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Lowest Landau level approximation in strongly type-Il superconductors
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Higher than the lowest Landau levéLLL ) contributions to magnetization and specific heat of supercon-
ductors are calculated using the Ginzburg-Landau equation approach. Corrections to the excitation spectrum
around the solution of these equatidireated perturbativejyare found. Due to symmetries of the problem
leading to numerous cancellations the range of validity of the LLL approximation in the mean field is much
wider then a naive range and extends all the way dowt+dH .,(T)/13. Moreover, the contribution of higher
Landau level§HLL ) is significantly smaller compared to LLL than expected naively. Like the LLL part, the
lattice excitation spectrum at small quasimomenta is softer than that of the usual acoustic phonons. This
enhances the effect of fluctuations. The mean-field calculation extends to third order, while the fluctuation
contribution due to HLL is to one loop. This complements the earlier calculation of the LLL part to two-loop
order.[S0163-182€09)03834-3

[. INTRODUCTION ence of the magnetic field the importance of fluctuations in
high-T, superconductors is further enhanced. Under these

The Ginzburg-Landa(GL) effective description of high- circumstances corrections to various physical quantities like
T. superconductors has been remarkably successful in d&agnetization or specific heat are not negligible even at low
scribing various thermodynamical and transport propetties.temperatures. It is quite straightforward to systematically ac-
However, when fluctuations are of importance, even this ef-
fective description becomes very complicated. Some p
progress can be achieved when certain additional assump-
tions are made. One often made additional assumption is that
only the lowest Landau levéLLL ) significantly contributes
to physical quantities of intere$t® There is a debate, how-
ever, on how restrictive the LLL approximation actually is.

Naively whenH<H,(T)/3 (see the dotted line in Fig.),1

even within the mean-field approximation, one should con-

sider higher Landau level$iLL’s) mixing in the Abrikosov

vortex lattice solution of the GL equations. When fluctua-

tions are included one can argue using Hartree
approximatiofl that the LLL range of validity is even

smaller. However, direct application of the LLL scaling to 1/3
magnetization and specific heat on Y-Ba-Cu-O suggest that

the range of applicability is much wider—all the way down

to 1—3T.1%7t is not clear why HLL do not contribute.

In this paper we explicitly calculate the effects of HLL at 1/13
low temperatures in the vortex solid or liquid phase and es-
tablish the realistic range where the LLL approximation is
valid (see the heavy dashed line in Fig. We reanalyze the 1
HLL corrections to mean-field equations going to higher or-
der than in Ref. 12 and find that the expansion converges fq
Hep>H>Hc,/13. Im_por'FantIy, W'Fhm this radius of conver- expected validity range of the LLL approximation. The region
gence the LLL contribution consﬂtutes more than 95%. Ther,poye the long dashed line is the actual validity range for the ex-
we calculate the HLL fluctuation effects to one-loop orderpangion of the mean-field equations. The loop expansion applicabil-
complementing the LLL calculation to two loops by one of ity range lies below the dashed curves. We plot two curves with
us’ (later referred to as)! different values of Ginzburg numb@i, Gi=0.1, andGi=0.01.

Ginzburg parameteGi characterizing the importance of The validity combining the mean-field expansion and the loop ex-
thermal fluctuations is much larger in high-superconduct-  pansion lies therefore between the long dashed line and the dashed
ors then in the low-temperature ones. Moreover, in the preseurves.

. FIG. 1. The range of the validity of the expansionsjnand the
oop expansion. The region above the dotted line is the naively
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count for the fluctuations effect on magnetization, specifiadiscussed. Then in Sec. Il we derive the spectrum of exci-
heat or conductivity perturbatively above the mean-fieldtations to leading order and to the next to leading order in
transition line using the Ginzburg-Landau descriptidn. a,. The free energy to one loop is calculated in Sec. IV.
However, in the interesting region below this line it turned Section V contains expressions for magnetization and spe-
out to be extremely difficult to develop a quantitative theory.cific heat and a discussion of the validity range of the fluc-

