/21

1

16
c1/2

(0)btah
23/21c1

(0)b1/21
3

2
c3/2

(0)ah
1/2

2
3

16
c3/2

(0)tah
21/2D1Tcvs2b2S ah

222
t

2
ah

23D @c21
(1)#. ~48!



i
te
ne

ar

y

of

he

r
e

e
a
th
re

u
y
-
L
a

rg
e
L

o

en
-

rts
ng

op

ke
olu

pa
lo
se

in
en

he
x-
ot

to
to
tly

o,
-
in
da
e

r-
n

.

al.

on
he
ex-

9712 PRB 60DINGPING LI AND BARUCH ROSENSTEIN
Now we address the question whether the GL energy
self can be reliably used in the region of applicability sta
above. The GL free energy is an effective energy obtai
after integrating out microscopic degrees of freedomwmicr
~for example, quantum electron fields in the BCS or Hubb
model!. Formally one writes

exp$2bFGL@c#%5E
wmicr

d„c2c~wmicr!…exp$2bF@wmicr#%,

~49!

where the functionalF@wmicr# describes a microscopic theor
~one has to make also the quantum-mechanical average
shown explicitly!. The order-parameter field is a function
the microscopic field~bilinear in electron field in BCS!.
Without detailed knowledge of the microscopic theory t
functionalFGL@c# could be quite general, however nearTc
for H50 or more generally nearHc2(T) the order paramete
is small and one can expand on it. Gorkov derived the co
ficients of the GL theory from BCS.13 While some such deri-
vations of the GL theory exist for high-Tc materials,18 also in
the magnetic field,19 here we show the consistency of th
approach within the area of applicability of the approxim
tion we use. Of course, in particular microscopic theories
range of applicability might be larger. Generally the requi
ments are the following. Termsucu6,ucu8, . . . should be
small compared toucu4 in the GL free energy Eq.~1!. In
addition gradients should be small so that higher~covariant!
derivatives can be neglected compared touDcu2.

Our perturbative solutionc}Aah, therefore, ucu6}ah
3

while ucu6}ah
2 . Therefore, in the leading orderucu6 can be

neglected. In higher orders, those higher terms do contrib
In the next leading termucu6 should be phenomenologicall
included, whileucu8 not and so forth. As far as higher de
rivatives are concerned we have shown that even for H
uDcu2}bah and thus higher derivative terms appear only
quite high order. Therefore, we can take the GL free ene
Eq. ~1!, as the free energy of the system to leading ord
Thus in the LLL regime defined here in the paper, the G
theory shall describe the physics correctly. Higher-order c
rections require more free parameters.

VI. CONCLUSION

In this paper we showed why the LLL results are oft
valid far beyond the naive limit of applicability of the ap
proximation for both the mean-field and the fluctuation pa
Our results are valid strictly speaking between the lo
dashed line representingH5Hc2(T)/13 and one of the
dashed curves indicating the range of validity of the lo
expansion for the fluctuation contribution~depends on value
of the Ginzburg numberGi). For nonfluctuating strongly
type-II superconductors our results can be directly chec
by experiments done at low temperature or numerical s
tion ~or even the ‘‘London limit approximation’’! and are in
clear agreement. For small, but not very small Ginzburg
rameter Gi one can compare with existing Monte Car
~MC! simulations7,20 or experiments. Of course, one can u
the existing high-temperature expansion2 to interpolate to the
present expansion range. Results for LLL were presented
and the HLL do not alter them significantly. The agreem
t-
d
d

d

not

f-

-
e
-

te.

L
t
y,
r.

r-

.
-

d
-

-

I
t

with the MC simulations is very good although obviously t
melting transition is not seen. As argued in I it is not e
pected to exist within the present model. The HLL do n
change this conclusion. That the ‘‘supersoft’’A mode has a
propagator 1/@kz

21const(kx
21ky

2)2# beyond the LLL approxi-
mation lays to rest a suspicion that this is a fluke due
LLL. 15 This indicates that this unusual ‘‘softness’’ is due
some underlying symmetry which has yet to be explici
identified.
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APPENDIX A: THIRD-ORDER CORRECTION TO THE
MEAN-FIELD SOLUTION AND FREE ENERGY

In this appendix we provide some details of the third o
der correction in theah calculation of the mean-field solutio
of the GL equations.