Within LLL in order to approach the region below the tuation contributions calculation. Finally, we summarize the
mean-field transition lin@<T,«(H), Thoulesé proposed a results in Sec. VI. Details of the mean-field calculation can
perturbative approach around the homogeneﬁm,sid) state be found in Appendix A, while details of the HLL spectrum
was in which all the “bubble” diagrams are resumed. Thecalculation can be found in Appendix B.
series provide accurate results at high temperatures, but for
the LLL dimensionless temperature  ar Il. MODEL AND THE PERTURBATIVE MEAN-FIELD
=(2HZ/GIT TPHH Y T—T«(H)/7]<—2 become inap- SOLUTION
plicable. Generally attempts to extend the theory to lower
temperature by Padextrapolation were not successfuhl-
ternatively, a more direct approach to low-temperature fluc- Our starting point is the GL free energy:
tuations physics is to start from the mean field solution and
then take into account perturbative fluctuation around this 3 h?
inhomogeneous solution. Experimentally it is reasonable F—f d>x
since, for example, specific heat at low temperatures is a
smooth function and the fluctuation contribution experimen- 4
tally is quite small. For some time this was in disagreement + 7|¢| : @
with theoretical expectations.

Eilenberger calculated the spectrum of harmonic excitaqere A=(By,0) describes a nonfluctuating constant mag-
tions of the triangular vortex lattidsee Eq(30) below]*and  netic field. For strongly type-Il superconductorg~ 100)
noted that the gapless mode is softer then the usual Goldyr from H,, (this is the range of interest in this papéne
stone mode expected as a result of the spontaneous breakipggnetic field is homogeneous to a high degree due to su-
of translational invariance. The inverse propagator for theyerposition from many vortices. For simplicity we assume
“phase” excitations behaves &§+consti;+kJ)*. Thein- 5= a(1—-t)T,, t=T/T., although this dependence can be
fluence of this unexpected additional “softness” apparentlyeasily modified to better describe the experimental coherence
goes beyond the enhancement of the contribution of fluctugength.
tions at leading order. It leads to disastrous infrared diver- Throughout most of the paper will use the following units.
gences at higher orders rendering the perturbation theoryne ynit of length ist= v 2/(2m,paT.) and the unit of the
around the vortex state doubtful. One, therefore, tends tehagnetic field isH.,, so that the dimensionless magnetic
think that nonperturbative effects are so important that such fe|q js b=B/H.,. The dimensionless Boltzmann factor in
perturbation theory should be abandoh&#owever, it was  these units igthe order parameter field is rescaled
shown in I that a closer look at the diagrams reveals that in, 2,7 _/b’)y?]:
fact one encounters actually only logarithmic divergences.

This makes the divergences similar to so-called “spurious” g 1 1 1 1—t 1
divergences in the theory of critical phenomena with broken —= —f d3x= D2+ 0,412 — ——|wl?+ = |yl
continuous symmetry and they exactly cancel out each other, T o 2 2 2 2
provided we are calculating a symmetric quantity. Qualita-

tively physics of a fluctuatingp =3 GL model in a magnetic The dimensionless coefficient is

field turns out to be similar to that of spin systemdin 2

possessing a continuous symmetry. In particular, although 0= 2Gimt 3)
within perturbation theory in the thermodynamic limit the ’

ordered phasésolid) exists only atT=0, at low tempera- here the Ginzburg number is defined byGi
tures liquid differs very little in most aspects from solid. One = 1(327e?x2£T,y"?%c?h?)? and y=m,/m,, is an anisot-
can effectively use properly modified perturbation theory torgpy parameter. This coefficient determines the strength of

quantitatively study various properties of the vortex-liquid flyctuations, but is irrelevant as far as mean-field solutions
phase. This perturbative approach agrees very well with thgre concerned.

direct Monte Carlo simulation of Ref. 7. The question arises
whether one can extend the well-controlled perturbative cal-
culation beyond the LLL. Sometimes a hope is expressed
that the additional softness is an accidental artifact of LLL Now we turn to a perturbative solution of the Ginzburg-
approximation. We will show that this is not so and it is a Landau equations near the mixed-state—normal-phase transi-
fundamental general phenomen@ee also Ref. 15 tion line. This has been done befbt¢o second order, how-
The paper is organized as follows. The model is describeéver, the range of applicability and precision of the LLL
and a perturbative mean-field solution is developed in Seapproximation at larg& has not been fully explored. Tte
Il. The expansion parameter will be the distance from thedirection dependence of the solutions is trivial and will not
mean-field critical linea,=3(1—T/T,—H/H,). The range be mentioned until fluctuations will be discussed. The expan-
of validity of the expansion and of the LLL approximation is sion parameter is

A. Model
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B. Mean-field solution by expansion inay,
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Rewriting the quadratic part in terms of operatdHamil-
tonian”) H=
one obtains the following free-energy density oVer

Fof 1f & o+ , 1, 5
T=o " o) 9% P HY—ap| ¥l +§|¢| )

The equation of motion is therefore
Hy—any+ gl y]>=0. (6)

This equation is solved perturbatively @ by assuming
D =(ap) " Po+an®,+---]. (7

It is convenient to represenb,,®,, ... in the basis of
eigenfunctions of H, He"=nbe", normalized to unit
“Cooper pairs density” (|¢"|?)= [ caid?X| ¢"|?b/27=1,
where “cell” is a primitive cell of the vortex lattice. Assum-
ing hexagonal lattice symmetry one explicitly has

7l (1-1)
n_ -
¢ \/—Z”n'al—zw (y\/— I)exp{ 2
2 1 2
+ Waf|x ——( f—— ] ®
wherea/ b= \4=/\[3b is the lattice spacing.
To order zero
HPy=0, 9

and® is proportional to the Abrikosov vortex lattice solu-
tion ¢ which is Eq.(6) for n=0:

Do=goe.
To orderk, one expands

=g+ nzl gi'e"

(10)
Inserting into Eq.(6), one obtains to ordeuﬁ:
HD1=0o¢—dolGol* ¢l @/ (11
Taking the inner product witkp one finds that
1
gozﬁa (12
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The inner product withp gives
3¢ (BY
0=5 2 — re (15

C. Mean-field result for free energy: Orders aZ and a3

The mean-field expression for the free energy to oaﬁer
is well known. Inserting the next correction E@) into Eq.
(5) one obtains the free-energy density:

Fw_i[ @ & &g
T @ 2B Bbn=1 N
3
2 ap
—O.431h—0.0078b— . (16)

It is interesting to note thapB,#0 only whenn=6j,
wherej is an integer. This is due to the hexagonal symmetry
of the vortex latticé? For n=6j it decreases very fast with
j:  Be=—0.2787B,,=0.0249. Because of this the coeffi-
cient of the next-to-leading order is very sméddditional
factor of 6 in the denominatprWe might preliminarily con-
clude therefore that the perturbation theory ap works
much better than might be naively anticipatexte dashed
line on Fig. 2 and can be used very far from transition line.
If we demand that the correction is smaller then the main
contribution, the corresponding line on the phase diagram
will be b=0.015<(1—t). For example, the LLL melting
line corresponds ta,~ 1. This overly optimistic conclusion
is, however, incorrect as the calculation of the following
term in Appendix A shows.

D. Range of applicability of the expansion.
How precise is LLL?

Now we discuss in what region of the parameter space the
expansion outlined above can be applied. First of all note
that all the contributions td, are proportional to b. This
is a general feature: the actual expansion parametgy/is.

One can check as to whether the expansion is convergent
and, if yes, what is its radius of convergence. Looking just at
the leading correction and comparing it to the LLL one gets
a very optimistic estimate. For this purpose we calculated
higher-order coefficients in Appendix A. The results for the
®, are the following:

1< , .
o= gg_—izog'1(2<n,o||,o>+<0,0||,n>) (17)

where the Abrikosov’s constant is the following averageand

over the primitive cell;3= 8,={|¢|*)~1.16. Inner product
with ¢" determines} :

Br‘l

W, (13

J1p=—

where"=(|¢|?¢"¢*). To findg; we need in addition also
the ordera®’? equation:

HD,=D1—(go) 22D 4| |2+ DT ¢?). (14

3
0o=—558"93~ 2( E 9191((0,0i,j)+2(j,0i,0)),
(18)
where(i1,izlj1.j2)=(¢*"1¢*'2¢)1¢12) andg] wheni=0 is

defined to be equal tg; ¢'= ¢ wheni=0.

We already can see thgf andg, are proportional t@}
and in addition there is a factor ofril/Since, due to hexago-
nal lattice symmetry all thg], n#6j vanish, so d@). We
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FIG. 2. The densityy?| of the mean-field Abrikosov solution fdr=0.1t=0.5. (a) is the lowest order approximatighLL ). (b) is the
solution with the next-order correction included, while(@) the next-next-order correction is included.
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checked that there is no more small parameters, so we conenlinear term are included. The fluctuating order-parameter
clude that the leading-order coefficient is much larger tharfield ¢ should be divided into a nonfluctuatirignean field

the first(factor 6x5), but the second is only 6 times larger part and a small fluctuation

than the third.