To calculateg2
n , one takes the inner product ofwn on the

two sides of Eq.~14! and obtains Eq.~17!. To calculateg2,
we need to consider the GL equation to orderah

7/2:

HF35F22@~F0!2F2* 1~F1!2F0* 12uF0u2F2

12uF1u2F0* #. ~A1!

The scalar product withw gives Eq.~18!.
Now we compute theah

4 order correction to free energy
SubstitutingF2 from Eqs.~17! and ~18! we find

1

2
ah

3~^F2uHuF1&1^F1uHuF2&2^F2uF0&2^F1uF2&

2^F1uF1&!52
g2

b1/2
ah

31ah
3(

n50
Fnbg1

ng2
n2

1

2
~g1

n!2G .
~A2!

Dominant contributions come from̂ 6,6u0,0&5^0,0u6,6&
50.80260,̂6,0u6,0&50.80283 and those coefficients are re

APPENDIX B: SECOND-ORDER CORRECTION
TO THE FLUCTUATIONS SPECTRUM

In this appendix we list matrix elements of the correcti
Ĥ1 given by Eq. ~27! between various states used in t
calculation of the second-order correction to energies of
citations:
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^OkuĤ1uOk
n&5

1

b
^uwu2~w

2kW
* w

2kW
n

1wkWwkW
* n

!&

1
1

2b
^w* 2wkWw2kW

n
1w2w

2kW
* wkW

* n
&

5
1

b Fb2k
n 1bk*

n1
1

2
~g2k

n 1gk*
n!G , ~B1!

^AkuĤ1uOk
n&5

i

b
^uwu2~wkWwkW

* n
2w

2kW
n

w
2kW
* !&1

i

2b

3^w* 2wkWw2kW
n

2w2w
2kW
* wkW

* n
&

5
i

b F2b2k
n 1bk*

n1
1

2
~g2k

n 2gk*
n!G ,

~B2!

^OkuĤ1uAk
n&5

i

b Fb2k
n 2bk*

n1
1

2
~g2k

n 2gk*
n!G ,

^Ak
nuĤ1uOk&5

i

b Fbk
n2b2k* n1

1

2
~2g2k* n1gk

n!G , ~B3!

^AkuĤ1uOk
n&5

i

b Fbk*
n2b2k

n 1
1

2
~2g2k

n 1gk*
n!G ,

^Ok
nuĤ1uOk&5

1

b Fb2k* n1bk
n1

1

2
~g2k* n1gk

n!G ,
etc. From those formulas, we can show

u^AkuĤ1uAk
n&u21u^AkuĤ1uOk

n&u25
2

b2
@ uFk

n~1!u21uF2k
n ~1!u2#,
,

u^OkuĤ1uOk
n&u21u^OkuĤ1uAk

n&u2

5
2

b2
@ uFk

n~2!u21uF2k
n ~2!u2#, ~B4!

^AkuĤ1uAk
n&^Ak

nuĤ1uOk&1^AkuĤ1uOk
n&^Ok

nuĤ1uOk&1c.c.

5
2

b2
@Fk*

n~1!Fk
n~2!2F2k

n ~1!F2k* n~2!#1c.c.,

where

Fk
n~1!5bk

n2
1

2
gk

n , ~B5!

Fk
n~2!5bk

n1
1

2
gk

n .

Finally, we can show that

Eoffdiag52
1

b (
n

1

n H 1

b2
@ uFk

n~1!u21uF2k
n ~1!u21uFk

n~2!u2

1uF2k
n ~2!u2#1

cosuk

b2
@ uFk

n~1!u21uF2k
n ~1!u2

2uFk
n~2!u22uF2k

n ~2!u2#

1
sinuk

b2
2 Im@F2k

n ~1!F2k* n~2!2Fk*
n~1!Fk

n~2!#J .

~B6!
n,

v.
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