The correction to free energy is P(X)=D(X)+ x(X). (20

The energy Eq(5) is then expanded iry retaining only

Fmr 1 0.056a; quadratic terms

T o 62 E

(19

Accidental smallness by a factor of 1/6 of the coefficients in fzzf d2x| x* Hx— an| x|?+ 2| ®|?| x|?
thea;, /b expansion due to symmetry means that the range of
validity of this expansion is roughlg,<6b or H<H.,/13. 1
Moreover, additional smallness of all the HLL corrections + §(¢*2X2+ D2x*?)|.
compared to the LLL means that they constitute just several
percent of the correct result inside the region of applicability.Field y can be expanded in a basis of quasimomenﬁjm
To illustrate this point we plot in Fig. 2 the perturbatively ejgenfunctions:
calculated solution fob=0.1t=0.5. One can see that al-
though the leading LLL function has very thick vortidésg.
2(a)], the first nonzero correction makes them of the order of n_ 2
the coherence lengflirig. 2(b)]. Following the correction of P \/_Z”nla = Jb
the order &,,/b)? makes it practically indistinguishable from
the numerical solution. Amazingly the order parameter be- Ky
tween the vortices approaches its vacuum value. Paradoxi- | Vox——=
. : . | #la-1) Vb

cally starting from the region close td., the perturbation xexp| i + | —xk,
theory knows to correct the order parameter so that it looks 2 a
very similar to the London approximatiowalid only close
to H,) result of well-separated vortices.

We conclude, therefore, that the expansioajjhb works ke, 2w 2
in the mean field better than one can naively expect. In the 5 yJ5+ - ?' . (22
next section we investigate whether the same is true for the Vb

fluctuation contribution. In addition instead of complex fielgt? we will use two
“real” fields Oy and Ay satisfyingOg=0%*}, Ag=A*}:

(21)

ke 2
yﬁ+—x—£l)

Ill. FLUCTUATIONS SPECTRUM

A. Fluctuations to leading order in a

- fE S eR0(of+iAD, 23

To find an excitation spectrum in the harmonic approxi-
mation one expands the free-energy functional around the
solution found in the previous section. Within the LLL ap-
proximation this has been done in Ref. 3. We generalize it to X J' X)(O" , —iA"
the case of all the Landau levels when perturbations due to X ()= 2 (p 0 -
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In terms of these fields representing “optical” and “acous- . 1 o % .
tic” phonons Eq.(21) takes a form Ki'(1)= B lel“(¢™ co! i+ oppg )

1 o o
- —S(e* 200 o+ 902¢*',;¢EJ)>,
f2: J'lz nzl (nh_ah)(OEOEK‘FAEAEk) 2

—an(0,0_ +AA_ 24 o 1 - o
(OOt A 29 le'J(l):E<|‘P|2(€0t|§¢1_;2+¢:2¢’£])
S oo i i o o wi %]
+ > AAL KL +OLAL LY (" el it eteT i) ) (2D
i=o

+0AlMiJ+0L0! NI B 1 o o
i,j _ 2 * 1 ] _ I *
Ly (1)_E lo|*(e” co i~ eper )
where elements of the matrix are
1 - o
+5 (0% o0~ wzsvi'gso[fj)> ,
Ki{j=<|¢|2(<pf'l;<p’_,;+ o)

. 1 S
1 P - M"‘(l)=—<|<P|2(<Pf'*¢'_~—<p'~¢’”)
—§(¢*2¢:;¢J,;+‘1’2¢*',;90EJ)>. “ B KTk TRTK

1 . o
+§(<p*2<p[;<p'_|z—<ﬁ2<pf'|;<pﬁ')>-
Ni’i:<|q>|2( *Lol ol We will use definitions
k P_gP_k ququ)
1 o o "={(lo|20rox"
el ereg ),
+§(q)*2¢:z¢llz+q)2§o*llz¢*kfj)>’ (25) Bk <| | k¥ K >

Br={e* o"p% @i), (28)

L"'=i< |@1%(e* i) (= epei )+ 5 (P*2epe’ ¢

‘ ok T2 T 7e=((e")2e-iep).

_(I)Z *ié "jJ >,
o) Ye=(e* o*"oro_g).

When an index is zero we drop it throughout the paper. For

. o 1 o example, whem=0, we refer toBy as By, and whenk
M= —i < P12 (0" ke i epei )+ 5 (P* 2ppel ¢ =0,8;=p", etc).
Considering to ordeay, above matrix elemerit,j=0 of
2 xi %] K,L,M,Nis
D" o) ).
We expandf, in a,. The ordera, term is Kl:ﬁlgk_ EReyk’
_ > —an(0[0  +AA" ) +an>, [AIAL KLi(1) Nl:/_BBk+ ERGW (29
k.i=0 i

+OAL LIJ(1)+0"  AlMI)(1)+0LO" Nk (1)]. 1
(26) Ll:Mk:_Elm Yk -

We will use the degenerate perturbation theory similar to ond" deriving this we have used a propegiy=4_.

used in quantum mechanics to calculate the correction to the W& now diagonalize the matrix to find the eigenstates of

eigenvalues of the matrix the LLL stated,O states to ~ -LL (which is of orderay). Eigenvalues are

orderaZ. The matrixH=({, ) is analogous to the “Hamil-

tonian,” while (A/O) is analogous to the eigenvector. Ex-
plicitly the matrix elements are

2
B

1
€a=an| —1+ ﬁk_E|7k| , (30
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B. Spectrum of fluctuations beyond leading order inay,
In this subsection we calculate the correction of eigenval-
ues of LLL to orderaZ. The HamiltonianA in addition has

thea,, partH; given in Eq.(27) also has tha? partH,. As
will be explained in the next section, we will need only the
correction to the LLL to thea? order, not the HLL. There-

fore we will need only the,j=0 matrix element of,:

[’

K= E

n=1 nb,B2

P 2(2Bx—R
Bﬁn(ﬁk evk)

—2B,(ReBl+ReB"  —Reyh)

1 [3
Np= 2, - ﬁz[gﬂﬁ(Zﬂﬁ Re )

—2B,(ReBl+Rep" +ReyD |, (33

o

L2+ M2: 2

n=1 nbg?

6 2 4 n
- Eﬁn Im y, + E,Bn Im yy

_ _ Note that we do not show, andM, separately as our result
_FIG. 3. The shear mode spectrum(a) is the spectrum obtained  will depend only onL,+M,. According to the degenerate
within the LLL aplp!'oxmatlon.(b) is the correction to the spectrum perturbation theory we need to diagonal&gwhich already
when the HLL mixing effect is considered. . . .
has been done in the previous subsection and then use the
1 resulting stated\, andO, to calculate the second-order cor-
Bt =l 1, rection to the eigenvaluef”) = a2(E g+ Eoftdiag) - The diag-
B onal contribution is

2
B

as was found originally by Eilenberg&rThe “acoustic”

€o=ap -1+

branch is shown in Fig.(3). The rotation transforming in to o 6,2 0,2
these eigenstates is Ediag= (AxlH2|Ap) = cos | K+ N, sinE)
~ 0k . Bk . 0k 9k
Ak=cos?Ak+ smEOk, (31 +(L,y+ Mz)smEcos?. (34)
Substituting the matrix elements E@3) we obtain
~ 0 0
Ok=—sin—kAk+cos—kOk,
2 2
Egiac= > Bn 3ﬂ”2— —2[Repl+Reps"
where y,.=|yJexdié]. A similar calculation for thenth diag™ & nbg?| B (2B md) —2[Repy+ Rep
Landau level gives the spectrum
2 1 —cosf, Reyy—sin eklmyﬂ]]. (35
eao=an| —1+ E(I(PIZQDE"@E)+E|<(<P*)2<PL'<P”k>|)-

(32 In the off-diagonal contribution

TABLE I. Contributions to the free energy of mixing the LLL with HLL. Given in units %)eraﬁ’z.

Leveln 1 2 3 4 5 6 7 8

A mode —0.253 —-0.082 —-0.053 —-0.063 —0.063 0.247 -0.017 —0.005
O mode —0.230 —-0.086 —-0.051 —-0.023 —0.012 0.018 -0.003 —0.001
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_ (AHn)(n|H4[A) _
Eoffdiag_ _n§=:l -

1 6,2 . . G -
i -3 ook TAdRIADIE+ AR 0D+ sin | TioWRuIoD

~ O O N . N .
+ (O H4|AD]?]+ S'”?COS?KAkl H 1| AR (ARIH 1] Ow) + (Al H1|OR)(Og[H 1| Oy) + C-C-]] : (36)

Details of the calculation of these matrix elements can be found in Appendix B together with definitions of quiniities
result is

1 1)1 cosd
Eotiag™ ~ 5 2 1 PP L)+ FL )0 Bzk[|F2(1>|2+IF“_k(1>|2—|FE(2>|2
n 2 ZSinok n *N *N n
~IFL@P =5 [FLDFSR) R WR@)]) (37)

A similar result forO, can be obtained by changing the sign *
of cos#, and the sign of si in the formula above. =TL2L,ob >, [(Veh(k))+(Ved(k))],
It is crucial to see whether there isk& term in higher n=0
orders for the acoustic bran¢h We calculated numerically
the contributions to the spectrum umit=8. All the k2 con-  Where 0=1/\227 and we performed the integration over
tributions to any of them cancel, as it was proved in Ref. 15K;.
Moreover even all th&* contributions for odch cancel al- The LLL contribution to order/a, in two dimensions
though the evem give a negative contribution to the rota- (2D) has been calculated by Eilenberdéfhe 3D result for
tionally symmetric combinationk+k2)2. Numerically the the density of the free energyPis
coefficients are 22106, 5.0x10°%, —6.3x10°5, 4.7
x 10~ " for n=2,4,6,8 correspondingly. The resulting correc- ﬂl/Z)
tion to the spectrum of the acoustic branch due torthe2 %:Ubaﬁlz[<\/8'&1)(k)>+<\/88')(k)>]:3.167baﬁ/2.
level is shown in Fig. ®). (39)
After we have established the spectrum of the elementary
excitations of the Abrikosov lattice, we are ready to calculate L _ e 3
the fluctuation contributions to various physical quantities. W& calculated its highea, correction which is of ordea
using Eqgs(35) and(37)

IV. FLUCTUATION CONTRIBUTIONS TO FREE ;c(3/2) 1 8(2)(k) 8(2)(k)
fluc 3/2| A (o]
ENERGY, MAGNETIZATION AND SPECIFIC HEAT T = Eabah @) + ©)
VeDk) Ved(k)

Higher Landau levels contribution to free energy
The thermal fluctuation part is =—0.445:ba’"?. (40)

—T IN[Z]=Foni+ Fre As noted belowe?(k) ande{?)(k) given in the last section
contain contributions from mixing with all the HLL's. Table
| details contributions to this term from levels unti=8.
The contributions are negative for alk=6j wherej is an
integer and positive otherwise.

(39 The contribution of HLL is

2
z

sf\(k)—l— 5

+Trin| ed(k)+

{Tr In
n=0

F$“°=ob21 [(Vnb+anzi(k)) +(Vnb+ aneg(k))]~20b%2 2, n+ %ab”ahEl %[<82<k>>+<s%<k>>]+0(aﬁ>
n= n= n= n

1
=7 (Fioet Fiigd)- (41)
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The first divergentas powers 3/2 and 1/2 in the ultraviglet which Gi is not negligibly small. There are two small pa-
term renormalizes energy. However, it has a finite magneticcameters used. The first oneag/b which controls the ex-
field-dependent part which should be calculated by subtracipansion of the mean-field solution and, therefore, the HLL
ing theb=0 value of the free energy. The proper regulariza-corrections were already discussed in Sec. Ill. The second
tion is made by restricting the number of Landau levels angmall parameter controls the fluctuations. We assumed the
then showing that after regularization the answer does nanean field is the leading order and then expanded the statis-
depend on it. The calculation is the same as the one done tical sum around it. Summarizing all the corrections the free
the normal phaséobviously uv divergences are insensitive energy density is

to the phase in which they are calculateske for details and
discussion, Ref. 16. The result is

F B _ @ PN 2
0) T ¢ ‘aj C(z 1)+Cg 1)F+CE1 1>(F) (45
'fll'uczo'5267b3/2' (42 a,.\ ~12 a.\ 12
is exhibi - - . +obay? CEO)(Fh +c{f+cf? Fh)
This exhibits the diamagnetic nature of the bosonic ftéld.

The second term is proportional ®i1/\n and also diverges
but only as power 1/2 in the ultraviolet and renormaliags +c(3(,’2) 5
To see this we calculate the sum

+wo?b?a, [cM)],

where the coefficientgipper index is the power @ and the

(o ) 4<<| 2Dy ) 4 lower index is the power o4, are
ea(K) +eo(k))=—2+ Z{(le|“ek i) Kk=—2+ 5.
B B

(43 ¢ Y=-0.434, ¢} P=-0.0078, c'=0.526,
(46)
The last equality follows from the curious property of
*N n H
k (X)ey(x) that it depends only ox;b—egjk;. We see cO_31 (0)_1 ©—_044 1)=0.11
that apart from the renormalizations there is a finite correc- Cyz=316, ¢ 06, cy=—0.445, ¢=;=0.118,
tion: and o is defined in Eq.3). The last term is the two-loop

contribution calculated in I. One clearly see thaba, %2

always appears together with an important “loop facter”
—|obM %y (44  =1/2%27=0.11. The expansion parameter therefore is

f(luc
= =1. 455(

The following one is of the ordea? and will not be calcu-

lated here. ocwba, ¥%=72Gi o !

(1-t=b)*2  2m|ar

In the last equatiom is the often used dimensionless LLL
temperature introduced by ThoulésBor Gi=0.01 the con-
dition cwa;, ¥?<1 is represented by the area above the dot-
ted line in Fig. 1.

Here we discuss the nature and range of applicability of Correspondingly the scaled magnetization is
the expansions we used for fluctuating supercondudfors = — d.F/ db:

V. RESULTS FOR MAGNETIZATION AND SPECIFIC
HEAT: RANGE OF APPLICABILITY OF THE
LOOP EXPANSION AND GL APPROACH

m 3
T =0 Y| cf Pag+ Sch b rag+2ch Vb %a]

T +o

3 1
¢S Vo b 2a3- 5 = cOpl2_ c(0)al2, Zc(lt/)z)baﬁ 112

1 1 3
_ EC(lo)b—l/2ah+EC(lO)bl/zJr Z(:(3(/)2)6‘%/2

wcr(Zbah +=b%a,?|[cY)], (47)

while the scaled specific heat és= —t(3%/dt?) F:

C 1 1 1 3
?=tTcw_l( - Ec(z‘l)w‘l—3c(3_1)b‘1ah—905f1)b‘2aﬁ +oT ( cOba, Y2+ — 6C c{%btay, ¥2+ c{Vbt2+ Zc(‘))a”2

3 t
— Ecg?z)tagl’z +T.wo?b?| a, 2— >an 3c™). (48)
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Now we address the question whether the GL energy itwith the MC simulations is very good although obviously the
self can be reliably used in the region of applicability statedmelting transition is not seen. As argued in | it is not ex-
above. The GL free energy is an effective energy obtainegected to exist within the present model. The HLL do not
after integrating out microscopic degrees of freedom),,  change this conclusion. That the “supersof’mode has a
(for example, quantum electron fields in the BCS or Hubbarcbropagator TkZ+ constk?+ k§)2] beyond the LLL approxi-
mode). Formally one writes mation lays to rest a suspicion that this is a fluke due to

LLL.*® This indicates that this unusual “softness” is due to
some underlying symmetry which has yet to be explicitly

exp{ — BFall 4]} = o (= ¢ @mic) )X~ BFLemicll:  identified.
micr (49)

where the functiondF[ ¢ ] describes a microscopic theory ACKNOWLEDGMENTS
(one has to make also the quantum-mechanical average not

shown explicitly. The order-parameter field is a function of
the microscopic field(bilinear in electron field in BCS
Without detailed knowledge of the microscopic theory the
functional F 5 [ ] could be quite general, however néear
for H=0 or more generally neadt,(T) the order parameter
is small and one can expand on it. Gorkov derived the coe
ficients of the GL theory from BC& While some such deri-
vations of the GL theory exist for highi; materials® also in
the magnetic field® here we show the consistency of the
approach within the area of applicability of the approxima- APPENDIX A: THIRD-ORDER CORRECTION TO THE
tion we use. Of course, in particular microscopic theories the MEAN-FIELD SOLUTION AND FREE ENERGY

range of applicability might be larger. Generally the require- |n this appendix we provide some details of the third or-

We are grateful to our colleagues A. Knigavko, B. Bako,
V. Yang. B.R. is grateful to G. Kotliar, A. Balatsky, L. Bu-
laevskii, Y. Kluger, and R. Sasik for numerous discussions in
Los Alamos where this work started. We also thank R. Ikeda
for bringing Ref. 15 to our attention. The work is part of the
NCTS topical program on vortices in high- and was sup-
ported by the NSC of Taiwan.

ments are the following. Termfy|®|¢4(° ... should be der correction in they, calculation of the mean-field solution
small compared td#|* in the GL free energy Eql). In  of the GL equations.
derivatives can be neglected comparedDa/|~. two sides of Eq(14) and obtains Eq(17). To calculateg,,

Our perturbative solutionye\ay, therefore, [¢/{°=a} e need to consider the GL equation to ord@P:
while |¢|%<a?2. Therefore, in the leading ordés|® can be
neglected. In higher orders, those higher terms do contribute.

In the next leading ternk/|® should be phenomenologically HD 3= D, —[(Do) 2% + (D) 2DE + 2| (| 2D,
included, while||® not and so forth. As far as higher de- .
rivatives are concerned we have shown that even for HLL +2|Dy[*D3]. (A1)

|D|?xba;, and thus higher derivative terms appear only at

quite high order. Therefore, we can take the GL free eNergyr o scalar product witk gives Eq.(18)

Eq. (1), as the free energy of the system to leading order. Now we compute thea;1 order correction to free energy.

Thus in the LLL regime defined here in the paper, the GL - .
theory shall describe the physics correctly. Higher-order corSubstituting®, from Egs.(17) and(18) we find

rections require more free parameters.

1
VI. CONCLUSION S AP H| 1) +(P [ H| Do) —(@5] Do) — (D4 )
In this paper we showed why the LLL results are often g 1
valid far beyond the naive limit of applicability of the ap- (P D))= — =2 a3+33 nba’a"— = (q" 2}
proximation for both the mean-field and the fluctuation parts. (®1]®2)) 2" hnzo %92~ 5(9)

Our results are valid strictly speaking between the long-
dashed line representingl=H.,(T)/13 and one of the
dashed curves indicating the range of validity of the loop
expansion for the fluctuation contributigdepends on value Dominant contributions come from{6,60,0)=(0,06,6)

of the Ginzburg numbeGi). For nonfluctuating strongly =0.80260(6,06,0)=0.80283 and those coefficients are real.
type-Il superconductors our results can be directly checked

by experiments done at low temperature or numerical solu-

tion (or even the “London limit approximationj’and are in APPENDIX B: SECOND-ORDER CORRECTION

clear agreement. For small, but not very small Ginzburg pa- TO THE FLUCTUATIONS SPECTRUM

rameter Gi one can compare with existing Monte Carlo ) ) ) ) _
(MC) Simu|ation§r20 or experimentsl Of course, one can use In this appendlx we list matrix elements of the correction
the existing high-temperature expangitminterpolate to the H, given by Eq.(27) between various states used in the
present expansion range. Results for LLL were presented indalculation of the second-order correction to energies of ex-
and the HLL do not alter them significantly. The agreementitations:

(A2)
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. 1 O F1|OD) |2+ [{ O H4|AR)|?
(O FaloD = Zol(¢” o g+ ot ) (ORGP (O HLIAYI

2
1 =—[IFR2)[?+|F" (2)]%], (B4)
+ ﬁ(@*zsowrl,ﬁ 0%0" cor ") B?

(B1) (Al |:|1|AE><AE| |:|1|Ok> + (A |:|1|OE><OE| |:|1|Ok> +c.c.

1 1
= _[,Brlk"'ﬁ’l:n"' E(Vrlk+ Y

B 1
2
) e . =E[Fﬁn(l)FE(Z)—Fik(l)Ffﬂ(Z)]JrC-C-,
<Ak|H1|OE>:E<|‘P| (ereg —QD_QQD_Q)Hﬁ
) n 5 % %n where

X{P* “ppp_— @ @ o)

; 1

| 1 n _pn_—.n

:E[_Bnk+lg’k<“+§(y“k_7:n}, FiD) =B 5 % (B5)

(B2)

~ [ 1
(OUFLIAD = | Bl A"+ 5 ()

1
F(2)=Bit 5 ¥k

Finally, we can show that

- [ 1
(ARIO= | - 5 (v, @9 .
Eoting™ ~ 2 1 LIFKDPHFL PRI

“ i 1
<Ak|Hl|OE>:E[ :n_ﬁrlkJFE(—?’rlkJr %" }

cos6y
[IFR(D[Z+[FT(D?

+[FL(2)[7]+ iz

e _E %N n E * N n
<Ok|H1lOk>_,8 ,8_k+,8k+2(7—k+7k) —|[FR(2)|1*=|F" (2)]2]

etc. From those formulas, we can show

, + ;fk2|m[F“k(l)F*ﬂ(z)—F;”(l)FQ(z)] .
(A H L ADZ+ [(AIH L O P =—[IFR(1) >+ |FL(1)]?],
B (B6)
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